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Abstract. Real images usually have two layers, namely, cartoons (the piece-
wise smooth part of the image) and textures (the oscillating pattern part of
the image). Both these two layers have sparse approximations under some
tight frame systems such as framelet, translation invariant wavelet, curvelet,
and local DCTs. In this paper, we solve image inpainting problems by using
two separate tight frame systems which can sparsely represent cartoons and
textures respectively. Different from existing schemes in the literature which
are either analysis-based or synthesis-based sparsity priors, our minimization
formulation balances these two priors. We also derive iterative algorithms to
find their solutions and prove their convergence. Numerical simulation exam-
ples are given to demonstrate the applicability and usefulness of our proposed
algorithms in image inpainting.

1. Introduction. The problem of inpainting is to fill-in the missing part in im-
ages. It is an interesting and important inverse problem. It arises, for example, in
removing scratches in photos, in restoring ancient drawings, and in filling in the
missing pixels of images transmitted through a noisy channel. We need to extract
information such as edges and textures from the observed data to fill in the missing
part such that shapes and patterns are consistent in the human vision.

One popular approach for image inpainting is the PDE-based method. The idea
is to propagate the geometric information of the curves along the edges by specially
designed differential operators. Since the PDE-based approaches are able to keep
the edges, it performs very well for piecewise smooth images. As our approach is
not along this line, we refer the readers to [2, 3, 4, 12, 13, 14, 31] for details.

Our approach is based on tight frames which is more related to those in [6, 11,
25, 26, 27, 36]. For simplicity, we denote images by vectors in RN by concatenating
their columns. Let A be an M -by-N (with M ≥ N) real-valued matrix such that
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AT A = I, where I is the identity matrix. Then, the rows of A form a tight frame
in RN . Thus a collection of rows of vectors A in RN is a tight frame if for every
vector f ∈ RN ,

f =
∑

y∈A

〈f ,y〉y.

The matrix A and AT are called the analysis and synthesis operators respectively.
Since the system A is linearly dependent in general, there are infinitely many ways
to represent f in terms of the tight frame A. The vector Af is called the canonical
coefficients sequence representing f ∈ RN that is uniquely determined by f . The
canonical coefficient sequence Af has the minimal `2-norm among all possible frame
coefficient sequences that represent f . The tight frame satisfies AT Af = f . In
general, AAT 6= I. When AAT = I, the system A is an orthonormal system. We
remark that in the literature the tight frame here sometimes is also referred to as
a Parseval frame or a tight frame with bound one.

Real images usually have two layers, referring to cartoons (the piecewise smooth
part of the image) and textures (the oscillating pattern part of the image). Both
these two layers have sparse approximations under some tight frame systems. Ex-
amples of tight frames that can sparsely approximate the cartoon part are curvelets
proposed in [8, 9], orthonormal wavelets constructed in [19], and wavelet tight
frames constructed by the unitary extension principle in [20, 34]. The basic as-
sumption for tight frame based image inpainting is that real images have sparse
approximations under the tight frame representations. The advantages of using re-
dundant systems is that they lead to robust signal representation in which partial
loss of the data can be tolerated without adverse effects.

Since tight frame systems are redundant systems, the mapping from the image f
to its coefficient is not one-to-one, i.e., the representation of f in the frame domain
is not unique. Therefore, there are two formulations for the sparse approximation
of the underlying images, namely analysis-based and synthesis-based approaches.
In the analysis-based approach, we assume that the analyzed coefficient Af can be
sparsely approximated. This is usually reduced to minimizing a functional involving
a term ‖Af‖1. If one choose A to be the one level Haar translation-invariant wavelet
system, the analysis-based approach approximate total-variation based approaches
[35] for image processing. In the synthesis-based approach, the underlying image f
is assumed to be synthesized by a sparse coefficient α. In this formulation, it usually
involves a term ‖α‖1 in the minimization energy. The synthesis-based approaches
include, for examples, [16, 26].

These two approaches for image inpainting were studied by many authors [16, 24,
25, 26]. In particular, [24] gives a comprehensive analysis on these two approaches.
It was pointed out in [24] that there is a big gap between the analysis-based and
synthesis-based approaches for image and signal processing. In this paper, we pro-
pose an approach that balances the analysis-based and synthesis-based approaches.
It also fills the gap between the synthesis-based and analysis-based approaches
in some sense. This approach is motivated by the inpainting algorithm based on
framelets in [6, 11, 27], which balances the analysis-based and synthesis-based priors
in the minimization functional.

The one tight frame based inpainting algorithm performs well only when the
underlying images are piecewise smooth, which are sometimes referred to as car-
toon images. However, real images usually consist of both cartoons and textures.
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These two layers are of very different characteristics: cartoons are piecewise smooth
functions whereas textures contain oscillating patterns. Therefore, these two dif-
ferent layers of images should be considered separately in image inpainting. One
natural idea is to use two tight frame systems that can sparsely represent cartoons
and textures separately, which was first proposed in [25, 37]. In particular, we
use tight frames A1 and A2, where A1 can sparsely represent cartoons and A2 can
sparsely represent textures. Then, we extend the unified inpainting algorithm from
one tight frame to two tight frames to handle images containing both cartoons and
textures. Numerical algorithms based on proximal forward-backward splitting [18]
are employed to solve the proposed minimization problems, and the convergence
proofs are provided. Numerical simulation examples are also given to demonstrate
the applicability and usefulness of our proposed algorithms in image inpainting.
Other methods that decompose images into cartoon and textures with possible
applications for image inpainting can be found in [1, 4, 7, 21, 33].

The remaining part of the paper is organized as follows. In Section 2, we present
our tight frame based image inpainting. The algorithms for solving the models
are proposed in Section 3. Finally, numerical simulation examples are given in
Section 4 to demonstrate the applicability and usefulness of our algorithms in image
inpainting.

2. Tight frame based inpainting. In this section, we present tight frame based
image inpainting. To begin with, we introduce some notations. Let the original
image f be defined on the domain Ω = {1, 2, · · · , N} and the nonempty set Λ ( Ω
be the given observed region. Then the observed (incomplete) image g is

g[i] =

{
f [i] + ε[i], i ∈ Λ,

arbitrary, i ∈ Ω \ Λ,
(1)

where ε[i], the i-th coordinate of ε, are noise. The goal of image inpainting is to
find f from g, i.e., find an image f defined on Ω such that PΛf ≈ PΛg, where PΛ is
the diagonal matrix defined by

PΛ[i, j] =

{
1, i = j ∈ Λ,

0, otherwise.

When ε[i] = 0 for all i ∈ Λ, f is a solution of an interpolation. Otherwise, we seek
a smooth solution f such that ‖PΛ(f − g)‖ is small.

2.1. One frame inpainting. We start by introducing the algorithm proposed
in [6, 11, 27] which provides motivation for our proposed algorithms here. The
algorithm is

f (n+1) = PΛg + (I − PΛ)AT Tu(Af (n)), (2)
where Tu(x) is the soft-thresholding function [22] defined by

Tu(x) = (tu[1](x[1]), · · · , tu[i](x[i]), · · · )T (3)

with

tu(x) =

{
0, if |x| ≤ u,

x− sgn(x)u, otherwise.
(4)

Here u is a vector of thresholding parameters. Let α(n) = Tu(Af (n)). Then f (n)

converges if and only if α(n) converges. Let α be the limit of α(n). When ε[i] = 0
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for all i ∈ Λ in (1), then f is the interpolation solution given by PΛg+(I−PΛ)AT α.
Otherwise, if ε 6= 0, f is the smoothing solution given by AT α.

It was proven in [6] that the sequence α(n) = Tu(Af (n)) converges to a minimizer
of

min
α

{
1
2
‖PΛ(g −AT α)‖22 +

1
2
‖(I −AAT )α‖22 + ‖diag(u)α‖1

}
. (5)

As explained in [6], the role of the first term is data-fitting, i.e. to make sure that
the recovered image is close enough to the known data g, and the last two terms
are regularization, i.e. to balance the sparsity and smoothness of the solution. It
is well known that if the true solution is a piecewise smooth function, it has sparse
approximation by framelet systems (see e.g. [5, 28]), which can be measured by
‖α‖0, the number of nonzero terms in the sequence α. However, minimizing the
`0-norm is difficult. As shown in [23], the `1-norm relaxes this difficult problem to
the “nearest” convex problem and can still be a good measure of the sparsity of the
sequence. Therefore, to increase the sparsity, one likes to minimize the (weighted)
`1-norm of α among all possible solutions, which is the term ‖diag(u)α‖1 in (5).

While we like the penalty function to enhance the sparsity, we also like it to
control the smoothness of the solution via a certain function norm. However, it is
the canonical frame coefficients that are normally linked to the underlying function
norm. For example, it was shown from framelet theory [5, 28] that the (weighted)
`1-norm of the canonical framelet coefficient sequence of a function is equivalent
to its Besov norm in the space Bσ

1,1 under some mild conditions on the wavelets.
Hence, we also require α to be close to some canonical coefficient sequence, i.e.,
to the range of A, so that we can be sure that the (weighted) `1-norm of α is
approximately linked to the Besov norm of the true function. Thus we also need to
penalize the distance between α and the range of A. Note that the term (I−AAT ) in
(5) is the projection operator onto the kernel of AT , i.e., the orthogonal complement
of the range of A. In other words, the term ‖(I −AAT )α‖22 in (5) exactly penalizes
the distance of α to the range of A.

In the formulation of (5), the weighting of the second term ‖(I − AAT )α‖22 is
fixed to be 1

2 . It is natural to vary this weighting to obtain more flexibility. This
amounts to the following unified framework for tight frame inpainting:

min
α

{
1
2
‖PΛ(g −AT α)‖22 +

κ

2
‖(I −AAT )α‖22 + ‖diag(u)α‖1

}
, (6)

where κ/2 is the weighting of the second term. The parameter κ controls the
distance of α to the range of A. As κ increases, the distance of α to the range of A
decreases. This leads to changes in the following two aspects: (i) the smoothness
of the underlying function increases since the link between the `1-norm of α and
the Besov norm is enhanced; (ii) α becomes less sparse because the `1-norm of α
will increase.

The formulation of (6) is also motivated from [24], where the gap between the
synthesis-based sparsity and analysis-based sparsity priors are studied. When κ =
0, (6) is reduced to

min
α

{
1
2
‖PΛ(g −AT α)‖22 + ‖diag(u)α‖1

}
. (7)

Since the `1-norm of α leads to sparsity, (7) amounts to the sparsest frame co-
efficient α, and then the recovered image is synthesized by AT α. Therefore, the
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basic assumption in (7) is that the image is synthesized by a sparse frame coeffi-
cient. Hence, (7) is a synthesis-based approach, following the terminology in [24].
Synthesis-based methods were proposed in, for instances, [16, 25, 26, 37].

When κ = ∞, the distance ‖(I −AAT )α‖22 must be 0. This implies that α is in
the range of A, so we can rewrite (6) as

min
α∈Range(A)

{
1
2
‖PΛ(g −AT α)‖22 + ‖diag(u)α‖1

}
, (8)

where Range(A) stands for the range of A. Because α is in the range of A, for any
α, there exists f ∈ RN such that α = Af . Therefore, (8) can be reformulated in
terms of f as the following

min
f

{
1
2
‖PΛ(g − f)‖22 + ‖diag(u)Af‖1

}
. (9)

Thus, the basic assumption in (9) is that the analyzed frame coefficient Af is
sparse. Formulation (9) is called a analysis-based approach in [24]. Analysis-based
approach leads to, for example, total variation inpainting in [13, 14, 15, 35].

From geometric viewpoint, the authors in [24] pointed out that there is a big gap
between synthesis-based approaches (c.f. (7)) and analysis-based approaches (c.f.
(8) and (9)). From the experiments performed in [24] on the synthetic signals, both
approaches have their own favorable data sets, and it is hard to conclude which
approach is superior than the other in general. From the experiments on the real-
world images, it was shown that the analysis-based approach performs better than
the synthesis-based one when the tight frame system is a overlapped local DCT. All
these indicate the gap between these two approaches. Our formulation (6) sets up
a bridge to link the synthesis-based and analysis-based approaches: When κ goes
from 0 to ∞, the synthesis-based and analysis-based approaches are the start point
and destination respectively.

Finally, we would like to point out the relation between the case κ = 1 and the
translation invariant wavelet [17]. When κ = 1, (6) is analogous to the translation
invariant denoising in [17]. To see this, we further assume that Λ = Ω, i.e., inpaint-
ing problem (1) becomes an image denoising one. Then, (6) with κ = 1 and Λ = Ω
becomes

min
α

{
1
2
‖g −AT α‖22 +

1
2
‖(I −AAT )α‖22 + ‖diag(u)α‖1

}
. (10)

It is easy to verify that the solution of (10) is

f∗ = AT TuAg. (11)

The solution f∗ in (11) is just the translation invariant denoising in [17], whenever A
is an undecimated wavelet system. Moreover, iteration (2) with Λ = Ω converges in
one step, and it gives (11). Therefore, (6) with κ = 1 and Λ = Ω is the same as the
translation invariant denoising. When Λ ⊂ Ω and κ = 1, we obtain algorithm (2).
This algorithm can be seen as an extension of denoising scheme (11) to inpainting.
In (2), denoising scheme (11) and replacement of the pixel values on Λ are performed
alternatively.

2.2. Simultaneously cartoon and texture inpainting. As shown in [6], the
approach (5), or generally (6), performs well when the underlying solution is piece-
wise smooth, which is sometimes referred to as cartoon images. However, real
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images usually consist of both cartoons and textures. These two layers are of very
different characteristics: cartoons are piecewise smooth functions whereas textures
contain oscillating patterns. Therefore, these two different layers of images should
be considered separately in image inpainting. One natural idea is to use two tight
frame systems that can sparsely represent cartoons and textures separately as sug-
gested by [16, 24, 25, 26]. This motivates our new algorithm which we are going to
describe below.

Assume that the tight frame system Ai, i = 1, 2, can sparsely approximate
cartoons and textures respectively. Then the inpainting problem is solved in the
transform domain separately under the two systems, i.e. we find sequences αi,
i = 1, 2, such that f1 = AT

1 α1 represents the cartoon content of the underlying
image, f2 = AT

2 α2 represents the texture content of the image, and f = f1 + f2
represents the whole image. The next issue is what kind of properties the solution f
should have. Motivated by (6), here we suggest to develop an algorithm minimizing
something similar to (6), i.e., we require αi, i = 1, 2, to be a minimizer of

min
α1,α2

{
1
2
‖PΛ(g −

2∑

i=1

AT
i αi)‖22 +

2∑

i=1

κ

2
‖(I −AiA

T
i )αi‖22 +

2∑

i=1

‖diag(ui)αi‖1
}

.

(12)
We remark that we can use different κ’s for A1 and A2 in (12). However, for the
simplicity of notations, we use one κ for the two tight frames. The results in the
remaining part can be generated straightforwardly to different κ’s.

The role of each term in (12) is as follows. The first term ‖PΛ(g−∑2
i=1 AT

i αi)‖22
is the data fidelity. It measures the error between the observed image and the
restored image restricted on Λ. The third term ‖diag(ui)αi‖1 penalizes the weighted
`1-norm of the tight frame coefficients α1 and α2, hence ensures the sparsity of the
tight frame coefficients. As pointed out above, the second term ‖(I − AiA

T
i )αi‖22

measures how close αi is to some canonical coefficient sequence, i.e. to the range
of Ai. Hence, as discussed before, we see that (12) is a trade-off between the
smoothness and sparsity of the solution.

One may challenge why we do not construct a new tight frame A by stacking
A1 and A2 together, i.e., A = 1√

2
[AT

1 AT
2 ]T , and then use the one tight frame

inpainting (6). This is not a good strategy for simultaneously cartoon and texture
inpainting unless κ is small enough. The reason is as follows. Assume that we
define A = 1√

2
[AT

1 AT
2 ]T and solve (6). Write α = [αT

1 , αT
2 ]T , where α1 and α2

are the coefficient corresponding to A1 and A2 respectively. Since κ is not small,
the second term ‖(I − AAT )α‖22 in (6) is small. This means that α is close to the
range of A = 1√

2
[AT

1 AT
2 ]T . Therefore, there exists an image f̄ such that α1 ≈ A1f̄

and α2 ≈ A2f̄ . Hence, the cartoon part of inpainted image is AT
1 α1 ≈ f̄ , and the

texture part is AT
2 α1 ≈ f̄ . Consequently, the cartoon part and the texture part

of the inpainted image will be close to each others. However, these two parts are
assumed to have different characteristics. We see therefore that it is not a good
approach to combine A1 and A2 together to form a new tight frame A, and then
apply (6).

When κ = 0, problem (12) becomes

min
α1,α2

{
1
2
‖PΛ(g −

2∑

i=1

AT
i αi)‖22 +

2∑

i=1

‖diag(ui)αi‖1
}

. (13)
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This reveals that (12) with κ = 0 is a synthesis-based approach. Therefore, (13)
is able to find sparsest αi (sparsity comes from minimizing the term ‖diag(ui)αi‖1
as pointed out above). However, the `1 norm of the tight frame coefficients do not
link to any norm of the cartoon and texture components of the underlying image.

When κ = ∞, we must have that ‖(I − AiA
T
i )αi‖22 = 0 whenever the minimum

is reached. This implies that αi must be canonical, and αi must be in the range of
Ai instead of in RM . In this case, problem (12) is led to

min
αi∈Range(Ai),i=1,2.

{
1
2
‖PΛ(g −

2∑

i=1

AT
i αi)‖22 +

2∑

i=1

‖diag(ui)αi‖1
}

. (14)

We can rewrite (14) in terms of the cartoon component f1 and the texture compo-
nent f2 as the following

min
f1,f2

{
1
2
‖PΛ(g −

2∑

i=1

fi)‖22 +
2∑

i=1

‖diag(ui)Aifi‖1
}

. (15)

This means that (12) with κ = ∞ is an analysis-based approach. Note that the
solution of (14) seeks both the sparsity of αi and certain smoothness of fi by
requiring αi to be in the range of Ai. Since there is only one unique canonical
representation of any given function, (14) is actually giving up the possible extra
sparsity of the underlying solution brought in by the redundancy. Again, this is
a trade-off between sparsity and regularity. Comparing with (13) and (14), (14)
is a minimization problem with constraints, which, as we will see, is more difficult
to solve. In contrast, (13) exploits the additional sparsity the redundant system
may bring in, and at the same time, controls the smoothness of the solution by
penalizing the distance of the solution to the canonical frame coefficients.

Both models (13) and (15) are proposed in [25] for cartoon and texture image
inpainting. In fact, the authors of [25] proposed more general models with an
additional TV norm penalty term in both (13) and (15). We can formulate our
model here with the TV norm penalty term as well. However, since the analysis and
algorithm development are essentially the same, we focus our discussions without
the TV norm penalty term.

Finally, we remark that, when Ai are orthonormal systems, then the minimiza-
tion problems (12) with any κ are all reduced to the same problem

min
α1,α2

{
1
2
‖PΛ(g −

2∑

i=1

AT
i αi)‖22 +

2∑

i=1

‖diag(ui)αi‖1
}

,

since in this case AiA
T
i = I and the range of Ai is RM . We further note that any

solution of (13) that falls in the ranges of Ai is also a solution of (12) and (14). In
fact, to find a solution of (14) is to find a solution of (12) that is in the range of
Ai.

3. Algorithms. In this section, we develop an algorithm that converges to a min-
imizer of (12) with 0 ≤ κ ≤ ∞.

3.1. Proximal forward-backward splitting. Our main tool for developing our
algorithm is based on the proximal forward-backward splitting in [18, 38, 39] from
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the theory of optimization and convex analysis in [29]. The main idea of the method
is that: in order to find a minimizer of

min
x
{L1(x) + L2(x)} , (16)

one uses the iteration

x(n+1) = proxγL1
(x(n) − γ∇L2(x(n))) + z(n), (17)

where γ is a scalar, z(n) is a sequence, and “prox” is the proximal operator defined
by

proxγϕ(x) := arg min
y
{1
2
‖x− y‖22 + γϕ(y)}, (18)

for any proper, convex and lower semi-continuous function ϕ. The following con-
vergence theorem is an immediate consequence of Proposition 3.1(i) and Theorem
3.4 in [18]. Since we are working in the finite dimension space RM , the convergence
is in the Euclidean norm of RM .

Proposition 1. Suppose that L1 and L2 satisfy

1. [L1(x) + L2(x)] is coercive, i.e., whenever ‖x‖2 → +∞, [L1(x) + L2(x)] →
+∞;

2. L1 is a proper, convex, lower semi-continuous function; and
3. L2 is a proper, convex, differentiable function with a 1/b-Lipshitz continuous

gradient:

‖∇L2(x)−∇L2(y)‖2 ≤ 1
b
‖x− y‖2, ∀x,y, (19)

and 0 < γ < 2b; and
4.

∑∞
n=0 ‖z(n)‖2 < ∞.

Then there exists at least one minimizer of (16), and for any initial guess x(0), the
iteration (17) converges to a minimizer of (16).

3.2. Minimization algorithms. In this subsection, we will derive convergent al-
gorithms for the minimization problem (12). The assumption we put on the Ai’s
are minimal: that they are tight frame systems which can sparsely approximate
cartoons and textures respectively. Examples of tight frames that can sparsely
approximate piecewise smooth contents in images are curvelets proposed in [8, 9],
orthonormal wavelets constructed in [19], and wavelet tight frames constructed by
the unitary extension principle in [34]. Examples of tight frames that can sparsely
approximate textures are local discrete cosine transform and Gabor transform, see
[25, 30, 32]. As pointed out in [25, 37], it is difficult to find a pair of dictionaries so
that it can separate all images in general; but the experimental results there show
the possibility of finding a pair of properly chosen dictionaries that can separate a
relatively large class of images. Note that in our proofs, we will assume Ai to be
real matrices for simplicity, but the proofs can be modified to include cases where
Ai are complex.

When κ = ∞, since (12) is transferred from an unconstrained minimization
problem to a constrained one, we separate the algorithm into two cases, i.e., the
case of 0 ≤ κ < ∞ and the case of κ = ∞.
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3.2.1. Algorithm for finite κ. To develop an algorithm that converges to a solution
of (12) with 0 ≤ κ < ∞ by employing the proximal forward-backward splitting
proposed in [18], we denote the energy in (12) by

F (α1, α2) =
1
2
‖PΛ(g −

2∑

i=1

AT
i αi)‖22 +

2∑

i=1

κ

2
‖(I −AiA

T
i )αi‖22 +

2∑

i=1

‖diag(ui)αi‖1.

(20)
Then we split F (α1, α2) as F (α1, α2) = L1(α1, α2) + L2(α1, α2), where

L1(α1, α2) =
2∑

i=1

‖diag(ui)αi‖1, (21)

and

L2(α1, α2) =
1
2
‖PΛ(g −

2∑

i=1

AT
i αi)‖22 +

2∑

i=1

κ

2
‖(I −AiA

T
i )αi‖22. (22)

In order to apply the iteration (17), we first derive proxγL1
and ∇L2. For

proxγL1
, by definition,

proxγL1
(α1, α2) = arg min

β1,β2

2∑

i=1

{
1
2
‖αi − βi‖22 + γ‖diag(ui)βi‖1

}
.

Following e.g. [18], we have

proxγL1
(α) =

[
Tγu1(α1)
Tγu2(α2)

]
. (23)

Here only the soft-thresholding operator is required, so it is very cheap to compute
proxγL1

, see (3) and (4). Obviously,

∂L2

∂αi
= καi −Ai

(
κAT

i αi + PΛ(g −
2∑

i=1

AT
i αi)

)
. (24)

Substituting (23) and (24) into (17) and choosing z(n) = 0 for all n, we obtain
the following iteration:



α
(n+1)
1 = Tγu1

(
(1− κ1γ)α(n)

1 + γA1

(
κ1A

T
1 α

(n)
1 + PΛ(g −AT

1 α
(n)
1 −AT

2 α
(n)
2 )

))
,

α
(n+1)
2 = Tγu2

(
(1− κ2γ)α(n)

2 + γA2

(
κ2A

T
2 α

(n)
2 + PΛ(g −AT

1 α
(n)
1 −AT

2 α
(n)
2 )

))
.

(25)
We remark here, when Λ = Ω, this algorithm will give f1 and f2 that separate

the cartoon and texture parts of the original image f as discussed in [37]. This is
the case for all other algorithms in this paper and we will not emphasize it again.

We have the following convergence result for iteration (25).

Theorem 3.1. Assume that 0 ≤ κ < ∞ and 0 < γ < 1/ max{1, κ} in (25). Then
the sequence α(n) = [α(n)

1 , α
(n)
2 ] generated by (25) converges to a solution of (12).

Proof. We have to check that Conditions 1–4 in Proposition 1 are satisfied. Since
all the entries of u1 and u2 are assumed to be positive, it is obvious that when
‖[αT

1 , αT
2 ]T ‖2 → ∞, L1(α1, α2) → +∞. Therefore, L1 is coercive which means

that F (α1, α2) = L1(α1, α2) + L2(α1, α2) is also coercive. It is obvious that both
L1(α1, α2) and L2(α1, α2) are proper, convex and continuous functions. Therefore,
Conditions 1 and 2 in Proposition 1 are verified. Since we have chosen z(n) = 0 for
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all n, Condition 4 is fulfilled. Thus, the convergence of (25) follows if we can show
that ∇L2(α1, α2) is Lipschitz continuous with a certain Lipschitz constant so that
we can choose a proper γ in (25).

For this, since L2 is quadratic, we only need to estimate the norm of the Hessian
of L2

∇2L2 =
[
κ(I −A1A

T
1 ) + A1PΛAT

1 A1PΛAT
2

A2PΛAT
1 κ(I −A2A

T
2 ) + A2PΛAT

2

]
.

This is done by the matrix decomposition

∇2L2 = κI +
[
A1 0
0 A2

] [
PΛ − κI PΛ

PΛ PΛ − κI

] [
AT

1 0
0 AT

2

]
.

It, together with the following equations
∥∥∥∥
[
A1 0
0 A2

]∥∥∥∥
2

= 1,

∥∥∥∥
[
PΛ − κI PΛ

PΛ PΛ − κI

]∥∥∥∥
2

≤ max{1 + |1− κ|, κ},

implies that

‖∇2L2‖2 ≤ κ + max{1 + |1− κ|, κ} = max{2, 2κ}.
Therefore, the Lipschitz constant in (19) is 1/b = max{2, 2κ}. Hence, 0 < γ <
1/ max{1, κ} guarantees the convergence of (25).

3.2.2. Algorithm for κ = ∞. When κ = ∞, (12) becomes (15). Denote the energy
in (15) as

E(f1, f2) =
1
2
‖PΛ(g − f1 − f2)‖22 +

2∑

i=1

‖diag(ui)Aifi‖1.

As before, we split E(f1, f2) as E(f1, f2) = L1(f1, f2) + L2(f1, f2), where

L1(f1, f2) =
2∑

i=1

‖diag(ui)Aifi‖1, (26)

and

L2(f1, f2) =
1
2

2∑

i=1

‖PΛ(g − f1 − f2)‖22. (27)

The gradient of L2 in (27) is given by ∂L2
∂fi

= −PΛ(g − ∑2
j=1 fj). By (17) with

z(n) = 0, we get the following iterative algorithm to find a solution of (15):




f (n+1)
1 = proxγ‖diag(u1)A1·‖1

(
f (n)
1 + γPΛ(g − f (n)

1 − f (n)
2 )

)
,

f (n+1)
2 = proxγ‖diag(u2)A2·‖1

(
f (n)
2 + γPΛ(g − f (n)

1 − f (n)
2 )

)
.

(28)

Unlike the cases in Section 3.2.1, proxγ‖diag(ui)Ai·‖1 here is not equivalent to a
simple soft-thresholding alone, since for a given vector in the range of Ai, one
cannot guarantee that after the soft-thresholding, it will still be in the range of Ai.
Moreover, there is not an explicit expression for proxγ‖diag(ui)Ai·‖1 . Hence, one has
to employ a special iterative algorithm to find proxγ‖diag(ui)Ai·‖1 .



SIMULTANEOUS CARTOON AND TEXTURE INPAINTING 11

Here we develop an algorithm for finding proxγ‖diag(ui)Ai·‖1(hi), i = 1, 2, in (28).
Our algorithm is based on the one proposed in [10, 18] using duality formulation.
Recall that

proxγ‖diag(ui)Ai·‖1(hi) = arg min
fi

{
1
2
‖hi − fi‖22 + γ‖diag(ui)Aifi‖1

}
.

Notice that
‖diag(ui)Aifi‖1 = sup

g∈W

{
gT diag(ui)Aifi

}
, (29)

whereW = {p : ‖p‖∞ ≤ 1}. It was shown in Example 2.17 of [18] that the proximal
operator is

proxγ‖diag(ui)Ai·‖1(hi) = hi − PγAT
i diag(ui)W(hi),

where PγAT
i diag(ui)W(hi) is the unique projection of hi onto the closed convex set

γAT
i diag(ui)W. Our iteration for computing the projection is obtained by gener-

alizing the algorithm in [10], and is given below:



y(m) = hi − γAT
i diag(ui)p(m),

p[k](m+1) =
p[k](m) + τ

(
γdiag(ui)Aiy(m)

)
[k]

1 + τ | (γdiag(ui)Aiy(m)
)
[k]| .

(30)

where τ is a step parameter. We have the following theorem for the convergence
of (30), which generalized Theorem 3.1 in [10] from a discrete difference operator
to the matrix AT

i diag(ui). The proof can be obtained obtained by mimicking the
proof of Theorem 3.1 in [10], and we omit the details here.

Theorem 3.2. Let y(m) be defined as (30). Assume that τ ≤ 1/(γ2‖ui‖2∞) and
p(0) ∈ W. Then limm→∞ y(m) = proxγ‖diag(ui)Ai·‖1(hi).

Putting (28) and (30) together, the complete algorithm for finding a minimizer
of (15) emerges: 




h(n)
1 = f (n)

1 + γPΛ(g − f (n)
1 − f (n)

2 ),
f (n+1)
1 = P

Mn,1
1 (h(n)

1 ),
h(n)

2 = f (n)
2 + γPΛ(g − f (n)

1 − f (n)
2 ),

f (n+1)
2 = P

Mn,2
2 (h(n)

2 ).

(31)

where P
Mn,i

i (h(n)
i ) is the vector y(Mn,i) obtained from (30) by replacing hi by h(n)

i .
Theoretically, the inner iteration number Mn,i should be infinity so that P

Mn,1
1 (h(n)

1 )
is equal to proxγ‖diag(ui)Ai·‖1(h

(n)
i ). Then, (31) will converge to a solution of (15)

with the proper choices of γ and τ given by Theorems 3.2. However, in practical
computations, Mn,i can only be finite numbers. Due to Theorem 3.2, P

Mn,1
1 (h(n)

1 )
can be arbitrarily close to proxγ‖diag(ui)Ai·‖1(h

(n)
i ) by chosen a sufficiently large

finite number. We have the following convergence result for algorithm (31) for a
special choice of Mn,i.

Theorem 3.3. Assume that 0 < γ < 1 and τ ≤ 1/(γ2‖ui‖2∞). Let Mn,i, n ≥ 0,
i = 1, 2, be finite integers such that

+∞∑
n=0

‖PMn,i

i (h(n)
i )− proxγ‖diag(ui)Ai·‖1(h

(n)
i )‖2 ≤ +∞, i = 1, 2. (32)

Then f (n) = [(f (n)
1 )T , (f (n)

2 )T ]T generated by (31) converges to a solution of (15).
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Proof. Again we prove the convergence of (31) by checking Conditions 1–4 in Propo-
sition 1. We rewrite (31) into the form




f (n+1)
1 = proxγ‖diag(u1)A1·‖1

(
f (n)
1 +γPΛ(g − f (n)

1 − f (n)
2 )

)

+
(
P

Mn,1
1 (h(n)

1 )− proxγ‖diag(u1)A1·‖1(h
(n)
1 )

)

f (n+1)
2 = proxγ‖diag(u2)A2·‖1

(
f (n)
2 +γPΛ(g − f (n)

1 − f (n)
2 )

)

+
(
P

Mn,2
2 (h(n)

2 )− proxγ‖diag(u2)A2·‖2(h
(n)
2 )

)
.

By (32), Condition 4 is satisfied. Since all the entries of u1 and u2 are assumed to be
positive, it is obvious that if ‖[fT

1 , fT
2 ]T ‖2 →∞, then L1(f1, f2) and hence E(f1, f2)

both go to infinity. Clearly, both L1(f1, f2) and L2(f1, f2) are proper, convex and
continuous functions. Therefore, Conditions 1 and 2 in Proposition 1 are verified.
It remains to establish Condition 3, i.e., to estimate the Lipshitz constant for ∇L2.

Since L2 is a quadratic function, the Lipshitz constant is the norm of the Hessian
∇2L2. It can be easily checked that

‖∇2L2‖2 =
∥∥∥∥
[
PΛ PΛ

PΛ PΛ

]∥∥∥∥
2

= 2.

Therefore, the Lipshitz constant in (19) is 1/b = 2. This means that Condition 3
is verified and 0 < γ < 1 leads to the convergence of (31).

4. Numerical illustration. In this section, we use a numerical example to il-
lustrate the applicability and usefulness of our algorithms. We will see that the
tight frame based image inpainting with two tight frame systems out perform that
with only one tight frame system for images having both cartoon and texture. The
test image is the 512× 512 “Barbara” image, which has both cartoon and texture.
The original image and the observed incomplete image are shown in Figure 1. The
width of the unknown region is between 5–10 pixels. As pointed out in [25, 37], it
is difficult to find a pair of dictionaries so that it can separate all images in general.
Here, we use two simple tight frame systems. The piecewise linear polynomial tight
frame system constructed by [34] is used to represent the cartoon part and redun-
dant local discrete cosine tight frame to represent the texture part. More precisely,
to represent the cartoon part, we choose A1 to be the tight frame generated from
the framelets filters derived from piecewise linear B-spline (c.f. [6, 20]). The filters
are

1
4
[1, 2, 1],

√
2

4
[1, 0,−1],

1
4
[−1, 2,−1]

The local discrete cosine transform with redundancy are chosen as A2 to represent
the texture part. All the image gray levels in our experiments are scaled into [0, 1]
by dividing them by 255. Throughout the whole experiments, the results of (12)
with finite κ is computed by (25), and infinite κ by (28).

To ensure that the algorithms converge, according to Theorems 3.1 and 3.3,
we choose γ = 0.5/ max{1, κ} in algorithm (25), and γ = 0.5 in algorithm (31).
For the inner iterations in the algorithm (30), to save the computation time, we
fix the number of inner iterations in each outer iteration to be 10, i.e., Mn,i =
10 for all n and i. The step length τ in (28) is chosen to be its upper bound
1/(γ2‖u‖2∞). To accelerate the convergence of the algorithm, we use a continuation
technique for the thresholding parameters u1 and u2. First, we choose a bigger
thresholding parameter u1 and u2, and perform the algorithms (25) and (31) until
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Figure 1. The left is the original “Barbara” image, and the right
is the observed incomplete image.

they converges. Then we decrease u1 and u2 by multiplying them by a factor.
The procedure is continued until the thresholding parameters u1 and u2 reach the
prescribed values.

To compare the image quality quantitatively, we use peak signal to noise ratio
(PSNR), which is defined as PSNR= 20 log10

N
‖f (n)−f‖2 . It is clear that larger PSNR

means better image quality. The parameters in algorithms (25) and (31) are chosen
such that the algorithms give out the best restored images in the sense of best PSNR.

The restored images by (12) with κ = 0, κ = 1 and κ = ∞ are shown in Figure
2. The restored image of the algorithm (2) in [6], where only piecewise linear
polynomial tight frame system is used, are shown in Figure 2 also. By comparing
the simultaneously cartoon and texture inpainting algorithms in this paper with the
only cartoon inpaiting algorithm (2) given in [6], we see that the former ones can
give much better result than the latter one. By simultaneously cartoon and texture
inpainting algorithms, we gain 2-3dBs PSNR of the restored images, and much
better visual qualities. (Note that the textures are recovered very well in Figure
2(e)–(g), but not in Figure 2(h).). This shows the applicability and usefulness of
our proposed algorithms in various applications.

As the comparison of the simultaneously cartoon and texture inpainting (12)
with different κ, we see from Figure 2 that the differences between the restored
images with different κ are insignificant: the PSNR differences of Figures 2(a)–(c)
are within 0.8dB, and there are no significant visual differences in the corresponding
zoomed images Figure 2(e)–(g). Though κ = ∞ leads to best PSNR, the algorithm
is complicated and converges slowly. In Figure 3, we plot the PSNR of the restored
images and the numbers of steps of iterations versus the parameter κ in (12). From
this figure, we see that, as κ increases, the PSNR of restored images also increases.
The increase rate in PSNR is very small when κ is large. On the other hand, if κ
is very large, the step size γ is small, hence the algorithm is slow. Therefore, to
balance the computational speed and the PSNR of restored image, we shall choose
a medium-valued κ.

Finally, the cartoons and the textures of the restored images in Figure 2(a)–
(c) are shown in Figure 4. We see that our algorithms can separate the cartoons
and textures. Comparing the images in Figure 4, we see that κ = 0 separates the
cartoons and textures not as well as κ = 1 and κ = ∞ do: the cartoon part by
κ = 0 is blurred. There is no significant difference between the results by κ = 1
and κ = ∞. Taking the computational speed into account, again, we recommend
to use a medium-valued κ.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. The results of tight frame based inpainting algorithms.
The upper row shows the restored images by (from left to right)
(12) with κ = 0, κ = 1, κ = ∞ and by the algorithm in [6]
(i.e.(5)). The PSNR values are 33.98dB, 34.47dB, 34.75dB and
31.89dB respectively. The bottom row shows the corresponding
zoomed images.

0 1 2 3 4 5 6 7 8 9 10
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34.6
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Figure 3. PSNR of restored image and numbers of iteration steps
versus κ in (12).

It should be pointed out that when the missing region is sufficiently large, the
performance is not so good. In the example shown in Figure 5, the missing regions
are 48 × 48 square patches. The algorithm recovers some missing content such as
textures, but the edges are smeared.
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Figure 4. The textures (upper row) and the cartoons (bottom
row) of the restored images shown in Figure 2(a), (b) and (c).

Figure 5. An example of image inpainting with large missing regions.

5. Conclusions. In this paper, we have considered minimization problems in im-
age inpainting that simultaneously restore the cartoon and texture parts of the
image. By using proximal forward-backward splitting, we have proposed algo-
rithms that solve the minimization problems, and established their convergence.
Numerical examples are given to illustrate the applicability and usefulness of the
algorithms.
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