
MATH1030 Homogeneous systems and null spaces

1. Definition. (Null space of a matrix.)
Let A be an (m× n)-matrix.

(a) The system of linear equations LS(A, 0) is called the homogeneous system with coefficient matrix A.
(b) The solution set of the homogeneous system LS(A, 0) is called the null space of A. It is denoted by N (A).

Remark. First of all, recall that

‘x = u’ is a solution of LS(A, 0) if and only if Au = 0.

Using as ‘selection criterion’ the equality ‘Ax = 0’, we may present the null space of A as a set constructed using
the method of specification:

• Those vectors in Rn which, upon substitution into the ‘x’ in this ‘selection criterion’ result in an equality, will
be ‘collected’.

• Those vectors in Rn which, upon substitution into the ‘x’ in this ‘selection’ do not result in an equality, will
be ‘discarded’.

Hence the null space of A is the set {u ∈ Rn : Au = 0}.
Further remark. How to use the various versions of the definitions?
Always remember, whenever v ∈ Rn, the statements below mean the same thing:

(a) v ∈ N (A).
(b) Av = 0.
(c) ‘x = v’ is a solution of the homogeneous system LS(A, 0) with unknown x.

To determine N (A) is the same as giving an ‘explicit’ description of the solution set of the homogeneous system
LS(A, 0) through set language, in terms of (hopefully just a few) solutions of the system. That amounts to finding
all solutions of LS(A, 0).

2. Example (⋆).
Determine the null space of the matrix

A =

 1 4 0 −1 0 7 −9
2 8 −1 3 9 −13 7
0 0 2 −3 −4 12 −8
−1 −4 2 4 8 −31 37


explicitly (in terms of concrete vectors in R7).

(a) First determine the reduced row-echelon form A′ which is row-equivalent to A by applying a sequence of row
operations, say, Gaussian elimination, to the augmented matrix representation of LS(A, 0):

[A|0] −→ · · · · · · · · · −→ [A′|0]

We find that

A′ =

 1 4 0 0 2 1 −3
0 0 1 0 1 −3 5
0 0 0 1 2 −6 6
0 0 0 0 0 0 0


(b) LS(A′, 0) reads: 

x1 + 4x2 + 2x5 + x6 − 3x7 = 0
x3 + x5 − 3x6 + 5x7 = 0

x4 + 2x5 − 6x6 + 6x7 = 0
0 = 0

The solutions of LS(A′, 0), and hence of LS(A, 0), are given by x = c1u1 + c2u2 + c3u3 + c4u4, where

c1, c2, c3, c4 are arbitrary numbers, in which u1 =


−4
1
0
0
0
0
0

, u2 =


−2
0
−1
−2
1
0
0

, u3 =


−1
0
3
6
0
1
0

, u4 =


3
0
−5
−6
0
0
1

.

This amounts to saying that for any v ∈ R7, ‘x = v’ is a solution of LS(A, 0) if and only if there exist some
c1, c2, c3, c4 ∈ R such that v = c1u1 + c2u2 + c3u3 + c4u4.
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(c) We now apply the method of specification to present the solution set of LS(A, 0) explicitly in terms of
u1,u2,u3,u4, through the ‘selection criterion’
(†) ‘ there exist some c1, c2, c3, c4 ∈ R such that y = c1u1 + c2u2 + c3u3 + c4u4’
in which y is the ‘variable’.
How does the method work? Remember:

• Those and only those vectors in R7 which upon substitution into the symbol y in (†) turn it into a true
statement will be collected.

• The others will be ‘discarded’.
So N (A) is the set {

y ∈ R7 : there exist some c1, c2, c3, c4 ∈ R
such that y = c1u1 + c2u2 + c3u3 + c4u4

}
(As shorthand we present N (A) as {c1u1 + c2u2 + c3u3 + c4u4 | c1, c2, c3, c4 ∈ R}.)

(d) Comment on the presentation of the manipulations.
During the manipulation

[A|0] −→ · · · · · · · · · −→ [A′|0]

we observe that the last column in every matrix in this sequence stays ‘0’. This is expected: no matter which
row-operation is applied on the zero vector, it only convert the zero vector to itself.
Hence we can actually save time (and ink) by omitting the 0’s throughout, and simply write

A −→ · · · · · · · · · −→ A′

provided we remember we are apply row operations on the coefficient matrices of various homogeneous system.

3. Examples on determining null space explicitly.

(a) Determine the null space of the matrix

A =

[ 1 2 2
1 3 3
2 6 5

]
Determine the reduced row-echelon form A′ which is row-equivalent to A by applying a sequence of row
operations to A:

A =

[ 1 2 2
1 3 3
2 6 5

]
−1R1+R2−−−−−−→

[ 1 2 2
0 1 1
2 6 5

]
−2R1+R3−−−−−−→

[ 1 2 2
0 1 1
0 2 1

]
−2R2+R3−−−−−−→

[ 1 2 2
0 1 1
0 0 −1

]
−1R3−−−→

[ 1 2 2
0 1 1
0 0 1

]
−2R2+R1−−−−−−→

[ 1 0 0
0 1 1
0 0 1

]
−1R3+R2−−−−−−→

[ 1 0 0
0 1 0
0 0 1

]
= A′

The null space N (A) of the matrix A is the solution set of LS(A, 0), and hence is the solution set of LS(A′, 0)

as well. Note that LS(A′, 0) reads: {
x1 = 0

x2 = 0
x3 = 0

The only solution of LS(A, 0) is given by x =

[ 0
0
0

]
.

Hence N (A) is the set
{[ 0

0
0

]}
.

(b) Determine the null space of the matrix

A =

[ 1 2 2 4
1 3 3 5
2 6 5 6

]
Determine the reduced row-echelon form A′ which is row-equivalent to A by applying a sequence of row
operations to A:

A =

[ 1 2 2 4
1 3 3 5
2 6 5 6

]
−1R1+R2−−−−−−→

[ 1 2 2 4
0 1 1 1
2 6 5 6

]
−2R1+R3−−−−−−→

[ 1 2 2 4
0 1 1 1
0 2 1 −2

]
−2R2+R3−−−−−−→

[ 1 2 2 4
0 1 1 1
0 0 −1 −4

]
−1R3−−−→

[ 1 2 2 4
0 1 1 1
0 0 1 4

]
−2R2+R1−−−−−−→

[ 1 0 0 2
0 1 1 1
0 0 1 4

]
−1R3+R2−−−−−−→

[ 1 0 0 2
0 1 0 −3
0 0 1 4

]
= A′
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The null space N (A) of the matrix A is the solution set of LS(A, 0), and hence is the solution set of LS(A′, 0)

as well. Note that LS(A′, 0) reads:{
x1 + 2x4 = 0

x2 − 3x4 = 0
x3 + 4x4 = 0

The solutions of LS(A, 0) are given by x = tu , where t is an arbitrary number, in which u =

 −2
3
−4
1

.

Hence N (A) is the set { tu | t ∈ R}.
(c) Determine the null space of the matrix

A =

[ 1 2 0 1 7
1 1 1 −1 3
3 1 5 −7 1

]

Determine the reduced row-echelon form A′ which is row-equivalent to A by applying a sequence of row
operations to A:

A =

[ 1 2 0 1 7
1 1 1 −1 3
3 1 5 −7 1

]
−1R1+R2−−−−−−→

[ 1 2 0 1 7
0 −1 1 −2 −4
3 1 5 −7 1

]
−3R1+R3−−−−−−→

[ 1 2 0 1 7
0 −1 1 −2 −4
0 −5 5 −10 −20

]
−1R2−−−→

[ 1 2 0 1 7
0 1 −1 2 4
0 −5 5 −10 −20

]
5R2+R3−−−−−→

[ 1 2 0 1 7
0 1 −1 2 4
0 0 0 0 0

]
−2R6+R1−−−−−−→

[ 1 0 2 −3 −1
0 1 −1 2 4
0 0 0 0 0

]
= A′

The null space N (A) of the matrix A is the solution set of LS(A, 0), and hence is the solution set of LS(A′, 0)

as well. Note that LS(A′, 0) reads:{
x1 + 2x3 − 3x4 − x5 = 0

x2 − x3 + 2x4 + 4x5 = 0
0 = 0

The solutions of LS(A, 0) are given by x = c1u1+ cu2+ c3u3 , where c1, c2, c3 are arbitrary numbers, in which

u1 =


−2
1
1
0
0

, u2 =


3
−2
0
1
0

, u3 =


1
−4
0
0
1

.

Hence N (A) is the set {c1u1 + c2u2 + c3u3 | c1, c2, c3 ∈ R}.

4. Further consideration on Example (⋆).
Let

A =

 1 4 0 −1 0 7 −9
2 8 −1 3 9 −13 7
0 0 2 −3 −4 12 −8
−1 −4 2 4 8 −31 37



Recall that N (A) is the set {c1u1 + c2u2 + c3u3 + c4u4 | c1, c2, c3, c4 ∈ R}, in which u1 =


−4
1
0
0
0
0
0

, u2 =


−2
0
−1
−2
1
0
0

,

u3 =


−1
0
3
6
0
1
0

, u4 =


3
0
−5
−6
0
0
1

.

(a) Further question.
What is so special about N (A), regarding its ‘algebraic structure’?
Answer to further question.
The statements below hold:
(1) 0 ∈ N (A).
(2) For any v,w ∈ R7, if u,v ∈ N (A) then v +w ∈ N (A).
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(3) For any v ∈ R7, for any α ∈ R, if v ∈ N (A) then αv ∈ N (A).
(4) For any v,w ∈ R7, for any α, β ∈ R, if v,w ∈ N (A) then αv + βw ∈ N (A).

(b) Justification of (1), (2), (3) in answer to further question.
To apply what we see about N (A) in concrete terms?
(1) Note that 0 = 0 · u1 + 0 · u2 + 0 · u3 + 0 · u4, and 0 ∈ R. Then 0 ∈ N (A).
(2) Pick any v,w ∈ R7.

Suppose v,w ∈ N (A). Then there exist some c1, c2, c3, c4, d1, d2, d3, d4 ∈ R such that v = c1u1 + c2u2 +
c3u3 + c4u4 and w = d1u1 + d2u2 + d3u3 + d4u4.
Then v+w = · · · = (c1+d1)u1+(c2+d2)u2+(c3+d3)u3+(c4+d4)u4, and c1+d1, c2+d2, c3+d3, c4+d4 ∈ R.
Therefore v +w ∈ N (A).

(3) Pick any v ∈ R7. Pick any α ∈ R.
Suppose v ∈ N (A). Then there exists some c1, c2, c3, c4 ∈ R such that v = c1u1 + c2u2 + c3u3 + c4u4.
Then αv = · · · = (αc1)u1 + (αc2)u2 + (αc3)u3 + (αc4)u4, and αc1, αc2, αc3, αc4 ∈ R.
Therefore αv ∈ N (A).

(c) Another justification of (1), (2), (3) in answer to further question.
To apply the definition of null space? (This is a better method.)
(1) Note that A0 = 0. Then 0 ∈ N (A).
(2) Pick any v,w ∈ R7.

Suppose v,w ∈ N (A). Then Av = 0 and Aw = 0.
Therefore A(v +w) = Av +Aw = 0+ 0 = 0.
Hence v +w ∈ N (A).

(3) Pick any v ∈ R7. Pick any α ∈ R.
Suppose v ∈ N (A). Then Av = 0.
Therefore A(αv) = αAv = α · 0 = 0.
Hence αv ∈ N (A).

Remark. This ‘second justification’ of (1), (2), (3) is superior to the ‘first’, in the sense that almost nothing
about explicit features of A, apart from the fact that it has 7 columns, is involved in the mathematical argument.
We may wonder the mathematical reasoning in this ‘second justification’ may work when A is replaced by a
general matrix. It turns out to be the case.

5. Theorem (1). (Null space of a matrix as a ‘subspace’.)
Let A be an (m× n)-matrix. The statement below hold:

(1) 0 ∈ N (A).
(2) For any u,v ∈ Rn, if u,v ∈ N (A) then u+ v ∈ N (A).
(3) For any u ∈ Rn, for any α ∈ R, if u ∈ N (A) then αu ∈ N (A).
(4) For any u,v ∈ Rn, for any α, β ∈ R, if u,v ∈ N (A) then αu+ βv ∈ N (A).

Proof. Exercise. (Extract what we did in the study of Example (⋆).)
Remark. We can further deduce that

For any u1,u2, · · · ,uk ∈ Rn, for any α1, α2, · · · , αk ∈ R, if u1,u2, · · · ,uk ∈ N (A) then αu1+αu2+ · · ·+αuk ∈
N (A).

In plain words (and in terms of the notion of linear combinations, to be introduced later), this amounts to saying:

Every linear combination of vectors in N (A) is a vector in N (A).

6. Reformulation of Theorem (1) in terms of homogeneous systems.
Let A be an (m× n)-matrix. The statement below hold:

(1) ‘x = 0’ is a solution of LS(A, 0).
(2) Let u,v ∈ Rn. Suppose ‘x = u’, ‘x = v’ are solutions of LS(A, 0). Then ‘x = u+v’ is a solution of LS(A, 0).
(3) Let u ∈ Rn. Let α ∈ R. Suppose ‘x = u’ is a solution of LS(A, 0). Then ‘x = αu’ is a solution of LS(A, 0).
(4) Let u,v ∈ Rn. Let α, β ∈ R. Suppose ‘x = u’, ‘x = v’ are solutions of LS(A, 0). Then ‘x = αu + βv’ is a

solution of LS(A, 0).
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