Week 13

Integration
Recall:
Theorem.
(0. 9]
Let S(z) = Z ar(x — a)" be a power series which converges on
k=0

an open interval of the form (a —r,a+ r), r > 0, then the
function S(z) is differentiable on (a — r,a + ), with:

S'(z) = Z kagp(z — a)*!
k=0

forallz € (a —r,a + ).

The theorem just cited works "in reverse", namely:

Theorem.

Let S(z) = Zak(w —a)" be a power series which converges on an
k=0

open interval of the form (a —r,a+7r), r> 0. Then, the power

series:

> @) =ag(a—a) + (2 a)
also converges on (a — r,a + r), and:

/S(ac)da::z kc_tfl(x—a)kﬂ—er

k=0

over (a—r,a+r), where C is an arbitrary constant. For
be (a—r,a+r), we have:




Example.

The function:

F(w):/ et dt
0

is a differentiable function, but it has been proved that it is not an
elementary function.

To describe F more explicitly, one can first consider the Taylor
series of f(z) = e * about z = 0:

= (1)
=) k!

k=0

which converges to f(z) for all z € R.
Using the theorem just stated, we see that:
00 (_1)k

— t2k dt / t2k dt N S 2k5—|—1.
) /0 Z k! Z Eok!(szrl)x

k=0

Example.

= Z 2" for all z € (—1,1), find the Taylor series of
k=0

f(z) = In(1 + 2?) about z = 0.

>

Given that

— &

Notice that f is an antiderivative of g(z) =

2x >
— 2 k 2k+1
1_|_$2 CU Z

forall z € (—1,1). we have:

>, 2(—1)*
=2 2% + 2

k=0

ZL'2k+2 + C

for all z € (—1,1), for some constant C € R. Substituting z = 0 into
both sides of the above equation, we have:

C = f(0) = 1In(1 + 0*) = 0.
Hence, the Taylor series of f about z = 0 is:

zoo: 2(_1)k 22k +2
2k + 2 '

k=0




Example.

For each of the following functions f, find F(z) := / f(t) dt for all
0

z € R. Then find F'(z).

1 —2?, z<1;

f(x)_{x—l, x> 1.
: fla) =T o=
x, x> 1.

A few words on ¢t-substitution

Evaluate:
1
—d
/ 1+2coszx v
>
Let:
t = tan —
Then,
>
x = 2arctant,
2
T = dt
1+ ¢2
Moreover,
>

by the double-angle formula for the sine function, we have:

) . T €T
sinx = 2sin —cos —
2 2

>
Similarly, by the double-angle formula for the cosine function, we
have:



o T
cos T = 1—2311125

— 1 — 2tan? icoszi
2 2
2tan2§
-1 2
2z
secC )
B 2¢%
B 1+ ¢t2
1%
14 ¢2
1— ¢
COSI = .
1+ ¢2
>
We have:

1 1 2
[ammd- | dt
1+2cosz 1 ﬂ) 1+ ¢2

+2(1+t2
2
= dt
/3—t2

:%/(ﬁlﬂ " \/§1—t> “

1
- ﬁ(ln‘\/g—l—t' —In|\/3—t|) +C

1 ﬁ—l—tan%
In
\/§ \/§—tan£

2

+ C,

where C is an arbitrary constant.

Improper Integral (Extracurricular Topic)

For a continuous function f defined on [a,b) (Where b can be ~), we
let:

b t
[ s = tim [ @) a.

t—=b J,

Similarly, for a continuous function f defined on (a,b] (Where a can be
—00), we let:

b
/bf(x) dr = lim f(z)dex.

t—a™

1
1
°/—d:c
033

1
1
o —dzx
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0/ —dzx
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If a function f is continuous on [a,b] except at a point ¢ € (a,b), we

define:
/abf(a:)da::/acf(a:)da:+/cbf(w)daz

Note that the integrals on the right may themselves be improper

b
integrals. We say that / f(z) dz is convergent if both integrals on the

right are convergent.

Example.

2 1
A —
o (z—1)23

For a continuous function f on (a,b), where a can be —oco and b can be
oo, we fix any point ¢ € (a,b) and define:

b c
/ f(z)dz = lim [ f(z)dz+ lim tf(x) dx

s—a s t—=b" J.

We say that the integral is convergent if both limits are convergent.

Note that if both limits converge for one choice of ¢, then they both
converge for any other choice of c¢. Hence, this definition of
convergence is independent of the choice of c.

Example.

o0
1
/ dx
oo 1+ 22




