
MATH2050B Mathematical Analysis I

Homework 3 suggested Solution∗

Question 4. Let
xn+1 = 2 +

xn

2
, ∀n ∈ N.

Then, for each of the following cases, show that (xn) converges (any find the value of the limit:

(i) x1 = 0;

(ii) x1 = 10. (Hint: Can the MCT be applied? )

Solution:

Method 1:

(i) Let P (n) denote the proposition that xn+1 ≥ xn and xn ≤ 4.

Notice that when n = 1, we have 0 = x1 < 4 and 2 = x2 > x1, thus P (1) is true.

Suppose P (n) is true, i.e. xn+1 ≥ xn and xn ≤ 4. It follows that

xn+1 = 2 +
xn

2
≤ 2 +

4

2
= 4;

xn+2 = 2 +
xn+1

2
≥ xn+1

2
+

xn+1

2
= xn+1;

Hence P (n+ 1) is true. By the principle of mathematical induction, P (n) is true for all n ∈ N.
Therefore, the sequence {xn} is monotone increasing and bounded above. By MCT, we have {xn}
is convergent.

By the contruction of sequence {xn}, we thus get

lim
n→∞

xn+1 = 2 +
lim
n→∞

xn

2
,

which implies lim
n→∞

xn = 4.

(ii) It is obvious that xn ≥ 0 for all n ∈ N. The argument is similar to (i). Let S(n) denote the
proposition that xn+1 ≤ xn. Notice that when n = 1, we have x2 = 2 + x1

2 ≤ x1, thus S(1) is true.
∗please kindly send an email to cyma@math.cuhk.edu.hk if you have any question.
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Suppose S(n) is true, i.e. xn+1 ≤ xn. It follows that

xn+2 = 2 +
xn+1

2
≤ xn+1

2
+

xn+1

2
= xn+1;

Hence S(n + 1) is true. By the principle of mathematical induction, S(n) is true for all n ∈ N.
Therefore, the sequence {xn} is monotone decreasing and bounded below by 0. By MCT, we have
{xn} is convergent.

By the contruction of sequence {xn}, we thus get

lim
n→∞

xn+1 = 2 +
lim
n→∞

xn

2
,

which implies lim
n→∞

xn = 4.

Method 2: Since xn+1 = 2+ xn

2 , that is, xn+1−4 =
1

2
(xn−4). Define a sequence yn := xn−4,

for all n ∈ N. This yields that
yn = 2−n+1y1.

Therefore, we have lim
n→∞

yn = 0, that is, lim
n→∞

(xn − 4) = 0, hence that lim
n→∞

xn = 4.

Question 5. Show that lim
n→∞

n7

(1+δ)n = 0 (where δ > 0) .

Hint (similar to Q1 but expand more terms when apply the Binomial).

Solution:

For n ∈ N, we note that

n7

(1 + δ)n
=

n7

1 + Cn
1 δ + Cn

2 δ
2 + · · ·+ Cn

k δ
k + · · ·+ δn

≤ n7

Cn
8 δ

8

=
8! · n7

n(n− 1)(n− 2) · · · (n− 7)δ8

=
8!

n(1− 1/n)(1− 2/n) · · · (1− 7/n)δ8

(1)

Notice that lim
n→∞

8!
n(1−1/n)(1−2/n)···(1−7/n)δ8 = 0, by computation rules, we thus get lim

n→∞
n7

(1+δ)n = 0.

Question 6. Let x1 > 0 and

xn+1 = xn +
1

x1
∀n ∈ N.

Use two methods below to show that (xn) does not converge:

(a) Use Q6 of HW 2.
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(b) Use (algetrvaic computation rules).

Solution:

(a) By the contruction of the sequence and x1 > 0, we have {xn} is a monotone increasing
sequence. It follows that

xn+1 = xn +
1

x1
≥ xn +

1

xn
.

By Q6 of HW2 we see that any sequence {yn} with yn+1 = yn+
1
yn

is not bouded above. Therefore,
the seuqence {xn} is also not bounded above, hence that {xn} is not convergent.

(b) Suppose on the contrary that lim
n→∞

xn = ℓ, for some ℓ ∈ R. Note that xn+1 = xn + 1
x1
, by

taking limits on both sides, we have
ℓ = ℓ+

1

x1
,

which contracts with x1 > 0. Therefore {xn} does not converge.

Question 7. Suppose lim
n

yn = y. Show

(i) If y > 0 then there exists N ∈ N such that

0.9 · y < yn < 2y, ∀n ⩾ N.

(ii) If y ̸= 0 then there exists N ∈ N such that

0.9 · |y| < |yn| < 2|y|, ∀n ⩾ N.

(iii) Suppose lim
n

yn = y, y ̸= 0 and δ ∈ (0, |y|). Then ∃N ∈ N s.t.

(1− δ)|y| < |yn| <
1

3
+ |y| ∀n ⩾ N.

Solution:

(i) Since y ̸= 0, we have lim
n

yn = y if and only if lim
n

yn

y = 1. This yields that there exists N ∈ N
such that

|yn
y

− 1| < 1

10
, for all n ⩾ N.

That is
9

10
<

yn
y

<
11

10
< 2, for all n ⩾ N,

which is equivalent to 9
10y < yn < 2y ( ∀ n ⩾ N), due to the fact that y > 0.

(ii) It follows from (i) that for any ϵ > 0, there exists N1 ∈ N such that

|yn
y

− 1| < ϵ, for all n ⩾ N1.
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Notice that | |yn|
|y| − 1| ≤ |yn

y − 1|, we thus get lim
n

|yn|
|y| = 1. We now apply argument in (i) again, with

{yn} replaced by {|yn|}, to obtain that there exists N2 ∈ N such that

0.9 · |y| < |yn| < 2|y|, ∀n ⩾ N2.

(iii) It follows from the proof of (ii) that there exists N3 ∈ N such that∣∣∣∣ |yn||y|
− 1

∣∣∣∣ < δ, for all n ≥ N3. (2)

This implies (1− δ)|y| < |yn| for all n ≥ N3.

On the other hand, we can see that lim
n

yn = y implies lim
n

|yn| = |y|, due to the fact that
||yn| − |y|| ≤ |yn − y| for any n ∈ N. It follows that that there exists N4 ∈ N such that

||yn| − |y|| < 1

3
, for all n ≥ N4. (3)

This implies |yn| < |y| + 1
3 for all n ≥ N4. Let N ′ = max{N3, N4}. Combining inequalies (2) and

(3), we get
(1− δ)|y| < |yn| <

1

3
+ |y|, for all n ≥ N ′.
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