MATH2050B Mathematical Analysis I

Homework 3 suggested Solution*

Question 4. Let

$$x_{n+1} = 2 + \frac{x_n}{2}, \qquad \forall n \in \mathbb{N}$$

Then, for each of the following cases, show that (x_n) converges (any find the value of the limit:

(i) $x_1 = 0;$

(ii) $x_1 = 10$. (Hint: Can the MCT be applied?)

Solution:

Method 1:

(i) Let P(n) denote the proposition that $x_{n+1} \ge x_n$ and $x_n \le 4$.

Notice that when n = 1, we have $0 = x_1 < 4$ and $2 = x_2 > x_1$, thus P(1) is true.

Suppose P(n) is true, i.e. $x_{n+1} \ge x_n$ and $x_n \le 4$. It follows that

$$x_{n+1} = 2 + \frac{x_n}{2} \le 2 + \frac{4}{2} = 4;$$

$$x_{n+2} = 2 + \frac{x_{n+1}}{2} \ge \frac{x_{n+1}}{2} + \frac{x_{n+1}}{2} = x_{n+1};$$

Hence P(n + 1) is true. By the principle of mathematical induction, P(n) is true for all $n \in \mathbb{N}$. Therefore, the sequence $\{x_n\}$ is monotone increasing and bounded above. By MCT, we have $\{x_n\}$ is convergent.

By the contruction of sequence $\{x_n\}$, we thus get

$$\lim_{n \to \infty} x_{n+1} = 2 + \frac{\lim_{n \to \infty} x_n}{2},$$

which implies $\lim_{n \to \infty} x_n = 4.$

(ii) It is obvious that $x_n \ge 0$ for all $n \in \mathbb{N}$. The argument is similar to (i). Let S(n) denote the proposition that $x_{n+1} \le x_n$. Notice that when n = 1, we have $x_2 = 2 + \frac{x_1}{2} \le x_1$, thus S(1) is true.

 $^{^{*}\}mathrm{please}$ kindly send an email to <code>cyma@math.cuhk.edu.hk</code> if you have any question.

Suppose S(n) is true, i.e. $x_{n+1} \leq x_n$. It follows that

$$x_{n+2} = 2 + \frac{x_{n+1}}{2} \le \frac{x_{n+1}}{2} + \frac{x_{n+1}}{2} = x_{n+1};$$

Hence S(n + 1) is true. By the principle of mathematical induction, S(n) is true for all $n \in \mathbb{N}$. Therefore, the sequence $\{x_n\}$ is monotone decreasing and bounded below by 0. By MCT, we have $\{x_n\}$ is convergent.

By the contruction of sequence $\{x_n\}$, we thus get

$$\lim_{n \to \infty} x_{n+1} = 2 + \frac{\lim_{n \to \infty} x_n}{2},$$

which implies $\lim_{n \to \infty} x_n = 4$.

Method 2: Since $x_{n+1} = 2 + \frac{x_n}{2}$, that is, $x_{n+1} - 4 = \frac{1}{2}(x_n - 4)$. Define a sequence $y_n := x_n - 4$, for all $n \in \mathbb{N}$. This yields that

$$y_n = 2^{-n+1}y_1$$

Therefore, we have $\lim_{n \to \infty} y_n = 0$, that is, $\lim_{n \to \infty} (x_n - 4) = 0$, hence that $\lim_{n \to \infty} x_n = 4$.

Question 5. Show that $\lim_{n \to \infty} \frac{n^7}{(1+\delta)^n} = 0$ (where $\delta > 0$).

Hint (similar to Q1 but expand more terms when apply the Binomial).

Solution:

For $n \in \mathbb{N}$, we note that

$$\frac{n^{7}}{(1+\delta)^{n}} = \frac{n^{7}}{1+C_{1}^{n}\delta+C_{2}^{n}\delta^{2}+\dots+C_{k}^{n}\delta^{k}+\dots+\delta^{n}} \\
\leq \frac{n^{7}}{C_{8}^{n}\delta^{8}} \\
= \frac{8! \cdot n^{7}}{n(n-1)(n-2)\cdots(n-7)\delta^{8}} \\
= \frac{8!}{n(1-1/n)(1-2/n)\cdots(1-7/n)\delta^{8}}$$
(1)

Notice that $\lim_{n \to \infty} \frac{8!}{n(1-1/n)(1-2/n)\cdots(1-7/n)\delta^8} = 0$, by computation rules, we thus get $\lim_{n \to \infty} \frac{n^7}{(1+\delta)^n} = 0$. Question 6. Let $x_1 > 0$ and

 $x_{n+1} = x_n + \frac{1}{x_1} \qquad \forall n \in \mathbb{N}.$

Use two methods below to show that (x_n) does not converge:

(a) Use Q6 of HW 2.

(b) Use (algetrvaic computation rules).

Solution:

(a) By the contruction of the sequence and $x_1 > 0$, we have $\{x_n\}$ is a monotone increasing sequence. It follows that

$$x_{n+1} = x_n + \frac{1}{x_1} \ge x_n + \frac{1}{x_n}.$$

By Q6 of HW2 we see that any sequence $\{y_n\}$ with $y_{n+1} = y_n + \frac{1}{y_n}$ is not bounded above. Therefore, the sequence $\{x_n\}$ is also not bounded above, hence that $\{x_n\}$ is not convergent.

(b) Suppose on the contrary that $\lim_{n\to\infty} x_n = \ell$, for some $\ell \in \mathbb{R}$. Note that $x_{n+1} = x_n + \frac{1}{x_1}$, by taking limits on both sides, we have

$$\ell = \ell + \frac{1}{x_1},$$

which contracts with $x_1 > 0$. Therefore $\{x_n\}$ does not converge.

Question 7. Suppose $\lim_{n} y_n = y$. Show

(i) If y > 0 then there exists $N \in \mathbb{N}$ such that

$$0.9 \cdot y < y_n < 2y, \qquad \forall n \ge N.$$

(ii) If $y \neq 0$ then there exists $N \in \mathbb{N}$ such that

$$0.9 \cdot |y| < |y_n| < 2|y|, \qquad \forall n \ge N.$$

(iii) Suppose $\lim_{n} y_n = y, y \neq 0$ and $\delta \in (0, |y|)$. Then $\exists N \in \mathbb{N}$ s.t.

$$(1-\delta)|y| < |y_n| < \frac{1}{3} + |y| \qquad \forall n \ge N.$$

Solution:

(i) Since $y \neq 0$, we have $\lim_{n} y_n = y$ if and only if $\lim_{n} \frac{y_n}{y} = 1$. This yields that there exists $N \in \mathbb{N}$ such that

$$\left|\frac{y_n}{y} - 1\right| < \frac{1}{10}, \quad \text{for all } n \ge N.$$

That is

$$\frac{9}{10} < \frac{y_n}{y} < \frac{11}{10} < 2, \quad \text{for all } n \ge N,$$

which is equivalent to $\frac{9}{10}y < y_n < 2y$ ($\forall n \ge N$), due to the fact that y > 0.

(ii) It follows from (i) that for any $\epsilon > 0$, there exists $N_1 \in \mathbb{N}$ such that

$$\left|\frac{y_n}{y} - 1\right| < \epsilon, \quad \text{for all } n \ge N_1.$$

Notice that $\left|\frac{|y_n|}{|y|}-1\right| \leq \left|\frac{y_n}{y}-1\right|$, we thus get $\lim_n \frac{|y_n|}{|y|} = 1$. We now apply argument in (i) again, with $\{y_n\}$ replaced by $\{|y_n|\}$, to obtain that there exists $N_2 \in \mathbb{N}$ such that

$$0.9 \cdot |y| < |y_n| < 2|y|, \qquad \forall n \ge N_2$$

(iii) It follows from the proof of (ii) that there exists $N_3 \in \mathbb{N}$ such that

$$\left|\frac{|y_n|}{|y|} - 1\right| < \delta, \qquad \text{for all } n \ge N_3. \tag{2}$$

This implies $(1 - \delta)|y| < |y_n|$ for all $n \ge N_3$.

On the other hand, we can see that $\lim_{n} y_n = y$ implies $\lim_{n} |y_n| = |y|$, due to the fact that $||y_n| - |y|| \le |y_n - y|$ for any $n \in \mathbb{N}$. It follows that that there exists $N_4 \in \mathbb{N}$ such that

$$||y_n| - |y|| < \frac{1}{3}, \quad \text{for all } n \ge N_4.$$
 (3)

This implies $|y_n| < |y| + \frac{1}{3}$ for all $n \ge N_4$. Let $N' = \max\{N_3, N_4\}$. Combining inequalies (2) and (3), we get

$$(1-\delta)|y| < |y_n| < \frac{1}{3} + |y|,$$
 for all $n \ge N'.$