Sequences

A **sequence** is an ordered list of numbers:

$$a_1, a_2, a_3, \ldots, a_n, \ldots$$

Common notations:

$$\{a_n\},\ \{a_n\}_{n\in\mathbb{N}},\ \{a_n\}_{n=1}^{\infty}$$

Examples

•

$$a_n=\sqrt{n}\;,\quad n\in\mathbb{N}$$
 $\{a_n\}_{n\in\mathbb{N}}=\{1,\sqrt{2},\sqrt{3},\ldots\}.$

•

$$b_n = (-1)^{n+1}rac{1}{n}, \quad n \in \mathbb{N}$$
 $\{b_n\} = \left\{1, -rac{1}{2}, rac{1}{3}, -rac{1}{4}, \ldots
ight\}.$

• (Fibonacci Sequence)

$$a_1=1, a_2=1$$
 $a_n=a_{n-2}+a_{n-1} ext{ for } n\geq 3.$ $\{a_n\}=\{1,1,2,3,5,8,13,\ldots\}$

In this case we say that the sequence $\{a_n\}$ is defined **recursively**.

Sometimes, the terms a_n of a sequence approach a single value L as n tends to infinity.

Definition. We say that the **limit** of a sequence $\{a_n\}$ is equal to L if for all real numbers $\varepsilon > 0$ the exists a number N > 0 such that $|a_n - L| < \varepsilon$ for all n > N.

If such a number L exists, we say that:

 $\{a_n\}$ converges to L,

and write:

$$\lim_{n o\infty}a_n=L.$$

If no such L exists, we say that $\{a_n\}$ diverges.

If the values of a_n increase (resp. decrease) without bound, we say that $\{a_n\}$ diverges to ∞ (resp. $-\infty$), and write:

$$\lim_{n \to \infty} a_n = \infty \quad (\text{resp. } -\infty).$$

Some helpful results:

- Constant sequence: If $a_n=c$ for all n, then $\lim_{n\to\infty}a_n=\lim_{n\to\infty}c=c$.
- Sum/Difference rule: If both $\{a_n\}$ and $\{b_n\}$ converge, then:

$$\lim_{n o\infty}(a_n\pm b_n)=\lim_{n o\infty}a_n\pm\lim_{n o\infty}b_n.$$

• Product Rule: If both $\{a_n\}$ and $\{b_n\}$ converge, then:

$$\lim_{n o\infty}a_nb_n=\left(\lim_{n o\infty}a_n
ight)\cdot\left(\lim_{n o\infty}b_n
ight).$$

• Quotient Rule: If both $\{a_n\}$ and $\{b_n\}$ converge, and $\lim_{n\to\infty}b_n\neq 0$, then:

$$\lim_{n o\infty}rac{a_n}{b_n}=rac{\lim_{n o\infty}a_n}{\lim_{n o\infty}b_n}.$$

•

$$\lim_{n o\infty}rac{1}{n}=0.$$

• In general, if $\lim_{n \to \infty} a_n = +\infty$ or $\lim_{n \to \infty} a_n = -\infty$, we have:

$$\lim_{n o\infty}rac{1}{a_n}\!=0.$$

Examples

$$\bullet \lim_{n\to\infty} \frac{3n^2-2n+7}{2n^2+3}$$

$$\bullet \lim_{n\to\infty} \frac{-3n^2}{\sqrt[3]{27n^6-5n+1}}$$

•
$$\lim_{n\to\infty} \sqrt{4n^2+n} - \sqrt{4n^2-1}$$

A sequence $\{a_n\}$ is said to be **increasing** if $a_{n+1} > a_n$ for all n, and **decreasing** if $a_{n+1} < a_n$ for all n.

Monotone Convergence Theorem. If $\{a_n\}$ is either:

nondecreasing (i.e. $a_{n+1} \ge a_n$ for all n) and bounded above (i.e. There exists a number M such that $a_n < M$ for all n.),

nonincreasing (i.e. $a_{n+1} \leq a_n$ for all n) and bounded below (i.e. There exists a number M such that $a_n > M$ for all n.),

then $\{a_n\}$ converges.

Moreover,

if $\{a_n\}$ is nondecreasing and $a_n < M$ for all n, then $\lim_{n \to \infty} a_n \le M$. If $\{a_n\}$ is nonincreasing and $a_n > M$ for all n, then $\lim_{n \to \infty} a_n \ge M$.

Example. Let $\{a_n\}$ be a sequence of positive real numbers, which is defined by

$$a_1 = 1 \qquad ext{and} \qquad a_n = rac{12a_{n-1} + 12}{a_{n-1} + 13} ext{for } n > 1.$$

- 1. Prove that $a_n \leq 3$. 2. Prove that $\{a_n\}$ converges (i.e. $\lim_{n \to \infty} a_n$ exists), and find its limit.

The Sandwich Theorem for Sequences. Let $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ be sequences such that:

$$a_n \leq b_n \leq c_n$$

for all n sufficiently large. If

$$\lim_{n o\infty}a_n=\lim_{n o\infty}c_n=L,$$

then $\lim_{n\to\infty}b_n=L$ also.

Examples.

1. Find the following limit: $\lim_{n\to\infty}\frac{\sin(2^n)+(-1)^n\cos(2^n)}{n^3}$.

2.

- Prove that $\frac{2^n}{n!} \le \frac{4}{n}$ for all natural numbers $n \ge 2$.
- Then, show that $\lim_{n\to\infty}\frac{2^n}{n!}=0$.

3. Suppose 0 < a < 1. Let $b = \frac{1}{a} - 1$. For $n \ge 2$, use the binomial theorem to show that

$$rac{1}{a^n} \! \geq rac{n(n-1)}{2}\!b^2.$$

Then, show that:

$$\lim_{n o\infty}na^n=0.$$