MATH2050B Mathematical Analysis I

Homework 1 suggested Solution*

Question 8. Provide a bounded (= bounded below and bounded above) set X of real numbers such that min X, max X do not exist.

Solution:

Let $X = \{x \in \mathbb{R} : 0 < x < 1\}$. It is easy to see that X is a bounded set. We claim that min X, max X do not exist. Suppose on the contrary that max X exists, denoted by a. Since x < 1 for any $x \in X$, we have a < 1. It follows that

$$0 < a < \frac{1+a}{2} < 1,$$

which contradicts our assumption. Therefore, $\max X$ does not exist.

By a similar argument, we can see that $\min X$ does not exist.

Question 9. (i) Show that for any $x \in \mathbb{R}$,

$$x, -x \le |x|,$$

and that x = |x| or -x = |x|.

(ii) Let $x, y \in \mathbb{R}$ and $0 < \alpha \in \mathbb{R}$. Show that

$$\begin{aligned} |x| < \alpha & \Longleftrightarrow -\alpha < x < \alpha; \\ |x-y| < \alpha & \Longleftrightarrow x-\alpha < y < x+\alpha. \end{aligned}$$

Solution:

(i) Recall that

$$|x| = \begin{cases} x, & x > 0\\ 0 & x = 0\\ -x & x < 0 \end{cases}$$

It follows directly that |x| = x, if $x \ge 0$; and x < -x = |x|, if x < 0. Thus, we conclude that $x, -x \le |x|$ for any $x \in \mathbb{R}$.

^{*}please kindly send an email to cyma@math.cuhk.edu.hk if you have any question.

(ii) By (i), we have $|x| < \alpha$ if and only if both $x, -x < \alpha$. This implies

$$|x| < \alpha \iff -\alpha < x < \alpha$$

From above argument, we have

$$\begin{aligned} |x - y| < \alpha & \Longleftrightarrow -\alpha < x - y < \alpha \\ & \Longleftrightarrow x - \alpha < y < x + \alpha. \end{aligned}$$

Question 11. We sometimes write (the notation suggested by looking at the graphs of $x \mapsto \max\{f(x), g(x)\}; x \mapsto \min\{f(x), g(x)\};$ for real-valued functions f, g):

$$a \lor b := \max\{a, b\}; \qquad a \land b := \min\{a, b\},$$

for any $a, b \in \mathbb{R}$. Show that, $\forall a, b \in \mathbb{R}$,

$$-(a \lor b) = (-a) \land (-b); \qquad -(a \land b) = (-a) \lor (-b);$$
$$a \lor b = \frac{a+b+|a-b|}{2}; \qquad a \land b = \frac{a+b-|a-b|}{2}.$$

Solution:

Without loss of generality, we assume that a < b. Thus, $a \lor b = b$ and $a \land b = a$.

It follows by a < b that

$$\frac{a+b+|a-b|}{2} = \frac{a+b+b-a}{2} = b.$$

Therefore, we have $a \lor b = \frac{a+b+|a-b|}{2}$. Similarly,

$$\frac{a+b-|a-b|}{2} = \frac{a+b-(b-a)}{2} = a,$$

yields that $a \wedge b = \frac{a+b-|a-b|}{2}$.

Using these formulas, we see that

$$(-a) \wedge (-b) = \frac{(-a) + (-b) - |(-a) - (-b)|}{2}$$
$$= \frac{(-a) + (-b) - |(-a) + b|}{2}$$
$$= \frac{(-a) + (-b) - (b - a)}{2}$$
$$= -b = -(a \lor b);$$

In the same manner we can see that

$$(-a) \lor (-b) = \frac{(-a) + (-b) + |(-a) - (-b)|}{2}$$
$$= \frac{(-a) + (-b) + |(-a) + b|}{2}$$
$$= \frac{(-a) + (-b) + (b - a)}{2}$$
$$= -a = -(a \land b).$$