MATH2050B Mathematical Analysis I

Homework 2 suggested Solution^{*}

Question 3. Without assuming III, show that $-\sup X = \inf(-X)$, provided that either $\sup X$ exists in \mathbb{R} or $\inf(-X)$ exists in \mathbb{R} .

Solution:

Suppose sup X exists, denoted by a. Then $x \leq a$ for any $x \in X$. Thus we have $-x \geq -a$ for all $x \in X$, which implies -a is a lower bound of -X.

Moreover, if u is an upper bound of X, then $a \le u$. Notice that u is an upper bound of X if and only if -u is lower bound of -X. Therefore, $-a \ge -u$ for any lower bound -u of -X. It follows by the definition of $\inf(-X)$ that $\inf(-X) = -a = -\sup(X)$.

The case inf(-X) exists can be handled in much the same way, we omit the proof here.

Question 4. Let $\emptyset \neq A, B \subseteq \mathbb{R}$ and

$$A + B := \{a + b : a \in A, b \in B\}.$$

Show that

 $\sup(A+B) = \sup(A) + \sup(B),$

provided that $\sup(A)$ and $\sup(B)$ exist in \mathbb{R} .

Solution:

Assume that $\alpha = \sup A$ and $\beta = \sup B$. Then $a + b \leq \alpha + \beta$, for any $a \in A, b \in B$. It follows that

$$\sup(A+B) \le \alpha + \beta. \tag{1}$$

On the other hand, we note that $\sup(A + B) \ge a + b$, for any $a \in A, b \in B$. Hence, for any $b \in B$,

$$\sup(A+B) - b \ge a$$
, for all $a \in A$.

It yields that $\sup(A+B) - b \ge \alpha$, since $(\sup(A+B) - b)$ is an upper bound of A. It follows that $\sup(A+B) - \alpha \ge b$, for all $b \in B$. Thus we have

$$\sup(A+B) - \alpha \ge \beta. \tag{2}$$

^{*}please kindly send an email to cyma@math.cuhk.edu.hk if you have any question.

Combining inequalities (1) and (2), we get $\sup(A + B) = \sup(A) + \sup(B)$.

Question 5. Let $f, g: D \to \mathbb{R}$ be functions such that

$$\sup\{f(x) + g(x) : x \in D\} \quad \sup\{f(x) : x \in D\}, \quad \text{and } \sup\{g(x) : x \in D\}$$

exist in \mathbb{R} . Show that

$$\sup\{f(x) + g(x) : x \in D\} \le \sup\{f(x) : x \in D\} + \sup\{g(x) : x \in D\},\$$

and provide a counter-example, by showing that " \leq " cannot be replaced by " = ".

Solution:

Assume that $a = \sup\{f(x) : x \in D\}$ and $b = \sup\{g(x) : x \in D\}$. It follows by the definition that

$$f(x) + g(x) \le a + g(x) \le a + b$$
, for all $x \in D$.

Therefore, we have $\sup\{f(x) + g(x) : x \in D\} \le a + b$.

Next we give an example that $\sup\{f(x)+g(x): x \in D\} < \sup\{f(x): x \in D\} + \sup\{g(x): x \in D\}$. Let $f(x) = \sin x$ and $g(x) = -\sin x$, where $x \in [-\pi, \pi]$. Then

$$\sup\{f(x): x \in [-\pi,\pi]\} = \sup\{g(x): x \in [-\pi,\pi]\} = 1;$$

$$\sup\{f(x) + g(x) : x \in [-\pi, \pi]\} = 0$$

Therefore, " \leq " cannot be replaced by " = ".

Question 8. "Solve" the inequality system:

$$(\sharp) \qquad 4 < |x+2| + |x-1| \le 5,$$

that is, let X consist of all x satisfying the above inequalities, express X.

Hint: Try to remove the absolute value signs seperately in each of the following cases:

- (i) both (x+2) and (x-1) are ≥ 0 ;
- (ii) both (x+2) and (x-1) are ≤ 0 ;
- (iii) $(x+2) \ge 0$ but $x-1 \le 0$;
- (iv) $(x+2) \le 0$ but $x-1 \ge 0$.

Let X_1 consist of all x satisfying (i) and (\sharp). Show that $X_1 = (\frac{3}{2}, 2]$. Similarly $X_2 = \emptyset, X_3 = \emptyset$ and $X_4 = [-3, -\frac{5}{2})$.

Solution:

Method 1: Notice that

$$|x+2|+|x-1| = \begin{cases} 2x+1, & \text{if } x \ge 1, \\ 3, & \text{if } -2 \le x \le 1, \\ -2x-1, & \text{if } x \le -2. \end{cases}$$

It follows that $X \cap [-2,1) = \emptyset$. Consider $x \in [1,\infty) \cup (-\infty,-2)$.

If $x \in [1, \infty)$, then 4 < |x + 2| + |x - 1| < 5 if and only if that 4 < 2x + 1 < 5. This yields that $X \cap [1, \infty) = (\frac{3}{2}, 2]$.

If $x \in (-\infty, -2)$, then 4 < |x+2| + |x-1| < 5 if and only if that 4 < -2x - 1 < 5. From this inequality we have $X \cap (-\infty, -2) = [-3, -\frac{5}{2})$.

Therefore, we conclude that $X = [-3, -\frac{5}{2}) \cup (\frac{3}{2}, 2].$

Method 2:

$$\begin{aligned} X \cap (-\infty, -2] &= \{x \in (-\infty, -2]; 4 < -2x - 1 \leq 5\} \\ &= \left\{ x \in (-\infty, -2]; \frac{4 - 1}{-2} > \frac{-2x - 1 + 1}{-2} \geqslant \frac{5 + 1}{-2} \right\} \\ &= \left\{ x \in (-\infty, -2]; -\frac{5}{2} > x \geqslant -3 \right\} \\ &= \left[-3, -\frac{5}{2} \right); \end{aligned}$$

$$X \cap [-2, 1] = \{x \in [-2, 1]; \quad 4 < 3 \le 5\} = \emptyset\};$$

$$X \cap [1, \infty) = \{x \in [1, \infty): \qquad 4 < 2x + 1 \le 5\}$$

$$= \{x \in [1, \infty): \qquad \frac{3}{2} < x \le 2\} = \left(\frac{3}{2}, 2\right].$$

Therefore, since $\mathbb{R} = (-\infty, -2] \cup [-2, 1] \cup [1, \infty)$, one has

$$X = \left[-3, -\frac{5}{2}\right) \cup \left(\frac{3}{2}, 2\right].$$