
Solutions of Homework I

1. (i) Since 42 − 4× 4 = 0, it is of the parabolic type.

(ii) Since 62 − 4× 9 = 0, it is of the parabolic type.

(iii) Since 42 − 4 > 0, it is of the hyperbolic type.

2. (i) Fix (t, x). Let z(s) = u(t+s, x+ 3
2
s), then ż = 0. Since z(−t) = u(0, x− 3

2
t) =

sin(x− 3
2
t), u(t, x) = z(0) = sin(x− 3

2
t). And it is easy to verify that sin(x− 3

2
t)

is a solution.

(ii) Fix (t, x). Let z(s) = u(t+s, x+s), then ż+z = 0. Since z(−t) = u(0, x−t) =

g(x − t), u(t, x) = z(0) = e−(0−(−t))g(x − t) = e−tg(x − t). And it is easy to

verify that e−tg(x− t) is a solution.

(iii) Fix (t, x). Let z(s) = u(t + s, x + s), then ż + z = et+2x+3s. Since z(−t) =

u(0, x− t) = 0, u(t, x) = z(0) =
∫ 0

−t
e−(0−s)et+2x+3s ds = 1

4
(et+2x − e−3t+2x).

And it is easy to verify that 1
4
(et+2x − e−3t+2x) is a solution.

3. (i) For a solution u, fixing (t, x), let z(s) = u(t + s, x + 2s), then ż = 0. Since

z(−t) = u(0, x− 2t) = g(x− 2t), u(t, x) = z(0) = g(x− 2t). Now it is clear

that for each fixed x, u(t, x) = g(x − 2t) tends to 0 as t → ∞ since g(x) → 0

as x → −∞.

(ii) For a solution u, fixing (t, x), let z(s) = u(t+ s, x+2s), then ż+ z = 0. Since

z(−t) = u(0, x − 2t) = g(x − 2t), u(t, x) = z(0) = e−(0−(−t))g(x − 2t) =

e−tg(x− 2t). So it is clear that for each fixed x, u(t, x) → 0 as t → ∞ since g

is bounded.

4. For (i) and (ii), they could be verified by direct calculation. Here we verify them

from another point of view.

(i) Firstly, the domains are (a) R2, (b) R2, (c) R2 \ {(0, 0)}, (d) R2 \ {(0, 0)}. We

could observe that these functions are real parts of holomorphic functions (a)

ez, (b) 1 + z2, (d) 1/z. (c) is somewhat subtle. In fact, we can’t find a holo-

morphic function whose real part is log(x2 + y2) on R2 \ {(0, 0)}. But since

1



harmonicity is just a local property, we could show that log(x2 + y2) is har-

monic by regarding it as the real parts of 2 log z defined on {arg z ∈ (−π, π)}
and {arg z ∈ (0, 2π)}. We could also prove it by regrading it as the real part of

2 log z defined on {arg z ∈ (−π, π)} and then by continuity of ∆u to cover the

line arg z = π.

(ii) An important observation is that traveling waves f(x + 2t) and g(x − 2t) are

solutions of the wave equations. (In fact, we will learn that solutions of one-

dimensional wave equations are linear superpositions of these two kinds of func-

tions.) Now, (a) 4t2+x2 = 1
2
((2t+x)2+(2t−x)2); (b) is clear; (c) sin 2t cosx =

1
2
(sin(2t+ x) + sin(2t− x)); (d) is clear.

(iii) By the polar coordinate representation of Laplacian, we have

f ′′(r) +
1

r
f ′(r) = 0.

We have f ′(r) = C/r and f(r) = a log r + b. And it is easy to check that

a log r + b are harmonic on R2 \ {(0, 0)}.

5. Firstly, u2 also satisfies the equation. So we could assume that u ≥ 0 and we only

need to prove that u ≤ 0. u has a maximum M on D and suppose that u attains it

at z0. If z0 is in the interior of D, then ux(z0) = uy(z0) = 0, and by the equation

we have M = 0. Suppose that z0 is on the boundary of D. a(x, y)x + b(x, y)y > 0

tells us that v = (a, b) is in the same direction of normal vector. In fact, we have

z0 − tv(z0) ∈ D if t > 0 is small enough.

|z0|2 − |z0 − tv|2 = t(2(z0, v)− t|v|2),

where (z0, v) denotes the inner product. Let z0 = (x0, y0). Since (z0, v) = a(x0, y0)x0+

b(x0, y0)y0 > 0, if t > 0 is small enough, we have z0 − tv(z0) ∈ D. Since u attains

the maximum at z0,
u(z0)− u(z0 − tv(z0))

t
≥ 0

for small positive t. Let t → 0, then we obtain that

(v(z0),∇u) = a(z0)ux(z0) + b(z0)uy(z0) ≥ 0.

By the equation, we have M ≥ 0. So in each case, M ≤ 0, and we have u ≤ 0.

6. (i) Fix (t, x). Let z(s) = u(t+ s, x+ s), then ż + z2 = 0. Since

− ż

z2
= 1,
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1

z(0)
− 1

z(−t)
= t.

Since z(−t) = u(0, x− t) = g(x− t),

u(t, x) = z(0) =
1

1/g(x− t) + t
=

g(x− t)

tg(x− t) + 1
.

We could check that it is a general formula for the equation.

(ii) If the initial data is positive, it is clear that the solution exists for all time. Since

|u(t, x)| ≤ 1

t
,

we have u(t, x) → 0 as t → ∞ for each fixed x.

(iii) For (iii) and (iv), we just consider the cases g has a minimum because otherwise

there may be no solutions to the equation. Suppose that g attain its minimum

m < 0 at x0. Then before T = −1/m, we could imply that

u(t, x) =
g(x− t)

tg(x− t) + 1
.

For y = x0 − 1/m, we have

lim
t→T−

u(t, y) = −∞.

(iv) Ifm = min g < 0, it is easy to check that g(x− t)/(tg(x− t) + 1) is a solution

before T = −1/m. So by (iii), T∗ = −(min g)−1. If m = min g ≥ 0, by (ii),

T∗ = ∞. Therefore,

T∗ =


− 1

min g
min g < 0;

∞ min g ≥ 0.
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