MATH2050B Mathematical Analysis I

Make-up Test 1 suggested Solution[∗]

Question 1. State the definitions/notations, and the negation for (v) and (vi).

- (i) Archimedean properties of $\mathbb N$ in $\mathbb R$.
- (ii) $x \in \mathbb{R}$ is a lower bound of *B*.
- (iii) $\lim_{n} x_n = \ell$.
- (iv) $\lim_{n} x_{n} = -\infty$.
- (v) (x_n) is Cauchy.
- (vi) A is order-convex (convex).

Solution:

(i) **Archimedean Property of** \mathbb{N} **: Let** $r \in \mathbb{R}$ **. Then there exists** $n \in \mathbb{N}$ **such that** $r < n$ **.**

(ii) We say *x* is a lower bound of *B*, if $x \leq b$ for all $b \in B$.

(iii) For every $\varepsilon > 0$ there exists a natural number $K(\varepsilon)$ such that for all $n \geq K(\varepsilon)$, the terms x_n satisfy $|x_n - \ell| < \varepsilon$.

(iv) For every $r \in \mathbb{R}$, there is an $N(r)$ such that for every $n \geq N(r)$, $x_n < r$.

(v) (x_n) is said to be Cauchy if for any $\varepsilon > 0$, there exists $N_0 \in \mathbb{N}$ such that for any $m, n \ge N_0$,

$$
|x_n - x_m| < \varepsilon.
$$

Negation: There exists $\varepsilon_0 > 0$ such that for every *H* there exist at least one $n > H$ and at least one $m > H$ such that $|x_n - x_m| \geq \varepsilon_0$.

(vi) $A \subseteq \mathbb{R}$ is said to be oder-convex if, for any $a_1, a_2 \in A$ and any $z \in \mathbb{R}$ with $a_1 < z < a_2$, one has $z \in A$.

Negation: There exists two points $x, y \in A$, and a point $z_0 = t_0 x + (1 - t_0)y$ with $0 < t_0 < 1$, such that $z_0 \notin A$.

Question 2. State the following results/theorems:

[∗]please kindly send an email to cyma@math.cuhk.edu.hk if you have any question.

(i) Characterization theorem for intervals.

- (ii) The nested intervals theorem.
- (iii) Bolzano–Weierstrass Theorem.
- (iv) Cauchy criterion.

Solution:

- (i) **Characterization of Intervals**: Let $I \subseteq \mathbb{R}$ be order-convex. Then *I* is an interval.
- (ii) **The nested intervals theorem:** Let $I_n := [a_n, b_n] \subseteq \mathbb{R}$ with $a_n \leq b_n$ be such that

$$
I_{n+1} \subseteq I_n, \quad \forall n \in \mathbb{N}.
$$

Then

$$
\bigcap_{n\in\mathbb{N}}I_n\neq\varnothing.
$$

(iii) **Bolzano-Weierstrass Theorem:** A bounded sequence of real numbers has a convergent subsequence.

(iv) **Cauchy Convergence Criterion:** A sequence of real numbers is convergent if and only if it is a Cauchy sequence.

Question 3. *(Not to use on any theorem (limits))* In the terminology of $\varepsilon - N$, show that

(i) If $\lim_{n} x_n = x$, $\lim_{n} y_n = y$ in R and

$$
x_n \leqslant y_n \quad \forall n \geqslant 1997,
$$

then $x \leq y$.

(ii) If $\lim_{n} z_n = \ell > 0$ then $\exists N \in \mathbb{N}$ with $N \geq 2047$ s.t.

$$
\frac{2\ell}{3} < z_n < 2\ell \quad \forall n \geqslant N.
$$

(iii) Suppose $\lim_{n} x_n = 5$, $\lim_{n} y_n = 2$. Then

$$
\lim_{n} \frac{x_n}{y_n} = \frac{5}{2}.
$$

(Hint: What wonld you do if 5,2 are *x, y*?)

(iv) Let (x_n) be a \downarrow (decreasing) sequence of positive real numbers. Show $\lim_{n} x_n$ exists in R.

Solution:

(i) For any $\varepsilon > 0$, there exists $N_1(\varepsilon) \in \mathbb{N}$ so that for any $n \geq N_1(\varepsilon)$,

$$
|x_n - x| < \varepsilon/2.
$$

Since $\lim_{n} y_n = y$ there exists $N_2(\varepsilon) \in \mathbb{N}$ so that for any $n \geq N_2(\varepsilon)$,

$$
|y_n - y| < \varepsilon/2.
$$

Let $N = \max\{N_1(\varepsilon), N_2(\varepsilon), 1997\}$, then for any $n \geq N$,

$$
y - x = (y - y_n) + (y_n - x_n) + (x_n - x)
$$

\n
$$
\ge -|y - y_n| + (y_n - x_n) - |x_n - x|
$$

\n
$$
> (y_n - x_n) - \varepsilon
$$

\n
$$
\ge -\varepsilon.
$$

Thus we have $y - x > -\varepsilon$. Since ε is arbitrary, we have $y - x \ge 0$, as desired.

(ii) Since $\lim_{n} z_n = \ell > 0$, there exists $N_1 \in \mathbb{N}$ such that for any $n \ge N_1$, we have

$$
|z_n - \ell| < \frac{\ell}{3}
$$
, i.e. $-\frac{\ell}{3} < z_n - \ell < \frac{\ell}{3}$.

It follows that $\frac{2\ell}{3} < z_n < 2\ell$, for any $n \geq N_1$.

Let $N = \max\{N_1, 2047\}$, it is easily seen that $\frac{2\ell}{3} < z_n < 2\ell$, for any $n \ge N$.

(iii) Firstly we show that the product $(x_n y_n)$ is convergent with $\lim x_n y_n = 10$.

Since $\lim_{n} y_n = 2$, there exists $N_0 \in \mathbb{N}$ such that for any $n \ge N_0$, we have $|y_n - 2| < 1$. It directly follows that $|y_n| < 4$ for any $n \geq N_0$.

Fix $\varepsilon > 0$. Take $\varepsilon' > 0$ such that $\varepsilon' = \min\{\frac{\varepsilon}{9}, 1\}$. Since $\lim_n x_n = 5$, there exists $N_1(\varepsilon) \in \mathbb{N}$ such that for any $n \geq N_1(\varepsilon)$, we have $|x_n - 5| < \varepsilon'$. Similarly, since $\lim_n y_n = 2$, there exists $N_2(\varepsilon) \in \mathbb{N}$ such that for any $n \geq N_2(\varepsilon)$, we obtain $|y_n - 2| < \varepsilon'$.

Hence, the triangle inequality implies that

$$
|x_ny_n - 10| \le |x_ny_n - 5y_n| + |5y_n - 10| \le |x_n - 5| |y_n| + |5| |y_n - 2| < \varepsilon' \cdot 4 + 5\varepsilon' = 9\varepsilon' \le \varepsilon,
$$

for all $n \ge \max\{N_0, N_1(\varepsilon), N_2(\varepsilon)\}\.$ This implies that $(x_n y_n)$ is convergent and $\lim x_n y_n = ab$.

For showing $\lim_{n} \frac{x_n}{y_n} = \frac{5}{2}$, it suffices to show that the sequence $\left(\frac{1}{y}\right)$ *yn* $\overline{ }$ converges to 1*/*2 by using above result.

Let $\varepsilon > 0$ be as above and $N = \max\{N_0(\varepsilon), N_1(\varepsilon), N_2(\varepsilon)\}\$. It is noted that there is a positive integer $N_3 > N$ such that $|y_n - 2| < 1$ for all $n \ge N_3$. This gives $|y_n| > 1$ for all $n \ge N_3$. Hence, we have

$$
\left|\frac{1}{y_n} - \frac{1}{2}\right| = \frac{|y_n - 2|}{|y_n| \, 2} \le \varepsilon/2,
$$

for all $n \geq N_3$. The proof is complete.

(iv) Since x_n is bounded below by 0, by The Completeness Property of \mathbb{R} , the sequence has an infimum in R. Suppose inf $x_n = a$. Then for given $\varepsilon > 0$, there exists n_0 such that $a + \varepsilon \geq x_{n_0}$. Since (x_n) is decreasing, we have $x_{n_0} \ge x_n$ for all $n \ge n_0$. This implies that

$$
a + \varepsilon \geq x_n \geq a \geq a - \varepsilon
$$
 for all $n \geq n_0$.

That is $\lim_{n} x_n = a$.