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Abstract—The construction and control of genetic regulatory
networks using gene expression data is an important research
topic in bioinformatics. Probabilistic Boolean Networks (PBNs)
have been served as an effective tool for this purpose. However,
PBNs are difficult to be used in practice when the number of
genes is large because of the huge computational cost. In this
paper, we propose a simplified multivariate Markov model for
approximating a PBN. The new model can preserve the strength
of PBNs and at the same time reduce the complexity of the
network and therefore the computational cost. We then present
an optimal control model with hard constraints for the purpose of
control/intervention of a genetic regulatory network. Numerical
experimental examples based on the yeast data are then givento
demonstrate the effectiveness of our proposed model and control
policy.

I. I NTRODUCTION

An important issue in systems biology is to understand
the mechanism in which cells execute and control a huge
number of operations for normal functions, and also the
way in which the cellular systems fail in disease. Many
mathematical models such as neural networks, linear model,
Bayesian networks, non-linear ordinary differential equations,
Petri nets, Boolean Networks (BNs) and its generalization
Probabilistic Boolean Networks (PBNs), multivariate Markov
chain model etc. [1], [2], [4], [7], [11], [12], [13], [14] have
been proposed. Among all the models, BNs and PBNs have
received much attention. The approach is to model the genetic
regulatory system by a Boolean network and infer the network
structure from real gene expression data. Then by using the
inferred network model, one can uncover the underlying gene
regulatory mechanisms. This is particularly useful as it helps

to make useful predictions by computer simulations.
The BN model was first introduced by Kauffman [9], [10].

In a BN, each gene is regarded as a vertex of the network and
is quantized into two levels only (expressed (1) or unexpressed
(0)). The target gene is predicted by several genes called its
input genes through a Boolean function. If the input genes
and the Boolean functions are given, a BN is defined. The
only randomness involved here is the initial system state. To
overcome the deterministic nature of a BN, Shmulevichet al.
[13] proposed a PBN that can share the appealing rule-based
properties of Boolean networks and it is robust in the presence
of uncertainty.

The dynamics of the PBN can be studied in the context of
standard Markov chain. However, the number of parameters
(state of the system) grows exponentially with respect to
the number of genesn. Therefore it is natural to develop
heuristic methods for model training or to consider other
approximate model. Here we propose a simplified multivariate
Markov model, which can capture both the intra- and inter-
associations (transition probabilities) among the gene expres-
sion sequences. The number of parameters in the model is
only O(n2) where n is the number of genes in a captured
network. We develop efficient model parameters estimation
methods based on linear programming. We then propose an
optimal control formulation for regulating the network so as
to avoid some undesirable states which may correspond to
some disease like cancer.

The rest of the paper is organized as follows. In Section 2,
we present the simplified multivariate Markov model. In Sec-
tion 3, the estimation method for model parameters is given.



In Section 4, an optimal control formulation is proposed. In
Section 5, we apply the proposed model and method to the
gene expression data of yeast. Concluding remarks are then
given to address further research issues in Section 6.

II. M ULTIVARIATE MARKOV CHAIN MODELS

In this section, we first review a multivariate Markov chain
model proposed in Ching,et al. [3] for modeling categorical
time series data. The model has been used for building
genetic regulatory networks [4]. We then present our simplified
multivariate Markov chain model.

Given n categorical time sequences, we assume they share
the same state spaceM . We denote the state probability
distribution of Sequencej at timet by V

(j)
t , j = 1, 2, . . . , n.

In Ching, et al. [3], the following first-order model was
proposed to model the relationships among the sequences:

V
(i)
t+1 =

n
∑

j=1

λijP
(ij)V

(j)
t , i = 1, 2, . . . , n (1)

where

λij ≥ 0 for 1 ≤ i, j ≤ n and

n
∑

j=1

λij = 1. (2)

Here λij is the non-negative weighting of Genej to Gene
i. The matrixP (ij) is a transition probability matrix for the
transitions of states in Sequencej to states in Sequencei in
one step, see for instance [3]. In matrix form we have
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We note that the column sum ofQ is not equal to one (the
column sum of eachP (ij) is equal to one). The followings
are two propositions [3] related to some properties of the
model.

Proposition 2.1 If λij > 0 for 1 ≤ i, j ≤ n, then the
matrix Q has an eigenvalue equal to1 and the eigenvalues of
Q have modulus less than or equal to1.

Proposition 2.2 Suppose thatP (ij) (1 ≤ i, j ≤ n) are
irreducible andλij > 0 for 1 ≤ i, j ≤ n. Then there is a
vectorV̄ = [V̄(1), V̄(2), · · · , V̄(n)]T such thatV̄ = QV̄ and
∑m

i=1[V̄
(j)]i = 1, 1 ≤ j ≤ n where m is the number of

states.
In Proposition 2.2, we require allP (ij) are irreducible. But

actually, if Q is irreducible, we can get the same conclusion.

If the model is applied to gene expression sequences, we may
take M = {0, 1} and V

(i)
t is the expression level of thei-

th gene at the timet. From (1), the expression probability
distribution of thei-th gene at time(t + 1) depends on the
weighted average ofP (ij)V

(j)
t . In Ching,et al. [4], this model

has been used to find cell cycles.
A simplified model was proposed in Chinget al.[5] by

assuming
P (ij) = I if i 6= j. (3)

The simplified model has smaller number of parameters and
it has been shown to be statistically better. Moreover, Propo-
sitions 1 and 2 still hold for the simplified model.

III. E STIMATION OF MODEL PARAMETERS

In this section, we present methods to estimateP (ij) and
λij . We estimate the transition probability matrixP (ii) by the
following method. First we count the transition frequency of
the states in thei-th sequence. After making a normalization,
we obtain an estimate of the transition probability matrix.
We have to estimaten such m-by-m transition probability
matrices to get the estimate forP (ii) as follows:
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BesidesP̂ (ii), we need to estimate the parametersλij . It
can be shown that the multivariate Markov model has a
“stationary vector”V̄ in Proposition 2. The vector̄V can be
estimated from the gene expression sequences by computing
the proportion of the occurrence of each gene and we denote
it by

V̂ = (V̂(1), V̂(2), . . . , V̂(n))T .

We therefore expect that

QV̂ ≈ V̂.

¿From the above equation, it suggests one possible way to
estimate the parametersΛ = {λij} as follows:
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subject to
n

∑

j=1

λij = 1, and λij ≥ 0, ∀j.

We note that the following formulation ofn linear program-
ming problems can give the necessary solutions of Problem
(4). For eachi:

min
λ

wi

subject to
{

wie ≥ V̂(i) − Biλi,.

wie ≥ −V̂(i) + Biλi,.

(5)

whereBi = [V̂(1) | V̂(2) | · · · |P̂ iiV̂(i)| · · · | V̂(n)], e =
(1, 1, ..., 1)T , and λi,. is the i-th row of Λ. The estimation
method can be applied to the simplified model (3). We remark
that other vector norms such as||.||2 and||.||1 can also be used
but they have different characteristics. The former will result in
a quadratic programming problem while||.||1 will still result
in a linear programming problem.

IV. T HE OPTIMAL CONTROL FORMULATION

In this section, we present the optimal control problem
based on the simplified multivariate Markov model (3) and
formulate it based on the principle of dynamic programming.
In the simplified model (3) we proposed above, the matrix
Q can be regarded as a “transition probability matrix” for
the multivariate Markov chain in certain sense, andVt can
be regarded as a joint state distribution vector. We then
present a control model based on the paper by Ching,et
al.[6]. Beginning with an initial joint probability distribution
v0 the gene regulatory network (or the multivariate Markov
chain) evolves according to two possible transition probability
matricesQ0 andQ1. Without any external control, we assume
that the multivariate Markov chain evolves according to a fixed
transition probability matrixQ0(≡ Q). When a control is
applied to the network at one time step, the Markov chain
will evolve according to another transition probabilityQ1

(with more favorable steady states or a more favorable state
distribution). It will then return back toQ0 again if there is
no control. We note that one can have more than one type of
controls, i.e., more than one transition probability matrix Q1

to choose in each time step. For instance, in order to suppress
the expression of a particular gene, one can directly toggle
off this gene. One may achieve the goal indirectly by means
of controlling its parent genes which have a primary impact
on its expression too. But for the simplicity of discussion,
we assume that there is only one direct possible control here.
We then suppose that the maximum number of controls that
can be applied to the network during a finite investigation
period T (finite-horizon) isK whereK ≤ T . The objective
here is to find an optimal control policy such that the state
of the network is close to a target state vectorz. Without
loss of generality, here we focus on the first gene among all
the genes. Accordingly, we remark that the sub-vectorz(1)

denotes the vector containing the first two entries inz. It can
be a unit vector (a desirable state) or a probability distribution
(a weighted average of desirable states). The control system
is modeled as:

v(itit−1 . . . i1) = Qit
· · ·Qi1v0,

i1, . . . , it ∈ {0, 1} and

t
∑

j=1

ij ≤ K,

wherev(itit−1 . . . i1) represents all the possible network state
probability distribution vectors up to timet. We define

U(t) = {v(itit−1 . . . i1) : i1, . . . , it ∈ {0, 1}

and

t
∑

j=1

ij ≤ K}

to be the set which contains all the possible state probability
vectors up to timet. We note that one can conduct a forward
calculation to compute all the possible state vectors in the
setsU(1), U(2), . . . , U(T ) recursively. Here the main compu-
tational cost is the matrix-vector multiplication and the cost
is O((2n)2) wheren is the number of genes in the network.
We note that some state probability distribution actually does
not exist because the maximum number of controls isK, the
total number of vectors involved is only

K
∑

j=0

T !

j!(T − j)!
.

For example ifK = 1, the complexity of the above algorithm
is O(T (2n)2).

Returning to our original problem, our purpose is to make
the system go to the desirable states. The objective here is
to minimize the overall average of the distances of the state
vectorsv(it . . . i1) (t = 1, 2, . . . , T ) to the target vectorz,
i.e.,

min
v(iT iT−1...i1)∈U(T )

1

T

T
∑

t=1

||v(it . . . i1) − z||2. (6)

To solve (6), we have to define the following cost function

D(v(wt), t, k), 1 ≤ t ≤ T, 0 ≤ k ≤ K

as the minimum total distance to the terminal state at timeT

when beginning with state distribution vectorv(wt) at time
t and that the number of controls used isk. Here wt is a
Boolean string of lengtht. Given the initial state of the system,
the optimization problem can be formulated as:

min
0≤k≤K

{D(v0, 0, k)} (7)

subject to:

D(v(wt), t, K + 1) = ∞, for all wt and t,

D(v(wT ), T, k) = ||v(wT ) − z||2,

for wT = iT . . . i1,

T
∑

j=1

ij ≤ K, k = 0, 1, . . . , K.



To solve the optimization problem, one may consider the
following dynamic programming formulation:

D(v(wt−1), t − 1, k) =

min{||v(0wt−1) − z||2 + D(v(0wt−1), t, k),

||v(1wt−1) − z||2 + D(v(1wt−1), t, k + 1)}. (8)

Here0wt−1 and1wt−1 are Boolean strings of sizet. The first
term in the right-hand-side of (8) is the cost (distance) when
no control is applied at timet while the second term is the
cost when a control is applied. The optimal control policy can
be obtained during the process of solving (8).

V. NUMERICAL EXPERIMENTS

In this subsection, we test our simplified multivariate
Markov models for the yeast data sequences [16]. Genome
transcriptional analysis is an important analysis in medicine,
etiology and bioinformatics. One of the applications of genome
transcriptional analysis is used for eukaryotic cell cyclein
yeast. The fundamental periodicity in eukaryotic cell cycle in-
cludes the events of DNA replication, chromosome segregation
and mitosis. It is suggested that improper cell cycle regulation
leads to genomic instability, especially in the etiology ofboth
hereditary and spontaneous cancers [8], [15]. Eventually,it is
believed to play one of the important roles in the etiology
of both hereditary and spontaneous cancers. The data set
used in our study is the selected set from Yeung and Ruzzo
(2001) [16]. In the discretization, if an expression level is
above (below) a certain standard deviation from the average
expression of the gene, it is over-expressed (under-expressed)
and the corresponding state is1 (0).

To solve the linear programming problem in (5), infinity
norm is chosen for all numerical experiments. The matricesΛ,
P , Q0 (without control) andQ1 (control matrix) are obtained
from the proposed model. The control matrixQ1 takes the
same form as the following:

Q1 = Diag(

(

1 1
0 0

)

, I2, I2, I2, I2). (9)

The initial state vector is assumed to be the uniform
distribution (for each gene) vectorv0 = 1

2 (1, 1, · · · , 1)T . In
addition, we assume that the total timeT is 12 and several
different maximum number of controlsK = 1, 2, 3, 4, 5 are
tried in our numerical experiments. The target is to suppress
the first gene but no preference on other genes. The control
we used is to suppress the first gene directly. The target
state vectorz(1) is (1, 0)T . Table 1 reports the numerical
results and the computational time for different numbers of
controls K. All the computations were done in a PC with
Pentium D and Memory 1GB with MATLAB 7.0. In Table 1,
“Control Policy” represents the optimal time step at the end
of which a control should be applied. For instance,[1, 2, 3]
means that the optimal control policy is to apply the control
at the end of thet = 1, 2, 3 -th time step. From Table 1,
observable improvements of the optimal value is obtained
whenK increases from1 to 5.

TABLE I
NUMERICAL RESULTS FOR THE YEAST DATA SET

K 1 2 3 4 5
Control Policy [1] [2] [1,2,3] [1,2,3,4] [1,2,3,4,5]
Objective Value 0.6430 0.5751 0.5165 0.4582 0.4000
Time in Seconds 4.00 20.60 67.90 152.88 245.95

VI. CONCLUDING REMARKS

In this paper, we proposed a simplified multivariate Markov
model for approximating PBNs. Efficient estimation methods
are presented to obtain the model parameters. Methods for
recovering the structure and rules of a PBN are also illustrated
in details. We then give an optimal control formulation for
control the network. Numerical experiments on synthetic data
and gene expression data of yeast are given to demonstrate
the effectiveness of our proposed model and formulation. For
future research, we will develop efficient heuristic methods for
solving the control problem. We will also apply our model to
more real world datasets.
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