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Solution 3

1. Show that inf X > inf Y whenever X C Y (C R) and hence that m*(A4) 1 (i.e. m*(A) <
m*(B) if A C B(C R)).

Solution. Let x € X. Then x € Y, and hence by the definition of infimum, z > inf Y.
Since x € X is arbitrary, we have inf X > inf Y. The last statement follows immediately
from the definition

m*(A) := inf{z 0(1y) : {Ix}72, is a countable open-interval cover of A},
k=1

and the fact that if A C B C R, then any countable interval cover of B is also a countable
interval cover of A. |

2. Let A be an algebra of subsets of X. Show that A is a o-algebra if (and only if) A is
stable with respect to countable disjoint unions:

UAnGA whenever A, € AVneNand A, N A, =0 Vm #n.

n=1

Solution. Suppose A is an algebra of subset of X that is stable with respect to countable
disjoint unions. To show that A is a o-algebra, it suffices to show that A is stable with
respect to countable (but not necessarily disjoint) union. Let B,, € A for n € N. Define
n—1
Cy:=By and C,:=B,)\ UBk for n > 2.
k=1

Clearly the collection {C),}72 , is pairwise disjoint, and each C), € A since A is an algebra.

Moreover,
01U02=B1U(BQ\31) = B1 U By,
ClLJCQUCg:B1UBQU(33\(31UBQ)) = B U By U Bs,
and so on. Hence |J;2 | B, = U, Cpn € A. <

3. Suppose [a,b] (C R) is covered by a finite family C of open intervals. Show that b —a <
sum of lengths of intervals in C (by MI to n := #(C), the number of elements of C).

Solution. Let P(n) be the statement: if [a,b] is a closed bounded interval that is covered
by a finite family C of open intervals with #(C) = n, then b — a < sum of lengths of
intervals in C.

Suppose #(C) = 1 and C = {]c¢,d]}. Then clearly b —a < d — c¢. Hence P(1) is true.

Assume that P(k) is true. Suppose [a,b] is a closed bounded interval that is covered by a
finite family C = {(¢;, di)}fill of open intervals. Without loss of generality, we may assume
that a € (c1,d;). Then [dy,b] is a closed bounded interval covered by {(c;,d;)}*"5. Now
the induction assumption implies that

k41
b—d; SZ!Ci—dz‘\,
=2
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and hence
k+1 k+1
b—a=(d —a)+(b—d) < \cl—d1|+ZyCi_di\ :Zm_di‘,
=2 i=1
So P(k +1) is true.
By MI, P(n) is true for all n € N. <

4. (cf. Royden 3rd, p.52, Q51) Upper/Lower Envelopes of f : [a,b] — R.
Define h, g : [a,b] — [—00, 00] by
h(y) := inf{hs(y) : 06 > 0} for all y € [a, ],
where hs(y) := sup{f(x) : « € [a,b], |xr — y| < 0}; and

9(y) :=sup{gs(y) : 6 > 0} for all y € [a, b],
where gs(y) := inf{f(x) : x € [a,b], |z — y| < }. Prove the following:

(a) g < f < h pointwisely on [a, b], and for all x € [a,b], g(z) = f(x) if and only if f is
lower semicontinuous (l.s.c) at x (f(z) = h(z) if and only if f is upper semicontinuous
(u.s.c) at ), so g(z) = h(x) if and only if f is continuous at x.

(b) If f is bounded (so g, h are real-valued), then g is l.s.c and h is u.s.c.

(c) If ¢ is a L.s.c function on [a, b] such that ¢ < f (pointwise) on [a, b], then ¢ < g. State
and show the corresponding result for h.

(d) Let Cy, := {z € [a,b] : h(z) — g(z) < L} for all n € N. Then C := 72, C,, is exactly
the set of all continuity points of f and is a Gs-set.

Note: More suggestive notations for g, h are f, f.

Solution. (a) Clearly gs(x) < f(z) < hs(z) for all x € [a,b] and 6 > 0. Hence g < f < h
pointwisely on [a, b].
Suppose f is L.s.c at z, that is, for all € > 0, there exists > 0 such that f(z)—e < f(y)
whenever y € [a,b] and |y — x| < §. Then f(z) —e < gs(x) < g(x). Since € > 0 is
arbitrary, we have f(z) < g(z), and hence f(z) = g(z).
On the other hand, suppose f(z) = g(x). Let € > 0. Fix § > 0 such that g(z) <
gs(x)+e. Since (y—9/2,y+6/2) C (x—§,z+9) whenever y € (x—0/2,2+6/2)N]a, b],
then it follows from the definition that

95(z) < g5/2(y) < 9(y),

and hence f(z) —e =g(z) —e < gs(x) < g(y) < f(y). Therefore f is l.s.c at .
Similarly, one can show that f(x) = h(z) if and only if f is u.s.c at z.

The last assertion now follows immediately from above and the simple fact that f is
continuous at z if and only if it is both Ls.c and u.s.c at z.

(b) The proof is essentially the same as that in the second part of (a). Let = € [a,b] and
e > 0. Since g is real-valued, we can find 6 > 0 such that g(x) < gs;(z) +¢. Note that
(y—10/2,y+0/2) C (x — 0,z +0) if |z — y| < §/2. It follows from the definition that
whenever y € (x — /2,2 4+ §/2) N [a, b], we have

9(w) — e < gs(x) < g5s2(y) < g(v).

Therefore g is L.s.c on [a, ].
Similarly one can show that h is u.s.c on [a, b].
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()

It suffices to prove that if ¢ is Ls.c at 2 and ¢ < f on [a,b], then ¢(x) < f(z). From
the definition,

() == Sup (inf{d(y) : y € [a, 0] : [x — y| < 6}) < g()

Since ¢ is Ls.c at x, we have ¢(x) = ¢(z) by (a), and the result follows.

Similarly, one can prove the corresponding result for h: if ¢ is a u.s.c function on
[a, b] such that f <) on [a,b], then h < .

By (a), we have

{z € a,b] : f continuous at x} = {z € [a,b] : g(x) = h(z)}

To see that C' is a Gg-set (in [a,b]), it suffices to show that, given any A > 0,
A= {z € [a,b] : h(z) — g(z) < A} is open in [a,b]. Let xg € A. Then there
exists v € (0,1) such that h(zg) — g(xo) < yA. By the definitions of h, g, there exists
91,02 > 0 such that hs, (x0) — gs5,(x0) < ¥\, and hence

f(y) — f(z) <\ whenever y, z € [a,b] and |y — xo| < 1, |z — zo| < Ja.
In particular, if € [a,b] and |z — xg| < 0 := min{d1, d2}/2, then
f(y) — f(z) < ¥\ whenever y,z € [a,b] and |y — z|, |z — x| < d.

Thus hs(z) — gs(z) < A, so that h(x) — g(z) < YA < A whenever z € [a,b] and
|z — xo| < 6. Therefore A is an open subset of [a, b].

<

5. Let f : [a,b] — [m,M]. For each P € Par|a,b], let u(f;P) and U(f; P) denote the
lower /upper Riemann-sum functions. Let {P, : n € N} be a sequence of partitions such
that P, C Py+1 Vn and ||P,|| — 0 (]| P]| is the max subinterval length of P). Show that,
Vo€ la,b]\ A

lim (u(f; Po) () = f(x) and T (U(f; Po) () = F(2),

where A denotes the union of all end-points of P, Vn.

Solution. Let ¢,1¢ be bounded functions on [a,b], and P,Q be partitions on [a,b]. It
is clear from the definitions that the lower and upper Riemann-sum functions satisfy the
following properties

<o <U(p;P).

(¢;Q) and U(¢; Q) < U(¢; P) if P C Q.

(1; P) and U(¢; P) < U(¢; P) if ¢ < 9.

and U(¢; P) are continuous except at the end-points of P.
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Let {P,} be a sequence of partitions such that P, C P,y; Vn and ||P,|| — 0. Then (ii)
implies that u(f; P,) is an increasing sequence of functions, so that lim, u(f; P,) exists.
Moreover we have

u(f; Po)(z) Sul(f; Po)(z) < f(z), forallzela,b]\ A, (1)

where the first inequality follows from 4(a) and (iii), while the second one follows from
(the proof of) 4(c), (i) and (iv).
Fix = € [a,b] \ A. Since f is Ls.c at x, there exists § > 0 such that

f(x) —e < f(y) whenever y € [a,b] and |y — x| < 4. (2)

Choose N so large such that |Py|| < §. Suppose a = ag < a1 < --- < a = b are the
end-points of Py. Then (2) implies that

Mw

inf  f(Y)X(2io1.20) (2) = u(f; Pn)(@).

6(1‘1 1 1'1 -

Combining this with (1) and (ii), we have
i(a:) —e <u(f; Py)(x) <u(f; Pp)(x) < i(:p) forn > N,
and hence limu(f; P,)(z) = f(z).

Similarly we can show that im U(f; P,)(x) = f(x) for = € [a,b] \ A.



