MATH2050B Mathematical Analysis I

Homework 6 suggested Solution*

Question 2*. Check Q1 is the ε - δ terminology. Hint: Let $M \in \mathbb{R}$. Wish to find $\delta > 0$ s.t.

$$\frac{x}{x-1} > M, \text{ whenever } x \in (1, 1+\delta),$$

Is it equivalent to the following inequalities?

x >

$$\begin{split} M(x-1) &= Mx - M \\ \iff M > (M-1)x \\ \iff \frac{M}{M-1} > x \quad (\text{Assume } M > 1) \\ \iff \frac{M-1+1}{M-1} > x \\ \iff 1 + \frac{1}{M-1} > x. \end{split}$$

Thus we may take $\delta := \frac{1}{M-1}$ (with M > 1).

Solution: For any M > 1, take $\delta = \frac{1}{M-1}$. For any $x \in (1, 1 + \delta)$,

$$\frac{x}{x-1} = \frac{x-1+1}{x-1} = 1 + \frac{1}{x-1} = 1 + \frac{1}{x-1} = 1 + \frac{1}{(1+\delta)-1} = 1 + M - 1 = M.$$

Thus we have $\frac{x}{x-1} \ge M$. Since M is arbitrary large, we have $\lim_{x \to 1+} \frac{x}{x-1} = +\infty$, as desired.

Question 3*. Do Q1, Q2 but for $\lim_{x \to 1^-} \frac{x}{x-1} = -\infty$.

Solution:

Computation Rule: Suppose $\lim_{x\to x_0} f(x) = c > 0$, and there exists $\delta > 0$ such that g(x) < 0 for $x \in (x_0 - \delta, x_0)$. If $\lim_{x\to x_0 -} g(x) = 0$, then

$$\lim_{x \to x_0 -} \frac{f(x)}{g(x)} = -\infty.$$

^{*}please kindly send an email to cyma@math.cuhk.edu.hk if you have any question.

For any M < -2, take $\delta = \frac{1}{-M+1}$. For any $x \in (1 - \delta, 1)$,

$$\frac{x}{x-1} = \frac{x-1+1}{x-1} = 1 - \frac{1}{1-x} \le 1 - \frac{1}{\delta} \le 1 - (-M+1) = M.$$

Thus we have $\lim_{x \to 1^-} \frac{x}{x-1} = -\infty$.

Question 5. Evaluate the following limits, or show that they do not exist.

(b)
$$\lim_{x \to 1} \frac{x}{x-1}$$
 $(x \neq 1)$, (e) $\lim_{x \to 0} (\sqrt{x+1})/x$ $(x > -1)$.

Solution:

(b) It follows from Q1 and Q3 that

$$\lim_{x \to 1+} \frac{x}{x-1} = +\infty, \qquad \lim_{x \to 1-} \frac{x}{x-1} = -\infty.$$

Therefore, the limit $\lim_{x\to 1} \frac{x}{x-1}$ does not exist.

(e) If x > 0, then $\sqrt{x+1} > \sqrt{x}$. It follows that

$$\lim_{x \to 0^+} \frac{\sqrt{x+1}}{x} > \lim_{x \to 0^+} \frac{\sqrt{x}}{x}$$
$$= \lim_{x \to 0^+} \frac{1}{\sqrt{x}}$$
$$= +\infty.$$

On the other hand, for $x \in (-\frac{1}{2}, 0)$ we have $\sqrt{x+1} > \sqrt{\frac{1}{2}}$, and hence that

$$\frac{\sqrt{x+1}}{x} < \frac{1}{\sqrt{2}x}.$$

It follows that $\lim_{x\to 0^-} \frac{\sqrt{x+1}}{x} = -\infty$, since $\lim_{x\to 0^-} \frac{1}{\sqrt{2x}} = -\infty$. Therefore we conclude that $\lim_{x\to 0} \frac{\sqrt{x+1}}{x}$ does not exist.