
Motivation
Given a continuous function over a closed interval. We want to
approximate the area of the region bounded by the graph of the
function and the ‑axis.
One way to do so is by viewing the region roughly as a union of
sequence of rectangles, and then adding up the areas of these
rectangles.
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Intuitively, we see that the more (and smaller) rectangles are used, the
more closely their union approximates the region in question.
>

Definition.

Let  be a positive integer.

Let  be a continuous function on a closed interval.

Let:

The Left Riemann Sum of  over  associated with 
subintervals of equal lengths is:

Each summand may be thought of as the area of the rectangle whose
base is the subinterval , and whose height is the
value of  at the left endpoint of the subinterval.

n

f : [a, b] ⟶ R

Δx = .
b − a

n

f [a, b] n

LSn(f) =
n−1

∑
k=0

f(a + kΔx)Δx

= (f(a) + f(a + Δx) + f(a + 2Δx) + … + f(a + (n − 1)Δx)) Δx

[a + kΔx, a + (k + 1)Δx]

f

https://commons.wikimedia.org/wiki/File%3ARiemann_sum_(leftbox).gif


Definition.

Let  be a continuous function on a closed interval. The

definite integral  of  over  is equal to the limit as 

tends to infinity of the left Riemann sum defined previously. That is:

It is an established theorem that the limit exists if  is continuous.
(In fact: One could define the definite integral in terms of the Right
Riemann Sum or the Midpoint Riemann Sum. All these sums tend to
same limit in the case where  is continuous.)

Our eventual goal is to show that if  is an antiderivative of a
continuous function , then:

>
Integration by Substitution

if  is an antiderivative of .
Integration by Parts

Before we prove the main theorem, we first state a couple of
preliminary results.

f : [a, b] ⟶ R

∫ b

a

f(x) dx f [a, b] n

∫ b

a

f(x) dx = lim
n→∞

LSn(f)

= lim
n→∞

n−1

∑
k=0

f (a + )b − a

n

k(b − a)

n

f

f

F

f

∫ b

a

f(x) dx = F(x)∣∣∣

b

a

:= F(b) − F(a).

∫ b

a

f(u(x))u′(x) dx = ∫ u(b)

u(a)

f(u) du = F(u(b)) − F(u(a))

F f

∫ b

a

u(x)v′(x)dx = u(x)v(x)∣∣∣

b

a

− ∫ b

a

v(x)u′(x) dx.



Definition.

For a continuous function  on , we define:

Claim.

Let  be a continuous function on an interval . For all , we
have:

Claim.

Let  be continuous functions on . If  for all 
, then:

Theorem.

(Mean Value Theorem for Integrals) Let  be a continuous
function on . There exists  such that:

f [a, b]

∫ a

a

f(x) dx = 0.

∫ a

b

f(x) dx = − ∫ b

a

f(x) dx.

f I a, b, c ∈ I

∫ b

a

f(x) dx + ∫ c

b

f(x) dx = ∫ c

a

f(x) dx.

f, g [a, b] f(x) ≤ g(x)

x ∈ [a, b]

∫ b

a

f(x) dx ≤ ∫ b

a

g(x) dx.

f

[a, b] c ∈ [a, b]

f(c) = ∫ b

a

f(x) dx.
1

b − a



Proof.

>
Since  is continuous on , by the Extreme Value Theorem it has
a maximum value  and minimum value  on .
In other words,

for all . Hence:

>

Dividing each expression by , we have:
>

>

Let  be elements in  such that  and .

Since  is continuous on , and  is a number

between  and , by the Intermediate Value Theorem there
exists  between  and  such that:

This  lies in , since  lies in . 
◼

f [a, b]

M m [a, b]

m ≤ f(x) ≤ M

x ∈ [a, b]

∫ b

a

mdx



m(b−a)

≤ ∫ b

a

f(x) dx ≤ ∫ b

a

M dx



M(b,a)

.

b − a

m ≤ ∫ b

a

f(x) dx ≤ M.
1

b − a

x1,x2 [a, b] M = f(x1) m = f(x2)

f [a, b] ∫ b

a

f(x) dx
1

b − a

f(x1) f(x2)

c x1 x2

f(c) = ∫ b

a

f(x) dx.
1

b − a

c [a, b] x1,x2 [a, b]



Theorem.

(Fundamental Theorem of Calculus Part I) Let  be a continuous
function on . Define a function  as follows:

Then,  is continuous on  and differentiable on , with:

for all . Equivalently:
>

Proof.

>
By definition:

>

By the Mean Value Theorem for Integrals, there exists 
such that:

Hence:
>

since for any  the number  lies between  and , and  is
continuous.

We leave the proof of the continuity of  on  as an exercise. 

◼

f

[a, b] F : [a, b] ⟶ R

F(x) = ∫ x

a

f(t) dt, x ∈ R.

F [a, b] (a, b)

F ′(x) = f(x)

x ∈ (a, b)

∫ x

a

f(t) dt = f(x)
d

dx

F ′(x) = lim
h→0

.

= lim
h→0

.

= lim
h→0

.

F(x + h) − F(x)

h

∫ x+h

a
f(t) dt − ∫ x

a
f(t) dt

h

∫ x+h

x
f(t) dt

h

ch ∈ [x,x + h]

f(ch) = .
∫ x+h

x
f(t) dt

h

F ′(x) = lim
h→0

f(ch) = f(x),

h ch x x + h f

F [a, b]



Corollary.

Let  be a continuous function. Let  and  be differentiable
functions. Then:

Example.

>

Evaluate:

Example.

>

Evaluate:

Theorem.

(Fundamental Theorem of Calculus Part II) Let  be a continuous
function on . Let  be a continuous function on  which is an
antiderivative of  over . Then:

f g h

∫ h(x)

g(x)

f(t) dt = f(h(x))h′(x) − f(g(x))g′(x).
d

dx

∫ x3+1

sinx

e−t2

dt
d

dx

lim
h→0+

∫ 2+h

2

√t4 + 1 dt
1

ln(1 + h)

f

[a, b] F [a, b]

f (a, b)

∫ b

a

f(x) dx = F(b) − F(a).



Proof.

>
By the Fundamental Theorem of Calculus Part I, we know that 

 is also an antiderivative of . By Lagrange's Mean

Value Theorem and the continuity of  and  on , for all 
 we have:

for some constant .
>

Since , we have .

>

Hence:

 
◼

G(x) = ∫ x

a
f(t) dt f

F G [a, b]

x ∈ [a, b]

G(x) = F(x) + C

C

G(a) = ∫ a

a

f(t) dt = 0 C = −F(a)

∫ b

a

f(t) dt = G(b) = F(b) + C = F(b) − F(a).


