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Abstract In this paper, we propose a SLaT (Smoothing, Lifting and Thresh-
olding) method with three stages for multiphase segmentation of color images
corrupted by different degradations: noise, information loss and blur. At the first
stage, a convex variant of the Mumford-Shah model is applied to each channel to
obtain a smooth image. We show that the model has unique solution under dif-
ferent degradations. In order to properly handle the color information, the second
stage is dimension lifting where we consider a new vector-valued image composed
of the restored image and its transform in a secondary color space to provide
additional information. This ensures that even if the first color space has highly
correlated channels, we can still have enough information to give good segmenta-
tion results. In the last stage, we apply multichannel thresholding to the combined
vector-valued image to find the segmentation. The number of phases is only re-
quired in the last stage, so users can modify it without the need of solving the
previous stages again. Experiments demonstrate that our SLaT method gives ex-
cellent results in terms of segmentation quality and CPU time in comparison with
other state-of-the-art segmentation methods.
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1 Introduction

IMAGE segmentation is a fundamental and challenging task in image processing
and computer vision. It can serve as a preliminary step for object recognition and
interpretation. The goal of image segmentation is to group parts of the given image
with similar characteristics together. These characteristics include, for example,
edges, intensities, colors and textures. For a human observer, image segmentation
seems obvious, but consensus among different observers is seldom found. The prob-
lem is much more difficult to solve by a computer. A nice overview of region-based
and edge-based segmentation methods is given in [16]. In our work we investigate
the image segmentation problem for color images corrupted by different types of
degradations: noise, information loss and blur.

Let Ω ⊂ R2 be a bounded open connected set, and f : Ω → Rd with d ≥ 1 be
a given vector-valued image. For example, d = 1 for gray-scale images and d = 3
for the usual RGB (red-green-blue) color images. One has d > 3 in many cases
such as in hyperspectral imaging [35] or in medical imaging [44]. In this paper, we
are mainly concerned with color images (i.e. d = 3) though our approach can be
extended to higher-dimensional vector-valued images. Without loss of generality,
we restrict the range of f to [0, 1]3 and hence f ∈ L∞(Ω)3.

In the literature, various studies have been carried out and many techniques
have been considered for image segmentation [40,14,21,26,28,41,43]. For gray-
scale images, i.e. d = 1, Mumford and Shah proposed in [32,33] an energy min-
imization problem for image segmentation which finds optimal piecewise smooth
approximations. More precisely, this problem was formulated in [33] as

EMS(g, Γ ) :=
λ

2

∫
Ω

(f − g)2dx+
µ

2

∫
Ω\Γ
|∇g|2dx+ Length(Γ ), (1)

where λ and µ are positive parameters, and g : Ω → R is continuous in Ω \ Γ but
may be discontinuous across the sought-after boundary Γ . Here, the length of Γ
can be written as H1(Γ ), the one-dimensional Hausdorff measure in R2. Model (1)
has attractive properties even though finding a globally optimal solution remains
an open problem and it is an active area of research. A recent overview can be
found in [1]. For image segmentation, the Chan-Vese model [14] pioneered a sim-
plification of functional (1) where Γ partitions the image domain into two constant
segments and thus ∇g = 0 on Ω \ Γ . More generally, for K constant regions Ωi,
i ∈ {1, . . . ,K}, the multiphase piecewise constant Mumford-Shah model [46] reads
as

EPCMS

(
{Ωi, ci}Ki=1

)
=
λ

2

K∑
i=1

∫
Ωi

(f − ci)2dx+
1

2

K∑
i=1

Per(Ωi), (2)

where Per(Ωi) is the perimeter of Ωi in Ω, all Ωi’s are pairwise disjoint and
Ω =

⋃K
i=1Ωi. The Chan-Vese model where K = 2 in (2) has many applications

for two-phase image segmentation. Model (2) is a nonconvex problem, so the ob-
tained solutions are in general local minimizers. To overcome the problem, convex
relaxation approaches [4,9,12,36], graph cut method [22] and fuzzy membership
functions [28] were proposed.

After [14], many approaches have decomposed the segmentation process into
several steps and here we give a brief overview of recent work in this direction.
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The paper [25] performs a simultaneous segmentation of the input image into arbi-
trarily many pieces using a modified version of model (1) and the final segmented
image results from a stopping rule using a multigrid approach. In [27], after involv-
ing a bias field estimation, a level set segmentation method dealing with images
with intensity inhomogeneity was proposed and applied to MRI images. In [8], an
initial hierarchy of regions was obtained by greedy iterative region merging using
model (2); the final segmentation is obtained by thresholding this hierarchy us-
ing hypothesis testing. The paper [2] first determined homogeneous regions in the
noisy image with a special emphasis on topological changes; then each region was
restored using model (2). Further multistage methods extending model (2) can be
found in [42] where wavelet frames were used, and in [7] which was based on iter-
ative thresholding of the minimizer of the ROF functional [39], just to cite a few.
In the discrete setting, the piecewise constant Mumford-Shah model (2) amounts
to the classical Potts model [37]. The use of this kind of functionals for image seg-
mentation was pioneered by Geman and Geman in [19]. In [41], a coupled Potts
model was used for direct partitioning of images using a convergent minimization
scheme. In [6], a conceptually different two-stage method for the segmentation of
gray-scale images was proposed. In the first stage, a smoothed solution g is ex-
tracted from the given image f by minimizing a non-tight convexification of the
Mumford-Shah model (1). The segmented image was obtained in the second stage
by applying a thresholding technique to g. This approach was extended in [11] to
images corrupted by Poisson and Gamma noises. Since the basic concept of our
method in this paper is similar, we will give more details on [6,11] in Section 2.

Extending or conceiving segmentation methods for color images is not a simple
task since one needs to discriminate segments with respect to both luminance and
chrominance information. The two-phase Chan-Vese model [14] was generalized to
deal with vector-valued images in [13] by combining the information in the different
channels using the data fidelity term. Many methods are applied in the usual RGB
color space [5,13,16,23,25,31,36,41], among others. It is often mentioned that
the RGB color space is not well adapted to segmentation because for real-world
images the R, G and B channels can be highly correlated. In [38], RGB images
are transformed into HSI (hue, saturation, and intensity) color space in order to
perform segmentation. In [2] a general segmentation approach was developed for
gray-value images and further extended to color images in the RGB, the HSV (hue,
saturation, and value) and the CB (chromaticity-brightness) color spaces. However,
a study on this point in [34] has shown that the Lab (perceived lightness, red-green
and yellow-blue) color space defined by the CIE (Commission Internationale de
l’Eclairage) is better adapted for color image segmentation than the RGB and
the HSI color spaces. In [8] RGB input images were first converted to Lab space.
In [47] color features were described using the Lab color space and texture using
histograms in RGB space.

A careful examination of the methods that transform a given RGB image to
another color space (HSI, CB, Lab, ...) before performing the segmentation task
has shown that these algorithms are always applied only to noise-free RGB images
(though these images unavoidably contain quantization and compression noise).
For instance, this is the case of [2,8,38,47], among others. One of the main reasons
is that if the input RGB image is degraded, the degradation would be hard to
control after a transformation to another color space [34]. Our goal is to develop
an image segmentation method that has the following properties:
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i) work on vector-valued (color) images possibly corrupted with noise, blur and
missing data;

ii) initialization independent and non-supervised (the number of segments is not
fixed in advance);

iii) take into account perceptual edges between colors and between intensities so
as to detect vector-valued objects with edges and also objects without edges;

iv) obtain an image adapted for segmentation using convex methods;
v) the segmentation is done at the last stage: no need to solve the previous stage

when the number of segments required is changed.

Contributions. The main contribution of this paper is to propose a segmenta-
tion method having all these properties. Goals (a)–(d) lead us to explore possible
extensions of the methods [6,11] to vector-valued (color) images. Goal (e) requires
finding a way to use information from perceptual color spaces even though our
input images are corrupted; see goal (a). Let V1 and V2 be two color spaces. Our
method has the following 3 steps:

1) Let the given degraded image be in V1. The convex variational model [6,11] is
applied in parallel to each channel of V1. This yields a restored smooth image.
We show that the model has unique solution.

2) The second stage consists of color dimension lifting: we transform the smooth
color image obtained at Stage 1 to a secondary color space V2 that provides
us with complementary information. Then we combine these images as a new
vector-valued image composed of all the channels from color spaces V1 and V2.

3) According to the desired number of phases K, we apply a multichannel thresh-
olding to the combined V1-V2 image to obtain a segmented image.

We call our method “SLaT” for Smoothing, Lifting and Thresholding. Unlike the
methods that perform segmentation in a different color space like [2,8,38,45,47],
we can deal with degraded images thanks to Stage 1 which yields a smooth image
that we can transform to another color space. We will fix V1 to be the RGB color
space since one usually has RGB color images. We use the Lab color space [30] as
the secondary color space V2 since it is often recommended for color segmentation
[8,16,34]. The crucial importance of the dimension lifting Stage 2 is illustrated in
Fig. 1 which shows the results without Stage 2, i.e. V2 = ∅ (middle) or with Stage
2 (right). To the best of our knowledge, it is the first time that two color spaces
are used jointly in variational methods for segmentation. This provides us with

(a) Given noisy image (b) Using only RGB space (c) Using RGB+Lab space

Fig. 1 Segmentation results for a noisy image (a) without the dimension lifting in Stage 2 (b)
and with Stage 2 (c).

additional information on the color image so that in all cases we can obtain very
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good segmentation results. The number of phases K is needed only in Stage 3. Its
value can reasonably be selected based on the RGB image obtained at Stage 1.

Extensive numerical tests on synthetic and real-world images have shown that
our method outperforms state-of-the-art variational segmentation methods like
[28,36,41] in terms of segmentation quality, speed and parallelism of the algorithm,
and the ability to segment images corrupted by different kind of degradations.

Outline. In Section 2, we briefly review the models in [6,11]. Our SLaT seg-
mentation method is presented in Section 3. In Section 4, we provide experimental
results on synthetic and real-world images. Conclusion remarks are given in Sec-
tion 5.

2 Review of the Two-stage Segmentation Methods in [6,11]

The methods in [6,11] for the segmentation of gray-scale images are motivated by
the observation that one can obtain a good segmentation by properly thresholding
a smooth approximation of the given image. Thus in their first stage, these methods
solve a minimization problem of the form

inf
g∈W 1,2(Ω)

{
λ

2

∫
Ω

Φ(f, g)dx+
µ

2

∫
Ω

|∇g|2dx+

∫
Ω

|∇g|dx
}
, (3)

where Φ(f, g) is the data fidelity term, µ and λ are positive parameters. We note
that the model (3) is a convex non-tight relaxation of the Mumford-Shah model in
(1). Paper [6] considers Φ(f, g) = (f −Ag)2 where A is a given blurring operator;
when f is degraded by Poisson or Gamma noise, the statistically justified choice
Φ(f, g) = Ag− f log(Ag) is used in [11]. Under a weak assumption, the functional
in (3) has a unique minimizer, say ḡ, which is a smooth approximation of f . The
second stage is to use the K-means algorithm [24] to determine the thresholds
for segmentation. These methods have important advantages: they can segment
degraded images and the minimizer ḡ is unique. Further, the segmentation stage
being independent from the optimization problem (3), one can change the number
of phases K without solving (3) again.

3 SLaT: Our Segmentation Method for Color Images

Let f = (f1, . . . , fd) be a given color image with channels fi : Ω → R, i = 1, · · · , d.
For f an RGB image, d = 3. This given image f is typically a blurred and noisy
version of an original unknown image. It can also be incomplete: we denote by Ωi0
the open nonempty subset of Ω where the given fi is known for channel i. Our
SLaT segmentation method consists of three stages described next.

3.1 First Stage: Recovery of a Smooth Image

First, we restore each channel fi of f separately by minimizing the functional E
below

E(gi) =
λ

2

∫
Ω

ωi · Φ(fi, gi)dx+
µ

2

∫
Ω

|∇gi|2dx+

∫
Ω

|∇gi|dx, i = 1, . . . , d, (4)
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where | · | stands for Euclidian norm and ωi(·) is the characteristic function of Ωi0,
i.e.

ωi(x) =

{
1, x ∈ Ωi0,
0, x ∈ Ω \Ωi0.

(5)

For Φ in (4) we consider the following options:

i) Φ(f, g) = (f −Ag)2, the usual choice;
ii) Φ(f, g) = Ag − f log(Ag) if data are corrupted by Poisson noise.

Theorem 1 below proves the existence and the uniqueness of the minimizer of (4).
In view of (4) and (5), we define the linear operator (ωiA) by

(ωiA) : u(x) ∈ L2(Ω) 7→ ωi(x)(Au)(x) ∈ L2(Ω). (6)

Theorem 1 Let Ω be a bounded connected open subset of R2 with a Lipschitz
boundary. Let A : L2(Ω) → L2(Ω) be bounded and linear. For i ∈ {1, . . . , d},
assume that fi ∈ L2(Ω) and that Ker(ωiA)

⋂
Ker(∇) = {0} where Ker stands

for null-space. Then (4) with either Φ(fi, gi) = (fi − Agi)2 or Φ(fi, gi) = Agi −
fi log(Agi) has a unique minimizer ḡi ∈W 1,2(Ω).

Proof First consider Φ(fi, gi) = (fi − Agi)2. Using (6), E(gi) defined in (4) can
be rewritten as

E(gi) =
λ

2

∫
Ω

(ωi · fi − (ωiA)gi)
2dx+

µ

2

∫
Ω

|∇gi|2dx+

∫
Ω

|∇gi|dx. (7)

Noticing that ωi · fi ∈ L2(Ω) and that (ωiA) : L2(Ω) → L2(Ω) is linear and
bounded, the statement follows from [6, Theorem 2.4.].

Next consider that Φ(fi, gi) = Agi − fi log(Agi). Then

E(gi) =
λ

2

∫
Ω

ωi · (Agi)− (ωi · fi) log(Agi)dx

+
µ

2
‖∇gi‖2L2(Ω) + ‖∇gi‖L2(Ω). (8)

1) Existence: Since W 1,2(Ω) is a reflective Banach space and E(gi) is con-
vex lower semi-continuous, by [17, Proposition 1.2] we need to prove that E(gi)
is coercive on W 1,2(Ω), i.e. that E(gi) → +∞ as ‖gi‖W 1,2(Ω) := ‖gi‖L2(Ω) +
‖∇gi‖L2(Ω) → +∞.

The function Agi 7→ (Agi − f logAgi) is strictly convex with a minimizer
pointwisely satisfying Agi = f ∈ [0, 1], hence Φ(fi, gi) ≥ 0. Thus ‖∇gi‖L2(Ω) is

upper bounded by E(gi) > 0 for any gi ∈W 1,2(Ω) and f 6= 0. Using the Poincaré
inequality, see [18], we have:

‖gi − giΩ‖L2(Ω) ≤ C1‖∇gi‖L2(Ω) ≤ C1E(gi), (9)

where C1 > 0 is a constant and giΩ = 1
|Ω|
∫
Ω
gidx. Let us set C2 :=

(
1− 1

e‖fi‖∞
)
.

We have C2 > 0 because ‖fi‖∞ ≤ 1. Recall the fact that t
e ≥ log t for any t > 0



Three-stage Segmentation: Smoothing, Lifting and Thresholding (SLaT) 7

which can be easily verified by showing that t/e − log t is convex for t > 0 with
minimum at e. Hence we have

ωi · Φ(fi, gi) ≥ (ωiA) gi −
1

e
(ωi · fi)Agi

= ωi · (1−
1

e
fi)Agi ≥ C2 (ωiA) gi

which should be understood pointwisely. Hence,

‖(ωiA) gi‖L1(Ω) ≤
2

C2λ
E(gi). (10)

Let C3 := ‖(ωiA)1‖L1(Ω) where 1(x) = 1 for any x ∈ Ω. Using Ker(∇) =

{u ∈ L2(Ω) : u = c 1 a.e. for x ∈ Ω, c ∈ R} together with the assumption
Ker(ωiA)

⋂
Ker(∇) = {0} one has C3 > 0. Using (10) together with the fact that

giΩ > 0 yields

|giΩ | ‖(ωiA)1‖L1(Ω) = |giΩ | C3

= ‖ωi · (A1giΩ )‖L1(Ω)

≤ 2

C2λ
E(gi),

and thus

|giΩ | ≤
2

C2C3λ
E(gi).

Applying the triangular inequality in (9) gives ‖gi‖L2(Ω)− |giΩ | ≤ C1‖∇gi‖L2(Ω).
Hence

‖gi‖L2(Ω) ≤ |giΩ |+ C1‖∇gi‖L2(Ω) ≤
(

2

C2C3λ
+ 1

)
E(gi).

Comparing with (9) yet again shows that we have obtained

‖gi‖W 1,2(Ω) = ‖gi‖L2(Ω) + ‖∇gi‖L2(Ω)

≤
(

2

C2C3λ
+ 1 + C1

)
E(gi).

Therefore, E is coercive.
2) Uniqueness: Suppose ḡi1 and ḡi2 are both minimizers of E(gi). The convexity

of E and the strict convexity of Agi 7→ (Agi − f logAgi) entail Aḡi1 = Aḡi2 on
Ωi0 and ∇ḡi1 = ∇ḡi2 . Further, the assumption on Ker(ωiA)

⋂
Ker(∇) shows that

ḡi1 = ḡi2 .

The condition Ker(ωiA)
⋂

Ker(∇) = {0} is mild which means that Ker(ωiA)
does not contain constant images.

The discrete model. In the discrete setting, Ω is an array of pixels, say of size
M ×N , and our model (4) reads as

E(gi) =
λ

2
Ψ(fi, gi) +

µ

2
‖∇gi‖2F + ‖∇gi‖2,1, i = 1, . . . , d. (11)

Here
Ψ(fi, gi) :=

∑
j∈Ω

(
ωi · (fi −Agi)2

)
j
,
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or
Ψ(fi, gi) :=

∑
j∈Ω

(
ωi ·

(
Agi − fi log(Agi)

))
j
.

The operator ∇ = (∇x,∇y) is discretized using backward differences with Neu-
mann boundary conditions. Further, ‖ · ‖2F is the Frobenius norm, so

‖∇gi‖2F =
∑
j∈Ω

(
(∇xgi)2j + (∇ygi)2j

)
,

and ‖∇gi‖2,1 is the usual discretization of the TV semi-norm given by

‖∇gi‖2,1 =
∑
j∈Ω

√
(∇xgi)2j + (∇ygi)2j .

For each i, the minimizer ḡi can be computed easily using different methods,
for example the primal-dual algorithm [10,15], alternating direction method with
multipliers (ADMM) [3], or the split-Bregman algorithm [20]. Then we rescale
each ḡi onto [0, 1] to obtain {ḡi}di=1 ∈ [0, 1]d.

3.2 Second Stage: Dimension Lifting with Secondary Color Space

For the ease of presentation, in the following, we assume V1 is the RGB color space.
The goal in color segmentation is to recover segments both in the luminance and
in the chromaticity of the image. It is well known that the R, G and B channels
can be highly correlated. For instance, the R, G and B channels of the output of
Stage 1 for the noisy pyramid image in Fig. 1 are depicted in Fig. 2 (a)–(c). One
can hardly expect to make a meaningful segmentation based on these channels—
see the result in Fig. 1 (b), as well as Fig. 8 where other contemporary methods
are compared. Stage 1 provides us with a restored smooth image ḡ. In Stage 2,
we perform dimension lifting in order to acquire additional information on ḡ from
a different color space that will help the segmentation in Stage 3. The choice is
delicate. Popular choices of less-correlated color spaces include HSV, HSI, CB and
Lab, as described in the Introduction. The Lab color space was created by the
CIE with the aim to be perceptually uniform [30] in the sense that the numerical
difference between two colors is proportional to perceived color difference. This is
an important property for color image segmentation, see e.g. [8,16,34]. For this
reason in the following we use the Lab as the additional color space. Here the
L channel correlates to perceived lightness, while the a and b channels correlate
approximately with red-green and yellow-blue, respectively. As an example we
show in Fig. 2 (d)–(f) the L, a and b channels of the smooth ḡ in Stage 1 for the
noisy pyramid in Fig. 1 (a). From Fig. 2 one can see that the collection of 6 channels
gives different information with respect to a further segmentation. The result in
Fig. 1 (c) have shown that this additional color space helps the segmentation
significantly.

Let ḡ′ denote Lab transform of ḡ. In order to compare ḡ′ with ḡ ∈ [0, 1]3, we
rescale on [0,1] the channels of ḡ′ which yields an image denoted by ḡt ∈ [0, 1]3. By
stacking together ḡ and ḡt we obtain a new vector-valued image ḡ∗ with 2d = 6
channels:

ḡ∗ := (ḡ1, ḡ2, ḡ3, ḡ
t
1, ḡ

t
2, ḡ

t
3).

Our segmentation in Stage 3 is done on this ḡ∗.
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(a) R channel ḡ1 (b) G channel ḡ2 (c) B channel ḡ3

(d) L channel ḡt1 (e) a channel ḡt2 (f) b channel ḡt3

Fig. 2 Channels comparison for the restored (smoothed) ḡ in Stage 1 used in Fig. 1. (a)–(c):
the R, G and B channels of ḡ; (d)–(f): the L, a and b channels of ḡt – the Lab transform of
ḡ. Both ḡ and ḡt were used to obtain the result in Fig. 1 (c).

Remark 1 The transformation from RGB to Lab color space is based on the in-
termediate CIE XYZ tristimulus values. The transformation of ḡ (in RGB color
space) to g̃ in XYZ is given by a linear transform g̃ = Hḡ. Then the Lab transform
ḡ′ of ḡ, see e.g., [29, chapter 1], is defined in terms of g̃ as

ḡ′1 =

{
116 3

√
g̃2/Yr, if g̃2/Yr > 0.008856,

903.3g̃2/Yr, otherwise,

ḡ′2 = 500 (ρ(g̃1/Xr)− ρ(g̃2/Yr)) , ḡ′3 = 200 (ρ(g̃2/Yr)− ρ(g̃3/Zr)) ,

where ρ(x) = 3
√
x, if x > 0.008856, otherwise ρ(x) = (7.787x + 16)/116, and

Xr, Yr and Zr are the XYZ tristimulus values of the reference white point. The
cube root function compresses some values more than others and the transform
corresponds to the CIE chromaticity diagram. The transform takes into account
the observation that the human eye is more sensitive to changes in chroma than to
changes in lightness. As mentioned before, the Lab space is perceptually uniform
[34]. So the Lab channels provide important complementary information to the
restored RGB image ḡ. Following an aggregation approach, we use all channels of
the two color spaces.

3.3 Third Stage: Thresholding

Given the vector-valued image ḡ∗ ∈ [0, 1]2d for d = 3 from Stage 2 we want
now to segment it into K segments. Here we design a properly adapted strategy
to partition vector-valued images into K segments. It is based on the K-means
algorithm [24] because of its simplicity and good asymptotic properties. According
to the value of K, the algorithm clusters all points of {ḡ∗(x) : x ∈ Ω} into K
Voronoi-shaped cells, say Σ1∪Σ2 · · ·∪ΣK = Ω. Then we compute the mean vector
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ck ∈ R6 on each cell Σk by

ck =

∫
Σk
ḡ∗dx∫

Σk
dx

, k = 1, . . . ,K. (12)

We recall that each entry ck[i] for i = 1, · · · , 6 is a value belonging to {R,G,B,L, a,b},
respectively. Using {ck}Kk=1, we separate ḡ∗ into K phases by

Ωk :=
{
x ∈ Ω : ‖ḡ∗(x)− ck‖2 = min

1≤j≤K
‖ḡ∗(x)− cj‖2

}
,

k = 1, . . . ,K. (13)

It is easy to verify that {Ωk}Kk=1 are disjoint and that
⋃K
k=1Ωk = Ω. The use of

the `2 distance here follows from our model (4) as well as from the properties of
the Lab color space [30,8].

3.4 The SLaT Algorithm

We summarize our three-stage segmentation method for color images in Algo-
rithm 1. Like the Mumford-Shah model, our model (4) has two parameters λ and
µ. Extensive numerical tests have shown that we can fix µ = 1. We choose λ
empirically; the method is quite stable with respect to this choice. We emphasize

Algorithm 1: Three-stage Segmentation Method (SLaT) for Color Images

Input: Given color image f ∈ V1 and color space V2.
Output:Phases Ωk, k = 1, . . . ,K.

1: Stage one: compute ḡi the minimizer in (4), rescale it on [0, 1] for i = 1, 2, 3 and set
ḡ = (ḡ1, ḡ2, ḡ3) in V1

2: Stage two:
compute ḡ′ ∈ V2, the transform of ḡ in V2, to obtain ḡt = (ḡt1, ḡ

t
2, ḡ

t
3); form ḡ∗ =

(ḡ1, ḡ2, ḡ3, ḡt1, ḡ
t
2, ḡ

t
3)

3: Stage three:
choose K, apply the K-means algorithm to obtain {ck}Kk=1 in (12) and find the segments
Ωk, k = 1, . . . ,K using (13).

that our method is quite suitable for parallelism since {ḡi}3i=1 in Stage 1 can be
computed in parallel.

4 Experimental Results

In this section, we compare our SLaT method with three state-of-the-art varia-
tional color segmentation methods [28,36,41]. Method [28] uses fuzzy member-
ship functions to approximate the piecewise constant Mumford-Shah model (2).
Method [36] uses a primal-dual algorithm to solve a convex relaxation of model
(2) with a fixed code book. Method [41] uses an ADMM algorithm to solve the
model (2) (without phase number K) with structured Potts priors. These meth-
ods were originally designed to work on color images with degradation such as
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noise, blur and information loss. The codes we used were provided by the authors,
and the parameters in the codes were chosen by trial and error to give the best
results of each method. For our model (4), we fix µ = 1 and only vary λ. In
the segmented figures below, each phase is represented by the average intensity
of that phase in the image. All the results were tested on a MacBook with 2.4
GHz processor and 4GB RAM, and Matlab R2014a. We present the tests on

(i) 6-phase (ii) 4-quadrant (iii) Rose (iv) Sunflower (v) Pyramid

(vi) Kangaroo (vii) Vase (viii) Elephant (ix) Man

Fig. 3 Images used in our tests.

two synthesis and seven real-world images given in Fig. 3 (images (v) – (ix) are
chosen from the Berkeley Segmentation Dataset and Benchmark1). The images
are all in RGB color space. We considered combinations of three different forms
of image degradation: noise, information loss, and blur. The Gaussian and Pois-
son noisy images are all generated using Matlab function imnoise. For Gaussian
noisy images, the Gaussian noise we added are all of mean 0 and variance 0.001 or
0.1. To apply the Poisson noise, we linearly stretch the given image f to [1, 255]
first, then linearly stretch the noisy image back to [0, 1] for testing. The mean
of the Poisson distribution is 10. For information loss case, we deleted 60% pix-
els values randomly. The blur in the test images were all obtained by a vertical
motion-blur with 10 pixels length. In Stage 1 of our method, the primal-dual al-
gorithm [10,15] and the split-Bregman algorithm [20] are adopted to solve (4) for
Φ(f, g) = Ag− f log(Ag) and Φ(f, g) = (f −Ag)2, respectively. We terminate the

iterations when
‖g(k)i −g

(k+1)
i ‖2

‖g(k+1)
i ‖2

< 10−4 for i = 1, 2, 3 or when the maximum itera-

tion number 200 is reached. In Stage 2, the transformation from RGB to Lab color
spaces is implemented by Matlab build-in function makecform(’srgb2lab’). In
Stage 3, given the user defined number of phases K, the thresholds are determined
automatically by Matlab K-means function kmeans. Since ḡ∗ is calculated prior

1 https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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to the choice of K, users can try different K and segment the image all without
re-computing ḡ∗.

4.1 Segmentation of Synthetic Images

Example 1. Six-phase segmentation. Fig. 4 gives the result on a six-phase
synthetic image containing five overlapping circles with different colors. The image
is corrupted by Gaussian noise, information loss, and blur, see Fig. 4 (A), (B), and
(C) respectively. From the figures, we see that method Li et al. [28] and method
Storath et al. [41] both fail for the three experiments while method Pock et al. [36]
fails for the case of information lost. Table 1 shows the segmentation accuracy by
giving the ratio of the number of correctly segmented pixels to the total number
of pixels. The best ratios are printed in bold face. From the table, we see that our
method gives the highest accuracy for the case of information loss and blur. For
denoising, method [36] is 0.02% better. Table 2 gives the iteration numbers of each
method and the CPU time cost. We see that our method outperforms the others
compared. Moreover, if using parallel technique, the time can be reduced roughly
by a factor of 3.

(A) Noisy image (A1) (A2) (A3) (A4)

(B) Information (B1) (B2) (B3) (B4)
loss + noise

(C) Blur + noise (C1) (C2) (C3) (C4)

Fig. 4 Six-phase synthetic image segmentation (size: 100× 100). (A): Given Gaussian noisy
image with mean 0 and variance 0.1; (B): Given Gaussian noisy image with 60% information
loss; (C): Given blurry image with Gaussian noise; (A1–A4), (B1–B4) and (C1–C4): Results
of methods [28], [36], [41], and our SLaT on (A), (B) and (C), respectively.
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Table 1 Comparison of percentage of correct pixels for the 6-phase synthetic image. Methods
1-3 are the methods in [28], [36], [41], respectively.

Method 1 Method 2 Method 3 Our SLaT method

Fig. 4
(A) 70.11% 99.53% 82.55% 99.51%
(B) 13.90% 16.92% 85.04% 99.25%
(C) 28.08% 98.58% 74.77% 98.88%

Average 37.36% 71.68% 80.79% 99.21%

Example 2. Four-phase segmentation. Our next test is on a four-phase synthetic
image containing four rectangles with different colors, see Fig. 5. The variable illu-
mination in the figure make the segmentation very challenging. The results shows
that in all cases (noise, information loss and blur) all three competing methods [28,
36,41] fail while our method gives extremely good results. Table 2 shows further
that the time cost of our method is the least.

(A) Noisy image (A1) (A2) (A3) (A4)

(B) Information (B1) (B2) (B3) (B4)
loss + noise

(C) Blur + noise (C1) (C2) (C3) (C4)

Fig. 5 Four-phase synthetic image segmentation (size: 256× 256). (A): Given Gaussian noisy
image with mean 0 and variance 0.001; (B): Given Gaussian noisy image with 60% information
loss; (C): Given blurry image with Gaussian noise; (A1–A4), (B1–B4) and (C1–C4): Results
of methods [28], [36], [41], and our SLaT on (A), (B) and (C), respectively.
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Table 2 Iteration numbers and CPU time in seconds. Methods 1-3 are the methods in [28],
[36], [41], respectively.

Method 1 Method 2 Method 3 Our SLaT method
Fig. iter. time iter. time iter. time iter. for {gi}3i=1 time

4
(A) 200 5.03 150 6.02 20 4.40 (92, 86, 98) 2.53
(B) 200 5.65 150 4.01 16 3.65 (98, 95, 106) 2.73
(C) 200 6.54 150 4.03 17 4.18 (97, 95, 94) 2.48

5
(A) 200 13.92 150 13.89 17 16.89 (54, 54, 51) 5.47
(B) 200 13.16 150 14.32 14 13.62 (101, 92, 88) 7.74
(C) 200 17.68 150 16.37 16 15.75 (154, 147, 142) 9.89

6
(A) 200 10.58 150 7.53 19 11.62 (50, 73, 93) 5.11
(B) 200 9.59 150 7.36 20 14.64 (84, 105, 115) 6.43
(C) 200 10.39 150 7.39 19 9.76 (200, 200, 200) 17.75

7
(A) 200 44.26 150 66.01 19 106.35 (97, 106, 109) 25.13
(B) 200 52.12 150 54.76 20 110.68 (148, 161, 171) 38.30
(C) 200 44.51 150 55.09 18 101.09 (116, 125, 124) 30.00

8
(A) 200 17.76 150 19.02 16 25.08 (80, 83, 99) 20.99
(B) 200 18.41 150 16.45 16 28.33 (109, 114, 129) 22.45
(C) 200 18.02 150 18.21 15 31.93 (127, 120, 144) 30.92

9
(A) 200 18.47 150 19.62 15 27.56 (47, 42, 62) 10.98
(B) 200 17.35 150 16.63 15 26.63 (86, 85, 93) 15.93
(C) 200 18.07 150 17.61 15 23.13 (48, 48, 52) 15.02

10
(A) 200 24.57 150 31.64 20 56.28 (101, 95, 94) 27.29
(B) 200 27.15 150 28.92 21 63.02 (154, 142, 131) 27.89
(C) 200 26.54 150 29.79 20 55.45 (161, 147, 141) 33.79

11
(A) 200 26.62 150 32.87 17 87.13 (35, 35, 36) 14.23
(B) 200 24.77 150 26.39 16 60.98 (102, 102, 103) 18.99
(C) 200 25.26 150 31.16 18 77.73 (48, 50, 58) 18.15

12
(A) 200 32.23 150 41.91 19 47.12 (106, 102, 108) 21.93
(B) 200 34.83 150 44.70 20 53.48 (116, 116, 117) 23.95
(C) 200 35.01 150 49.93 19 49.14 (67, 65, 63) 21.04

Average 200 22.17 150 25.25 18 41.69 (99, 99, 104) 17.67

4.2 Segmentation of Real-world Color Images

In this section, we compare our method with the three competing methods for 7
real-world color images in two-phase and multiphase segmentations, see Figs. 6–12.
Moreover, for the images from the Berkeley Segmentation Dataset and Benchmark
used in Figs. 8–12, the segmentation results by humans are shown in Fig. 13 as
ground truth for visual comparison purpose. We see from the figures that our
method is far superior than those by the competing methods, and our results
are consistent with the segmentations provided by humans. The timing of the
methods given in Table 2 shows that our method in most of the cases gives the least
timing. Again, we emphasize that our method is easily parallelizable. All presented
experiments clearly show that all goals listed in Introduction are fulfilled.

5 Conclusions

In this paper we proposed a three-stage image segmentation method for color
images. At the first stage of our method, a convex variational model is used in
parallel on each channel of the color image to obtain a smooth color image. Then
in the second stage we transform this smooth image to a secondary color space so
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(A) Noisy image (A1) (A2) (A3) (A4)

(B) Information (B1) (B2) (B3) (B4)
loss + noise

(C) Blur + noise (C1) (C2) (C3) (C4)

Fig. 6 Two-phase rose segmentation (size: 303 × 250). (A): Given Poisson noisy image; (B):
Given Poisson noisy image with 60% information loss; (C): Given blurry image with Poisson
noise; (A1-A4), (B1-B4) and (C1-C4): Results of methods [28], [36], [41], and our SLaT on
(A), (B) and (C), respectively.

as to obtain additional information of the image in the less-correlated color space.
In the last stage, multichannel thresholding is used to threshold the combined
image from the two color spaces. The new three-stage method, named SLaT for
Smoothing, Lifting and Thresholding, has the ability to segment images corrupted
by noise, blur, or when some pixel information is lost. Experimental results on RGB
images coupled with Lab secondary color space demonstrate that our method gives
much better segmentation results for images with degradation than some state-
of-the-art segmentation models both in terms of quality and CPU time cost. Our
future work includes finding an automatical way to determine λ and possibly an
improved model (4) that can better promote geometry. It is also interesting to
optimize channels from the selected color spaces, and analyze the effect in color
image segmentation.
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(A) Noisy image (A1) (A2) (A3) (A4)

(B) Information (B1) (B2) (B3) (B4)
loss + noise

(C) Blur + noise (C1) (C2) (C3) (C4)

Fig. 7 Four-phase sunflower segmentation (size: 375×500). (A): Given Gaussian noisy image
with mean 0 and variance 0.1; (B): Given Gaussian noisy image with 60% information loss; (C):
Given blurry image with Gaussian noise; (A1-A4), (B1-B4) and (C1-C4): Results of methods
[28], [36], [41], and our SLaT on (A), (B) and (C), respectively.

(A) Noisy image (A1) (A2) (A3) (A4)

(B) Information (B1) (B2) (B3) (B4)
loss + noise

(C) Blur + noise (C1) (C2) (C3) (C4)

Fig. 8 Two-phase pyramid segmentation (size: 321× 481). (A): Given Gaussian noisy image
with mean 0 and variance 0.001; (B): Given Gaussian noisy image with 60% information
loss; (C): Given blurry image with Gaussian noise; (A1-A4), (B1-B4) and (C1-C4): Results of
methods [28], [36], [41], and our SLaT on (A), (B) and (C), respectively.
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(A) Noisy image (A1) (A2) (A3) (A4)

(B) Information (B1) (B2) (B3) (B4)
loss + noise

(C) Blur + noise (C1) (C2) (C3) (C4)

Fig. 9 Two-phase kangaroo segmentation (size: 321× 481). (A): Given Poisson noisy image;
(B): Given Poisson noisy image with 60% information loss; (C): Given blurry image with
Poisson noise; (A1-A4), (B1-B4) and (C1-C4): Results of methods [28], [36], [41], and our
SLaT on (A), (B) and (C), respectively.
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