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Abstract—The construction and control of genetic regulatory to make useful predictions by computer simulations.
networks using gene expression data is an important resedic  The BN model was first introduced by Kauffman [9], [10].
topic in bioinformatics. Probabilistic Boolean Networks (PBNSs) In a BN, each gene is regarded as a vertex of the network and

have been served as an effective tool for this purpose. Howay . . .
PBNSs are difficult to be used in practice when the number of IS quantized into two levels only (expressed (1) or unexyges

genes is large because of the huge computational cost. In shi (0)). The target gene is predicted by several genes calied it
paper, we propose a simplified multivariate Markov model for input genes through a Boolean function. If the input genes
approximating a PBN. The new model can preserve the strength and the Boolean functions are given, a BN is defined. The
of PBNs and at the same time reduce the complexity of the o)y randomness involved here is the initial system state. T

network and therefore the computational cost. We then presat S .
an optimal control model with hard constraints for the purpose of overcome the deterministic nature of a BN, Shmulewchl.

control/intervention of a genetic regulatory network. Numerical  [13] proposed a PBN that can share the appealing rule-based
experimental examples based on the yeast data are then givém properties of Boolean networks and it is robust in the presen
demonstrate the effectiveness of our proposed model and avol  of uncertainty.
policy. The dynamics of the PBN can be studied in the context of
standard Markov chain. However, the number of parameters
(state of the system) grows exponentially with respect to
An important issue in systems biology is to understartie number of genes. Therefore it is natural to develop
the mechanism in which cells execute and control a hubeuristic methods for model training or to consider other
number of operations for normal functions, and also thepproximate model. Here we propose a simplified multivariat
way in which the cellular systems fail in disease. Manilarkov model, which can capture both the intra- and inter-
mathematical models such as neural networks, linear modidsociations (transition probabilities) among the gergres¢
Bayesian networks, non-linear ordinary differential etpres, sion sequences. The number of parameters in the model is
Petri nets, Boolean Networks (BNs) and its generalizatianly O(n?) wheren is the number of genes in a captured
Probabilistic Boolean Networks (PBNs), multivariate Mawk network. We develop efficient model parameters estimation
chain model etc. [1], [2], [4], [7], [11], [12], [13], [14] hee methods based on linear programming. We then propose an
been proposed. Among all the models, BNs and PBNs hawgtimal control formulation for regulating the network ss a
received much attention. The approach is to model the gendti avoid some undesirable states which may correspond to
regulatory system by a Boolean network and infer the netwoskme disease like cancer.
structure from real gene expression data. Then by using theThe rest of the paper is organized as follows. In Section 2,
inferred network model, one can uncover the underlying geme present the simplified multivariate Markov model. In Sec-
regulatory mechanisms. This is particularly useful as Ipfe tion 3, the estimation method for model parameters is given.

I. INTRODUCTION



In Section 4, an optimal control formulation is proposed. Itf the model is applied to gene expression sequences, we may
Section 5, we apply the proposed model and method to ttake M = {0,1} and Vf) is the expression level of the
gene expression data of yeast. Concluding remarks are tiiergene at the time. From (1), the expression probability
given to address further research issues in Section 6. distribution of thei-th gene at time(t + 1) depends on the
weighted average dP()V{?) In Ching,et al. [4], this model

. . i . o “has been used to find cell cycles.
In this section, we first review a multivariate Markov chain 5 simplified model was proposed in Ching al.[5] by

model proposed in Chingt al. [3] for modeling categorical assuming

I[l. MULTIVARIATE MARKOV CHAIN MODELS

time series data. The model has been used for building P — if 4] 3)
genetic regulatory networks [4]. We then present our sifiepli
multivariate Markov chain model. The simplified model has smaller number of parameters and

Givenn categorical time sequences, we assume they shérbas been shown to be statistically better. Moreover, &rop
the same state spack/. We denote the state probabilitysitions 1 and 2 still hold for the simplified model.
distribution of Sequencg at timet by VE”, ji=1,2,...,n.
In Ching, et al. [3], the following first-order model was
proposed to model the relationships among the sequences: In this section, we present methods to estimgt&) and

n \i;. We estimate the transition probability matdX‘") by the
Vgﬁzl — ZAijp(ij)Vgﬂ‘), i=1,2,...,n (1) following method. First we count the transition frequendy o
j=1 the states in theé-th sequence. After making a normalization,
we obtain an estimate of the transition probability matrix.
We have to estimates such m-by-m transition probability
matrices to get the estimate &) as follows:

Il1. ESTIMATION OF MODEL PARAMETERS

where

Aij >0 for 1<4,5<n and Z)‘ijzl' (2)

i=1 (i) (44)
11 Im
Here )\;; is the non-negative weighting of Genjeto Gene i) — . . _ 7
i. The matrix P(“/) is a transition probability matrix for the ('n) ' ('“.)
transitions of states in Sequengdo states in Sequendein Jmd 0 Jmm
one step, see for instance [3]. In matrix form we have (i) (i)
1) (1) P11 e Pim
Vi Vi P — : . :
v® V@ P
_ t+1 t _ A (i1) A (1)
Vt+1 = . = Q . = Qvt Pmp1i 0 Pmm
g ( where
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. Besides P(i), we need to estimate the parameteys. It
\é\é?urrllor:esfjhrﬁt;?i;gg{?j? |Ss uren ﬁlliong;;quﬁlletofocig ?/vi(rtmhi can be shown that the multivariate Markov model has a
q ' 9 “stationary vector”V in Proposition 2. The vecto¥ can be

are two propositions [3] related to some properties of theestimated from the gene expression sequences by computing

model. the proportion of the occurrence of each gene and we denote
iy - it b
Prpposmon 2.1.If Aij > 0forl <i4,j < n, then the y 7 — (\7(1) @ V(’L))T
matrix Q has an eigenvalue equal toand the eigenvalues of ’ T ‘
@ have modulus less than or equalito We therefore expect that
Proposition 2.2 Suppose thatP*) (1 < i,j < n) are QV=~V.
wre?uc\?li a\_r;c(jf;ijvz)o for %,(E) 2! ghnt.hTth\_(farLthe\_rfe |sda ¢From the above equation, it suggests one possible way to
vector V = [VIV, V&, .., Viv] - such thatV = QV and o ginate the parametets— {\;;} as follows:
SV =1, 1 < j < n wherem is the number of
states. o n o
In Proposition 2.2, we require alt'/) are irreducible. But  minmax | [ A; POOVE 4 3~ A, v0) - v (4)

k

actually, if @ is irreducible, we can get the same conclusion. A j=1,i#j A



subject to denotes the vector containing the first two entrieg.iht can
n be a unit vector (a desirable state) or a probability digtrim
ZAU’ =1, and \; >0, Vi (a weighted average of desirable states). The control syste
= is modeled as:

We note that the following formulation af linear program- V(igig—1...11) = Q4 -+ - Qi Vo,

ming problems can give the necessary solutions of Problem ¢

(4). For eachi: i1,..0p €{0,1} and Y i; <K,
m)%n w; j=1

wherev(ii,—1 . .. 11) represents all the possible network state

bject to AT : :
Sub) probability distribution vectors up to time We define
{ e > V0 4 Bohi. (5) U(t) = {v(itit—1...91) 1 i1,... ,tzt e {0,1}
whereB; = [VO) | V@ | ... |piv@)| ... | V()] e = and Y i; < K}

(1,1,..,1)T, and );  is the i-th row of A. The estimation =t

method can be applied to the simplified model (3). We remai& be the set which contains all the possible state prolpabili
but they have different characteristics. The former witiuiein ~ calculation to compute all the possible state vectors in the

a quadratic programming problem whilg]|; will still result ~ SetsU(1),U(2),...,U(T) recursively. Here the main compu-
in a linear programming problem. tational cost is the matrix-vector multiplication and thest
is O((2n)?) wheren is the number of genes in the network.
IV. THE OPTIMAL CONTROL FORMULATION We note that some state probability distribution actuabes

In this section, we present the optimal control problefOt exist because the maximum number of control&’isthe
based on the simplified multivariate Markov model (3) antptal number of vectors involved is only

formulate it based on the principle of dynamic programming. K T
In the simplified model (3) we proposed above, the matrix Z '(Ti—)'
Q@ can be regarded as a “transition probability matrix” for =07’ 7

the multivariate Markov chain in certain sense, avig can For examp|e ifK =1, the Comp|exity of the above a|gorithm
be regarded as a joint state distribution vector. We thq@o(T(gny).

present a control model based on the paper by Chi#g, Returning to our original problem, our purpose is to make
al.[6]. Beginning with an initial joint probability distribitin  the system go to the desirable states. The objective here is

vo the gene regulatory network (or the multivariate Markow minimize the overall average of the distances of the state
chain) evolves according to two possible transition prdliigb vectorsv(i;...i1) (t = 1,2,...,T) to the target vector,
matrices)o and@;. Without any external control, we assumege

that the multivariate Markov chain evolves according to adix T

transition probability matrixQo(= @). When a control is min lZ”V(it---il) — zl|s. (6)
applied to the network at one time step, the Markov chain v(irir—i..i)eU(T) T —

W'I_I evolve according to another transition probabilig, To solve (6), we have to define the following cost function
(with more favorable steady states or a more favorable state
distribution). It will then return back t@), again if there is D(v(wy),t, k), 1<t<T, 0<k<K

no controll. We note that one can ha_lve more thr_:m one typeaosf the minimum total distance to the terminal state at fime
controls, i.e., more than one transition probability matg;

o ch i h time step. For instance. in order t rwhen beginning with state distribution vectetw;) at time
0 choose In eac € step. Forinstance, in order o SUPPIES, 4 1hat the number of controls used ks Here w; IS a

the expression of a partmu!ar gene, one can directly toggg%olean string of length. Given the initial state of the system,
off this gene. One may achieve the goal indirectly by meays

L . . . e optimization problem can be formulated as:
of controlling its parent genes which have a primary impact
on its expression too. But for the simplicity of discussion, Og}jglK{D(Voaka)} @)
we assume that there is only one direct possible control here -
We then suppose that the maximum number of controls P
can be applied to the network during a finite investigation D(v(w),t, K +1) =00, for all w; and t,
periodT" (finite-horizon) is K where K < T'. The objective
here is to find an optimal control policy such that the state D(v(wr), T, k) = |[v(wr) — 2|2,
of the network is close to a target state vectorWithout T
loss of generality, here we focus on the first gene among all for wp =ir...i1, Zij <K k=0,1,... K.
the genes. Accordingly, we remark that the sub-veetdt =

ject to:



Lo : TABLE |
To solve the optimization problem, one may consider the NUMERICAL RESULTS FOR THE YEAST DATA SET

following dynamic programming formulation:

K 1 2 3 4 5
D(v(wi_1),t—1,k) = Control Policy ] 2] [1.23] [1234] [1,2,345]
) Objective Value  0.6430 05751 05165 0.4582 0.4000
min{|[v(0w;—1) — z||2 + D(v(0w¢—1), ¢, k), Time in Seconds 400 2060 67.00  152.88 24595
IV(Awi1) —zlla + D(v(Iw; 1), 6,k + 1)} (8)
HereOw;_; and1w;_; are Boolean strings of size The first VI. CONCLUDING REMARKS

term in the right-hand-side of (8) is the cost (distance)whe | i paper, we proposed a simplified multivariate Markov

n ntrol i li ime while th n rm is th S - L
o control'Is app eq att .e et € seco d te y t emodel for approximating PBNs. Efficient estimation methods

cost when a control is applied. The optimal control policp ca o presented to obtain the model parameters. Methods for

in ring the pr f solvin . ; Lo

be obtained during the process of solving (8) recovering the structure and rules of a PBN are also illtestra

V. NUMERICAL EXPERIMENTS in details. We then give an optimal control formulation for

In thi bseci test imolified ltivari tcontrol the network. Numerical experiments on synthetimda

M nk IS Sg lsefc 'O?H we etsd (t)ur simpiihe r1n6u |\éar|a @nd gene expression data of yeast are given to demonstrate
arkov models for the yeast data sequences [16]. ENONE effectiveness of our proposed model and formulation. Fo

tra.mscriptionall gnalysis .is an important anglysjs in e future research, we will develop efficient heuristic methaat
etiology and bioinformatics. One of the applications ofgrese solving the control problem. We will also apply our model to

transcriptional analysis is used for eukaryotic cell cytie more real world datasets
yeast. The fundamental periodicity in eukaryotic cell eyicl- '
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