MATH2050B Mathematical Analysis I

Homework 4 suggested Solution^{*}

Question 3*. Show that $\lim_{n} \frac{n^{100}}{(1+\epsilon)^n} = 0, \forall \epsilon > 0.$

Solution:

Notice

rules, w

For $n \ge 101$, we note that

$$\begin{aligned} \frac{n^{100}}{(1+\epsilon)^n} &= \frac{n^{100}}{1+C_1^n\epsilon+C_2^n\epsilon^2+\dots+C_k^n\epsilon^k+\dots+\epsilon^n} \\ &\leq \frac{n^{100}}{C_{101}^n\epsilon^{101}} \\ &= \frac{101!\cdot n^{100}}{n(n-1)(n-2)\cdots(n-100)\epsilon^{101}} \\ &= \frac{101!}{n(1-1/n)(1-2/n)\cdots(1-100/n)\epsilon^{101}}. \end{aligned}$$
(1)
that $\lim_{n\to\infty} \frac{101!}{n(1-1/n)(1-2/n)\cdots(1-100/n)\epsilon^{101}} = 0$ and $0 \leq \frac{n^{100}}{(1+\epsilon)^n}$, by computation e thus get $\lim_{n\to\infty} \frac{n^{100}}{(1+\epsilon)^n} = 0.$

Question 5*. Let a>0. We know that \sqrt{a} exists in $(0, \infty)$ (can you do this ?). Below is a "pratical way" to show not only its existence but also a corresponding approximation/numerical procedure. Pick $x_1 > 0$ such that $x_1^2 > a$, and define

$$x_{n+1} := \frac{1}{2} \left(x_n + \frac{a}{x_n} \right).$$

(i) Show that if $x := \lim_n x_n$ exists in $(0, \infty)$, then $x = \frac{a}{x}$ (and so x is the (positive) Sq. root of a). By (ii) & (iii) below, the limit x does exist !

(ii) Show that $x_n^2 \ge a$, $\forall n \in \mathbb{N}$. (Hint: $x_{n+1}^2 = \frac{1}{4} \left(x_n^2 + 2a + \left(\frac{a}{x_n} \right)^2 \right) \ge a$ because $\left(x_n - \frac{a}{x_n} \right)^2 \ge 0$) (iii) $(x_n) \downarrow$ (Hint: by (ii), $\frac{1}{2} \left(x_n + \frac{a}{x_n} \right) \le x_n$)

Solution:

^{*}please kindly send an email to cyma@math.cuhk.edu.hk if you have any question.

(i) We first show that if $x := \lim_n x_n$ exists in $(0, \infty)$, then $\lim_n \frac{a}{x_n} = \frac{a}{x}$. To see this, we notice that for any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for any $n \ge N$,

$$\frac{x}{2} \le x_n$$
, and $|x_n - x| < \frac{x^2 \epsilon}{2a}$.

It follows that for any $n \ge N$,

$$\left|\frac{a}{x_n} - \frac{a}{x}\right| = \left|\frac{a(x_n - x)}{x_n x}\right| \le \left|\frac{a(x_n - x)}{x^2/2}\right| = \frac{2a}{x^2}|x_n - x| < \frac{2a}{x^2}\frac{x^2\epsilon}{2a} = \epsilon$$

Thus we have $\lim_{n \to a} \frac{a}{x_n} = \frac{a}{x}$. Since $x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$, let *n* tend to infinity, we obtain

$$\lim_{n} x_{n+1} = \frac{1}{2} \left(\lim_{n} x_n + \lim_{n} \frac{a}{x_n} \right),$$

that is, $x = \frac{x}{2} + \frac{a}{2x}$, hence that $x = \frac{a}{x}$.

(ii) Let P(n) denote the proposition that $x_n^2 \ge a$.

Notice that when n = 1, we have $x_1^2 \ge a$, thus P(1) is true.

Suppose P(n) is true, i.e. $x_n^2 \ge a$. It follows that

$$x_{n+1}^2 = \frac{1}{4} \left(x_n^2 + 2a + \left(\frac{a}{x_n} \right)^2 \right) \ge \frac{a}{2} + \frac{1}{4} \left(x_n^2 + \frac{a^2}{x_n^2} \right) \ge \frac{a}{2} + \frac{a}{2} = a.$$

Hence P(n + 1) is true. By the principle of mathematical induction, P(n) is true for all $n \in \mathbb{N}$. Therefore, we have $x_n^2 \ge a$ for all $n \in \mathbb{N}$.

(iii) It is easily seen that $x_n > 0$ for all $n \in \mathbb{N}$, since $x_1 > 0$. It follows from (ii) that $\frac{a}{x_n} \leq \frac{x_n^2}{x_n}$. Hence we get

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right) \le \frac{x_n + x_n}{2} = x_n,$$

which implies that the sequence $\{x_n\}$ is a decreasing sequence.

Question 6*. Suppose $\lim_n x_n = 6$. Show in the $\epsilon - N$ terminology (and definitions only) that

$$\lim_{n} \frac{x_n^3 + 4}{x_n - 5} = 220.$$

(properties of \mathbb{R} are allowed).

Solution:

Fix $\epsilon > 0$, since $\lim_{n \to \infty} x_n = 6$, there exists $N_1(\epsilon) \in \mathbb{N}$ such that for any $n \ge N_1(\epsilon)$,

$$|x_n - 6| < \epsilon/200.$$

Besides there exists $N_2 \in \mathbb{N}$ such that for all $n \geq N_2$, we have

$$|x_n - 6| < \frac{1}{2}$$
 i.e. $\frac{11}{2} < x_n < \frac{13}{2}$

which implies that $x_n - 5 > \frac{1}{2}$ and $|x_n| < 7$.

Denote $N = \max\{N_1(\epsilon), N_2\}$, then for any $n \ge N$,

$$\begin{aligned} \frac{x_n^3 + 4}{x_n - 5} - 220 \bigg| &= \bigg| \frac{x_n^3 + 4}{x_n - 5} - \frac{6^3 + 4}{6 - 5} \bigg| \\ &= \bigg| \frac{1 \cdot (x_n^3 + 4) - (x_n - 5)(6^3 + 4)}{(x_n - 5)(6 - 5)} \bigg| \\ &\leq 2 \bigg| x_n^3 + 4 - (x_n - 5)(6^3 + 4) \bigg| \\ &\leq 2 \bigg| x_n^3 + 4 - (x_n - 5)6^3 - (x_n - 5)4 \bigg| \\ &\leq 2 \bigg| x_n^3 - 6^3 - (x_n - 6)6^3 - (x_n - 6)4 \bigg| \\ &= 2 \bigg| (x_n - 6)(x_n^2 + 6x_n + 6^2 - 6^3 - 4) \bigg| \\ &\leq 2 \bigg| (x_n - 6) \bigg| \cdot |7^2 + 6 \times 7 + 6^2 - 6^3 - 4| \\ &= 2 \cdot 93 \bigg| (x_n - 6) \bigg| \\ &\leq 2 \cdot 93 \frac{\epsilon}{200} \leq \epsilon. \end{aligned}$$

This shows that $\lim_n \frac{x_n^3+4}{x_n-5} = 220.$