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a b s t r a c t

We propose an iterative method that solves constrained linear least-squares problems by
formulating them as nonlinear systems of equations and applying the Newton scheme. The
method reduces the size of the linear system to be solved at each iteration by considering
only a subset of the unknown variables. Hence the linear system can be solved more
efficiently. We prove that the method is locally quadratic convergent. Applications to
image deblurring problems show that our method gives better restored images than those
obtained by projecting or scaling the solution into the dynamic range.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Consider solving the constrained least-squares problem:

min
l≤x≤u

q(x) = min
l≤x≤u

{
1
2
‖Ax− b‖2 +

1
2
λ2‖Bx‖2

}
, (1)

where ‖ · ‖ is the 2-norm, A, B ∈ Rm×n, b ∈ Rm, λ ∈ R, l ∈ (R ∪ {−∞})n, u ∈ (R ∪ {+∞})n are given, and m ≥ n. The
constraint l ≤ x ≤ u is to be interpreted entry-wise, and we will denote the ith entry of any vector v by vi. We assume that
ATA + λ2BTB is positive definite. Thus, problem (1) is a strictly convex problem and has a unique solution x∗ for any vector
b, [1, p. 195].
Problem (1) arises in many practical applications such as contact problems, control problems, and intensity modulated

radiotherapy problems; see for example [1,2]. One major application is in image deblurring using Tikhonov approach; see
[3, p.358] and [4, p.255]. In this case, A will be the blurring operator, b the observed image, B the regularization operator,
λ2 the regularization parameter, and x the restored image to be sought. The constraints represent the dynamic range of the
image. For 8-bit gray-scale images, we have li = 0 and ui = 255 for all 1 ≤ i ≤ n. In practice, one may just solve the
unconstrained problem and project or scale the solution into the dynamic range. In principle, this should give an inferior
solution as the solution will not be a minimizer of the constrained problem. In fact, we will demonstrate in our numerical
examples that the constrained problem (1) indeed gives substantially better restored images.
The Tikhonov approach, though a preferredmethod by engineers because of its speed, can oversmooth images, especially

when B is a high order differential operator. An alternative is to use the total-variation (TV) regularization proposed in [5].
However, deblurring images under TV regularization can be slow. Recently, in [6], the authors proposed to separate the
deblurring problem with TV regularization into two parts: (i) a TV denoising part and (ii) a Tikhonov deblurring part where
our method can be applied.
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There aremanymethods for finding the constrainedminimizer of (1); see for examples [7–14]. In this paper,we propose a
Reduced NewtonMethod for solving (1). Our idea comes from a recently proposed Interior Newton-likeMethod [9] which is
based on formulating the Karush–Kuhn–Tucker conditions for (1) as a system of nonlinear equations. The nonlinear system
is then solved by a Newton-like method. The inner linear system in each Newton iteration may be ill-conditioned when the
iterate approaches a solution on the boundary of the feasible set. Thus in [9], a scalingmatrixwas introduced to precondition
the system.
Here instead of preconditioning the inner linear system, we consider its subsystem which corresponds only to

components of the iterate that are not close to the boundary. The advantage is that the subsystem is smaller and less ill-
conditioned. Moreover, in some applications, such as deblurring astronomical images, where most part of the image are
black, the subsystem is small and much easier to solve than the original system. We are able to prove the local quadratic
convergence of the algorithm, and the numerical examples in image deblurring show that it speeds up the solution of these
problems as it requires less number of Newton’s steps and inner linear iterations than the interior Newton-like method
in [9].
The outline of the paper is as follows. In Section 2, we recall the method in [9]. Our algorithm is introduced in Section 3

and its proof of local convergence is given in Section 4. In Section 5, we discuss the globalization strategies. Then in Section 6,
we illustrate the efficiency of our algorithm for image deblurring problems. Conclusions are given in Section 7.

2. Interior Newton-like method

In this section, we briefly recall the method in [9]. To simplify the notations and without loss of generality, we assume
that for all i,−∞ < li and ui <∞, which is indeed the case in image deblurring. Let

g(x) := ∇q(x) = AT(Ax− b)+ λ2BTBx.

If x∗ solves problem (1), then it satisfies the Karush–Kuhn–Tucker conditions:

gi(x∗)

{
= 0 if li < x∗i < ui,
≤ 0 if x∗i = ui,
≥ 0 if x∗i = li,

i = 1, . . . , n.

Equivalently x∗ solves a system of nonlinear equations [15]:

D(x)g(x) = 0, (2)

where D(x) = diag(d1(x), . . . , dn(x)) has entries

di(x) =

{ui − xi if gi(x) < 0,
xi − li if gi(x) > 0,
min{xi − li, ui − xi} if gi(x) = 0.

(3)

Let xk be a strictly feasible vector, i.e. l < xk < u. If the Newton method is used to solve (2), then the Newton equation
takes the form

[D(xk) (ATA+ λ2BTB)+ E(xk)]pk = −D(xk)g(xk), (4)

where the coefficient matrix is obtained by formal application of the product rule. In particular, E(x) =

diag(e1(x), . . . , en(x)) where ei(x) = gi(x) ∂∂xi di(x), i = 1, . . . , n. We note that the partial derivative of di(x) may not
exist everywhere. However, one can still develop quadratic convergent methods to the solution x∗ by following [16] and
letting

ei(x) =

|gi(x)| if |gi(x)| < min{xi − li, ui − xi}
2

or min{xi − li, ui − xi} < |gi(x)|2,
0 otherwise.

(5)

Let us partition the index set {1, . . . , n} into the sets

CI = {i ∈ {1, . . . , n} : li < x∗i < ui}, (6)

CA = {i ∈ {1, . . . , n} : x∗i = li and g
∗

i > 0, or x
∗

i = ui and g
∗

i < 0}, (7)

CD = {i ∈ {1, . . . , n} : x∗i = li or x
∗

i = ui and g
∗

i = 0}. (8)

The setCI represents the indices of the inactive components of x∗, while the setsCA andCD contain the indices of the active
components with and without strict complementarity, respectively.
The Newton equation (4) may be difficult to solve when xk approaches a solution x∗ on the boundary. In fact, if i ∈ CD

and {xk} is such that limk→∞ xk = x∗, then we may have limk→∞ di(xk) = 0. Since limk→∞ ei(xk) = 0, the ith row of
(D(xk)(ATA+ λ2BTB)+ E(xk))may tend to zero, i.e.

lim
k→∞
‖(D(xk)(ATA+ λ2BTB)+ E(xk))−1‖ = ∞.
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Since D(x) is invertible in the interior of the box [l, u], one may think that one could, instead of solving (4), solve
M(xk)pk = −g(xk)where

M(x) = ATA+ λ2BTB+ D(x)−1E(x). (9)

However, for i ∈ CA, we have limk→∞ di(xk) = 0 while limk→∞ ei(xk) 6= 0, i.e. limk→∞ ‖M(xk)‖ = ∞.
To overcome these pitfalls, the Newton equation (4) is restated in [9] as

[S(xk)M(xk)S(xk)]p̃k = −S(xk)g(xk), (10)

where p̃k = S(xk)−1pk, S(x) = W (x)
1
2D(x)

1
2 , and

W (x) = diag
(

1
d1(x)+ e1(x)

, . . . ,
1

dn(x)+ en(x)

)
.

It is proved in [9] that the scaling matrix S(x) is invertible for any l < x < u and ‖S(x)‖ ≤ 1. Moreover, S(x)M(x)S(x) is
symmetric positive definite for l < x < u, and its inverse is uniformly bounded.
Strict feasibility of the iterates is guaranteed by setting

xk+1 = xk +max{σ , 1− ‖P(xk + pk)− xk‖ }(P(xk + pk)− xk), (11)

where σ ∈ (0, 1) and P(v) = max{l,min{v, u}} is the projection map onto the box [l, u].

3. A reduced Newton method

In this section we present a new iterative procedure for the solution of problem (1). We still apply the Newton method
to the nonlinear system (2) but we use a different way to form the Newton equation. We saw in the last section that the
drawback of solvingM(xk)pk = −g(xk) directly for pk is that, if limk→∞ xk = x∗, then limk→∞ ei(xk)/di(xk) = ∞ for i ∈ CA,
and hence limk→∞ ‖M(xk)‖ = ∞. Here we present one way to overcome the drawback. It is an alternative to (10) and can
reduce the dimension of the system. Our aim is to exclude the components pki corresponding to the active constraints at x

∗

in solving the system. This leads to the idea of combining the solution of the systemM(xk)pk = −g(xk) with a strategy for
identifying the active components of the current iterate. We describe our algorithm below.
We will use the following notations. For any function f , the notation f k is used to denote f (xk). For any v ∈ Rn and

K ⊂ {1, . . . , n}, wewrite either vK or (v)K for the subvector of v having components vi, i ∈ K . Further, if V = (vij) ∈ Rn×n,
we denote either by VKL or (V )KL the submatrix of V with elements vij, i ∈ K, j ∈ L.

Algorithm 3.1 (Reduced Newton Method).

1. Initialization:
Choose l < x0 < u, δ > 0, σ ∈ (0, 1). Set k = 0.

2. Termination criteria:
If xk is a stationary point of (1) i.e. it solves (2): stop.

3. Identification of the active set:
Set gk = ∇q(xk) = AT(Axk − b)+ λ2BTBxk,
δk = min{ δ,

√
‖P(xk − gk)− xk‖ },

Ak = {i ∈ {1, . . . , n} : xki − li ≤ δk or ui − x
k
i ≤ δk}, Ik = {1, . . . , n} \Ak.

4. Search direction calculation:
Compute a search direction pk ∈ Rn such that

pki =
{
ui − xki if ui − xki ≤ δk,
li − xki if xki − li ≤ δk,

for i ∈ Ak,

and (pk)Ik solves

(Mk)IkIk (p
k)Ik = −(g

k)Ik − (M
k)IkAk (p

k)Ak (12)

where the matrixMk = M(xk) is given in (9).
5. Enforce strict feasibility:

Set

p̂k = max{σ , 1− ‖P(xk + pk)− xk‖ } (P(xk + pk)− xk). (13)

6. Form the new iterate:
Set xk+1 = xk + p̂k.



Author's personal copy

B. Morini et al. / Journal of Computational and Applied Mathematics 233 (2010) 2200–2212 2203

In each iteration of the ReducedNewtonmethod the identification of the active set is performedby checking the closeness
of xk to the boundary. The scalar δ is assumed to be sufficiently small such that δ < mini |ui− li|/2. This is to avoid ambiguity
in the definition of Ak; see [17]. After the identification of the active set, the linear system (12) restricted to the inactive
components of xk is solved. Clearly, if Ak 6= ∅ then the size of (12) is smaller than that of (10) and by Cauchy interlace
theorem [18, p. 396] the coefficient matrix (Mk)IkIk is better conditioned than M

k since the former is a submatrix of the
latter. Then, in Steps 5–6 we force xk+1 to be in the interior of the box [l, u]. This way the inverse of D is computable at the
new iterate and the matrixM can be formed at xk+1.
We will prove the following three theoretical results about the Reduced Newton method in the next section. First, in a

neighborhood of the solution x∗, the setAk coincides with the set of active constraints at x∗. Second, thematrix (Mk)IkIk and
its inverse are bounded above in a neighborhood of the solution x∗ of (1). Third, starting from an initial guess sufficiently
near to x∗, {xk} converges to x∗ quadratically. The local convergence behavior of the method is identical to that shown in [9].
However ourmethod of proof is different from [9] as here the analysis on (Mk)IkIk and its inverse and the provided reduction
in the distance to x∗ is based on the information given by the active set identification strategy.
Finally, it is worth noting that in applications such as astronomical imaging, comparatively fewer pixels are nonzero.

Thus, eventually the system (12) is small and requires fewer iterations than if we are solving the full system (10).

4. Local convergence analysis

In this section, we prove the local quadratic convergence of our Reduced Newton Method. For any ρ > 0, we let Bρ(x∗)
be the ball centered at x∗ with radius ρ.

Lemma 4.1. Let x∗ be the solution of (1). Then there exist positive constants ρ1 and α such that for all xk ∈ Bρ1(x
∗) we have

‖xk − x∗‖ ≤ α ‖P(xk − gk)− xk‖. (14)

Proof. Since the Hessian matrix∇2q(x∗) = ATA+ λ2BTB is positive definite, x∗ satisfies the strong second order sufficiency
condition for (1). Then [19, Theorem3.7] shows that there exists a constantα > 0 such that (14) holds for all x in a sufficiently
small neighborhood of x∗. �

Let us define the active constraints set at x∗ as

A∗ = {i ∈ {1, . . . , n} : x∗i ∈ {li, ui}},

and denote by I∗ the complement of A∗ in {1, . . . , n}, i.e. I∗ = {1, . . . , n} \ A∗. The following lemma shows that if xk is
sufficiently close to x∗ then the setAk is the same asA∗.

Lemma 4.2. Let x∗ be the solution of (1). Then there exists a positive constant ρ2 such that if xk ∈ Bρ2(x
∗) thenAk = A∗.

Proof. The proof follows [17, Lemma 9.4, Lemma 9.7] closely. First we show thatAk ⊆ A∗. Define

ν = min{min{x∗i − li, ui − x
∗

i } | i ∈ I∗} > 0, (15)

i.e., ν is the smallest distance of the inactive components x∗i to the boundary of the feasible set [l, u]. Since ‖P(x
k
−gk)−xk‖ is

continuous (see [20, p. 450]), there exists ρ2 ≤ ν/4 sufficiently small so that if xk ∈ Bρ2(x
∗) then

√
‖P(xk − gk)− xk‖ ≤ ν/4.

Let xk ∈ Bρ2(x
∗) and i ∈ Ak. Then xki − li ≤ δk or ui − x

k
i ≤ δk. If x

k
i − li ≤ δk, then the strict feasibility of x

k yields

|xki − li| = x
k
i − li ≤ δk ≤

√
‖P(xk − gk)− xk‖ ≤

ν

4
.

Then by noting |xki − x
∗

i | ≤ ‖x
k
− x∗‖ ≤ ν/4, we obtain

|x∗i − li| ≤ |x
∗

i − x
k
i | + |x

k
i − li| ≤

ν

2
,

i.e., we have i ∈ A∗ in view of (15). The same result is obtained if ui − xki ≤ δk.
Nowwe show thatA∗ ⊆ Ak. Reduce ρ2 if needed so that ρ2 < ρ1, where ρ1 is defined in Lemma 4.1. Then if xk ∈ Bρ2(x

∗)
we get

|xki − x
∗

i | ≤ α ‖P(x
k
− gk)− xk‖, (16)

for all i ∈ {1, . . . , n}. Let i ∈ A∗ be any fixed index. Then x∗i = li or x
∗

i = ui. If x
∗

i = li, then by (16) we have

xki − li = |x
k
i − x

∗

i | ≤ α ‖P(x
k
− gk)− xk‖.

Since ‖P(xk − gk) − xk‖ → 0 for xk → x∗ and δk = O(
√
‖P(xk − gk)− xk‖) in view of the definition of δk, we have

α ‖P(xk−gk)−xk‖ ≤ δk for all xk sufficiently close to x∗. Therefore we obtain xki − li ≤ δk, i.e. i ∈ Ak. The case where x∗i = ui
can be studied in an analogous way and therefore we can conclude thatA∗ = Ak for all xk ∈ Bρ2(x

∗). �
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In the next two lemmaswe explore the properties of thematricesD(x)M(x) andM(x) both at and near x∗ when restricted
onto the inactive set.

Lemma 4.3. Let x∗ be the solution of (1). The matrices (D(x∗)M(x∗))I∗I∗ and M(x∗)I∗I∗ are nonsingular.

Proof. It can be seen easily that

(D(x∗)M(x∗))I∗I∗ = (D(x
∗)(ATA+ λ2BTB)+ E(x∗))I∗I∗

= D(x∗)I∗I∗(A
TA+ λ2BTB)I∗I∗ + E(x

∗)I∗I∗ .

If i ∈ I∗, then di(x∗) 6= 0 and ei(x∗) = 0. Hence,

(D(x∗)M(x∗))I∗I∗ = D(x
∗)I∗I∗(A

TA+ λ2BTB)I∗I∗ ,

and (D(x∗)M(x∗))I∗I∗ is nonsingular because D(x
∗)I∗I∗ is nonsingular and (A

TA+ λ2BTB)I∗I∗ is positive definite.
Similarly we get thatM(x∗)I∗I∗ = (A

TA+ λ2BTB)I∗I∗ , i.e.M(x
∗)I∗I∗ is positive definite. �

Lemma 4.4. Let x∗ be the solution of (1). Then there exist positive constants ε, κ1, κ2 and κ3 such that if xk ∈ Bε(x∗) then the
matrices (DkMk)IkIk and (M

k)IkIk are nonsingular, and

‖(Mk)−1IkIk
‖ ≤ κ1, (17)

‖(Dk)−1IkIk
‖ ≤ κ2, (18)

‖(DkMk)−1IkIk
‖ ≤ κ3. (19)

Proof. Let xk ∈ Bρ2(x
∗)where ρ2 is defined in Lemma 4.2. ThenAk = A∗ and Ik = I∗. Hence

(DkMk)IkIk = (D
kMk)I∗I∗ = (D

k)I∗I∗(A
TA+ λ2BTB)I∗I∗ + (E

k)I∗I∗ . (20)

Note that the matrix (Ek)I∗I∗ is positive semidefinite and (D
k)I∗I∗ is positive definite; thus (D

kMk)IkIk is nonsingular.
Concerning (Mk)IkIk , it is positive definite since x

k is strictly feasible.
Now we prove (17). Let v be an arbitrary vector in Rn. Then we have

‖v‖ ‖(Mk)I∗I∗v‖ ≥ ‖v
T(Mk)I∗I∗v‖

= vT(ATA+ λ2BTB)I∗I∗v + v
T((Dk)−1Ek)I∗I∗v

≥ vT(ATA+ λ2BTB)I∗I∗v ≥
‖v‖2

‖(ATA+ λ2BTB)−1I∗I∗
‖
.

Thus ‖(Mk)I∗I∗v‖ ≥ ‖v‖/‖(A
TA+ λ2BTB)−1I∗I∗

‖, and the inequality (17) holds with κ1 = ‖(ATA+ λ2BTB)−1I∗I∗
‖.

To prove (18), let ν > 0 be the scalar defined in (15) and let ε < ρ2. If xk ∈ Bε(x∗) then by Lemma 4.2 we have that
‖xk − x∗‖ ≤ ν/4. Take i ∈ I∗. Note that di(xk) = xki − li or di(x

k) = ui − xki . In the first case we have

|di(xk)| = |x∗i − li| − |x
k
i − x

∗

i | > ν −
ν

4
=
3ν
4
.

Proceeding analogously in the other case we have that |di(xk)| is bounded below for all i ∈ I∗. Then there exists a constant
κ2 such that ‖(Dk)−1IkIk

‖ = ‖(Dk)−1I∗I∗
‖ ≤ κ2.

Finally, note that (20) implies

‖(DkMk)−1IkIk
‖ ≤ ‖(Dk)−1IkIk

‖ ‖(Mk)−1IkIk
‖.

Hence, using (17) and (18) we get (19). �

The above lemma implies the boundedness of ‖(Mk)IkIk‖when x
k
∈ Bε(x∗). In particular, by (18) and (20) it follows that

‖(Mk)IkIk‖ ≤ k4
for some scalar k4.
We next prove that the directional vector pk in Step 4 of Algorithm 3.1 provides a quadratic reduction in the distance to

x∗. We note however that the next iterate so formed may not satisfy the feasibility constraints.

Lemma 4.5. Let x∗ be the solution of (1). Then there exist positive constants ε and γ such that if xk ∈ Bε(x∗), then

‖xk + pk − x∗‖ ≤ γ ‖xk − x∗‖2, (21)

where the vector pk is formed in Step 4 of Algorithm 3.1.
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Proof. Let ε be the scalar defined in Lemma 4.4 and xk ∈ Bε(x∗); thusAk = A∗. Letting x̄k+1 = xk + pk, we have

(DkMk)IkN (x̄
k+1
− xk) = −(Dkgk)Ik , (22)

whereN = {1, . . . , n}. Subtracting the equality

(DkMk)IkN (x
∗
− x∗) = −(D(x∗)g(x∗))Ik ,

from (22), we obtain

(DkMk)IkN (x̄
k+1
− x∗) = rkIk , (23)

with rkIk defined as

rkIk = −(D
kMk)IkN (x

∗
− xk)− (Dkgk)Ik + (D(x

∗)g(x∗))Ik .

SinceAk = A∗, we have that x̄k+1i = xki + p
k
i = x

∗

i for all i ∈ Ak and ‖x̄k+1 − x∗‖ = ‖(x̄k+1 − x∗)Ik‖. Also, byN = Ik ∪Ak
we get

(DkMk)IkN (x̄
k+1
− x∗) = (DkMk)IkIk (x̄

k+1
− x∗)Ik + (D

kMk)IkAk (x̄
k+1
− x∗)Ak

= (DkMk)IkIk (x̄
k+1
− x∗)Ik ,

and (23) takes the form

(DkMk)IkIk (x̄
k+1
− x∗)Ik = r

k
Ik
.

By Lemma 4.4, the matrix (DkMk)IkIk is nonsingular and hence (19) yields

‖x̄k+1 − x∗‖ ≤ κ3 ‖rkIk‖. (24)

Now we find an upper bound for ‖rkIk‖. Let i be an index in Ik and note that

rki = −di(x
k)(ATA+ λ2BTB)iN (x∗ − xk)− ei(xk)(x∗i − x

k
i )− di(x

k)gki + di(x
∗)gi(x∗)+ di(xk)gi(x∗)− di(xk)gi(x∗)

= di(xk)(gi(x∗)− gi(xk)− (ATA+ λ2BTB)iN (x∗ − xk))+ gi(x∗)(di(x∗)− di(xk))− ei(xk)(x∗i − x
k
i ).

Since

gi(x∗)− gki = (A
TA+ λ2BTB)iN (x∗ − xk), (25)

and gi(x∗) = 0, it follows |rki | = |ei(x
k)(x∗i − x

k
i )|. Further, by (5), we get

|rki | ≤ |ei(x
k)| |(x∗ − xk)i| ≤ |gki ||(x

∗
− xk)i| = |gi(x∗)− gki ||(x

∗
− xk)i|

= |((ATA+ λ2BTB)(xk − x∗))i| |(x∗ − xk)i|.

So, denoting the cardinality of the set Ik by ωIk , we obtain

‖rkIk‖ ≤
√
ωIk ‖A

TA+ λ2BTB‖ ‖x∗ − xk‖2. (26)

Thus, by (24) and (26), the Lemma is proved by setting γ = √ωIk κ3 ‖A
TA+ λ2BTB‖. �

Finally, we show that by enforcing the feasibility constraints using condition (13), the sequence {xk} still has quadratic
convergence.

Theorem 4.1. Let x∗ be the solution of (1). If the initial guess x0 is sufficiently close to x∗, then the sequence {xk} generated by
Algorithm 3.1 converges quadratically to x∗.

Proof. If x0 is sufficiently close to x∗ then the scalar max{σ , 1− ‖P(x0 + p0)− x0‖ } used in (13) is close to one. This fact is
crucial for fast convergence.
Let x0 be sufficiently close to x∗ so that

max{σ , 1− ‖P(x0 + p0)− x0‖ } = 1− ‖P(x0 + p0)− x0‖, (27)

and (21) is valid, i.e.

‖x0 + p0 − x∗‖ ≤ γ ‖x0 − x∗‖2. (28)
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Then x1 has the form

x1 − x∗ = x0 + p̂0 − x∗ = x0 + (1− ‖P(x0 + p0)− x0‖)(P(x0 + p0)− x0)− x∗

= P(x0 + p0)− ‖P(x0 + p0)− x0‖(P(x0 + p0)− x0)− x∗.

Using the non-expansion property of the projection map and (28) we get

‖x1 − x∗‖ ≤ ‖P(x0 + p0)− x∗‖ + ‖P(x0 + p0)− x0‖2

≤ ‖x0 + p0 − x∗‖ + ‖x0 + p0 − x0‖2

≤ γ ‖x0 − x∗‖2 + 2‖x0 + p0 − x∗‖2 + 2‖x0 − x∗‖2

≤ γ ‖x0 − x∗‖2 + 2γ ‖x0 − x∗‖4 + 2‖x0 − x∗‖2.

Then we have that ‖x1 − x∗‖ = O(‖x0 − x∗‖2). The proof can be completed using standard induction arguments. �

5. Globalization strategies

In Algorithm 3.1, the components p̂ki with i ∈ Ak force the corresponding components of xk to get closer to the boundary.
If the resulting step does not produce a reduction in the objective function q, it is necessary to changeAk. A rapid change of
such set can be obtained as follows. Let pk,C be the generalized Cauchy step; see equations (29) and (31) in [9]. We accept
the step p̂k if it satisfies the condition

1
2
(p̂k)TMkp̂k + (p̂k)Tgk ≥ β

{
1
2
(p̂k,C )TMkp̂k,C + (p̂k,C )Tgk

}
, (29)

for a fixed scalar β ∈ (0, 1). Otherwise, we take the step pk,C . The analysis conducted in [9] shows that each limit point of
the sequence {xk} generated is a stationary point of (1). Since the problem is strictly convex, each limit point of the sequence
{xk} is a global minimum of (1). Uniqueness of the solution to problem (1) implies that limk→∞ xk = x∗.

6. Numerical experiments

In this section, we show the efficiency of our method by applying it to deblurring problems. In our tests, we use four
256-by-256 gray images shown in Fig. 1. The Satellite image is from the US Air Force Phillips Laboratory, the Church, Eagle
and Bridge images are taken from [21]. The dimensions of the least-squares problem (1) are m = n = 65 536. We choose
these images because they have different numbers of pixels with values either close or equal to 0 or 255. Specifically, there
are 89.81%, 22.54%, 12.71% and 11.75% active pixels in the true Satellite, Church, Eagle and Bridge images respectively. Due
to these features, it is easier to illustrate the difference in the quality of the restored images before and after we enforce
the constraints. We will also see that many constraints are active during the iterations of the Newton Reduced method, and
hence the size of the system to be solved is considerably reduced.
In (1), we choose the blurring matrix A ∈ Rn×n to be the out-of-focus blur with radius 3 and the regularization matrix

B ∈ Rn×n to be the gradient matrix. Hence BTB is the two-dimensional discrete Laplacian matrix. For both matrices, we
employ the Neumann boundary conditions [22], which usually gives less artifacts at the boundary. The use of such boundary
conditions means that ATA+ λ2BTB is a block-Toeplitz-plus-Hankel matrix with Toeplitz-plus-Hankel blocks. The observed
image b is such that b = Axtrue + ηr where xtrue is the true image, r is a random vector with entries distributed as standard
normal, η is the level of noise. The constraints are such that li = 0 and ui = 255 for i = 1, . . . , n.
The restored images were obtained in double precision using MATLAB 7.0 on an Intel Xeon (TM) 3.4 GHz, 1 GB RAM.

Three levels of noise, η = 1, 2, 3, were tested. The procedures we compare numerically are the following:
1. The projection (P) method:
• Solve the unconstrained problem

min q(x) =
1
2
‖Ax− b‖22 +

1
2
λ2‖Bx‖22,

i.e. solve (ATA+ λ2BTB)x = ATb.
• Project the solution onto the box [l, u].
• Round the pixel values of the projected solution to integers.

2. The Interior Newton-like (IN) algorithm in [9] (see Section 2):
• Apply the P method and let xp be the computed solution.
• Perturb xp to form a strictly feasible vector x

sf
p .

• Apply the Interior Newton-like method starting from x0 = x
sf
p .

• Round the pixel values of the solution to integers.
3. The Reduced Newton (RN) algorithm given by Algorithm 3.1:
• Apply the P method and let xp be the computed solution.
• Perturb xp to form a strictly feasible vector x

sf
p .

• Apply Algorithm 3.1 starting from x0 = x
sf
p .

• Round the pixel values of the solution to integers.
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Fig. 1. The true images.

The starting point for the IN and the RNmethods needs to be strictly feasible. Therefore, the vector xsfp is formed by projecting
the solution xp of the P method onto the box [w, 254w], withw = (1, . . . , 1)T ∈ Rn.
The linear systems for all three procedures are solved by the conjugate gradient (CG) method. Regarding the Reduced

Newtonmethod, thematrix–vector products required to solve (12) can be computed by exploiting the Toeplitz-like structure
of Mk as follows. Letting I ∈ Rn×n be the identity matrix, N = {1, . . . , n}, and using the notation of Section 3, it is easy to
see that

(Mk)IkIk = (I)IkN M
k (I)N Ik , (Mk)IkAk = (I)IkN M

k (I)N Ak .

Since Mk is a Toeplitz-plus-Hankel matrix with Toeplitz-plus-Hankel block, the multiplication can be done via fast cosine
transform in O(n log n) operations; see [23,22].
In the tests, the parameter σ = 0.9995 is used in (11) and (13) while the parameter β = 0.3 is employed in (29). The

parameter λ is chosen by trial and error such that it maximizes the Peak Signal to Noise Ratio (PSNR) [24] value of the
reconstructed image. In the RNmethod, we set δ = 1 in the active set strategy. For both the IN and RNmethods, a successful
termination at the point xk is declared if any one of the following conditions is satisfied:

(i) qk−1 − qk < τ(1+ qk−1),
(ii) qk−1 − qk <

√
τ(1+ qk−1) and ‖xkint − x

k−1
int ‖∞ = 0,

(iii) ‖P(xk + gk)− xk‖ ≤ n
√
τ .

Here xint is obtained from x after rounding its entries to integers and τ = 10−8.
Table 1 displays the results whenwe have performed the tests three times for each η and computed the average numbers

of nonlinear Newton iterations (N) and CG iterations (L) performed and the PSNR value of the recovered images. We also
give the average percentage of pixels that are active in the images restored. We see that the percentages in the restored
images by the P method are far away from those of the true Satellite and Church images and that the IN and RN methods
overestimate the number of active pixels for the last two images. The table shows also that the PSNR values attained by the
IN and RN methods are close. These values are 0.9–4.5 dB higher than those attained by the P algorithm for the Satellite,
Church and Eagle images. For the Bridge image, the gain in the value of PSNR obtained by IN and RN methods over the P
method is between 0.5–0.8 dB. Since an increase of 1 dB translates roughly to 10% reduction in the relative error, we see that
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Fig. 2. Restoration results for η = 1: (top-left) Blurred image PSNR = 25.26 dB, (top-right) P algorithm PSNR = 29.64 dB, (bottom-left) IN algorithm
PSNR = 34.50 dB, (bottom-right) RN algorithm PSNR = 34.47 dB.

Table 1
Number of linear and nonlinear iterations, PSNR value and active pixel percentage of the restored images.

Image η P method IN method RN method
L PSNR Active pixel (%) N L PSNR Active pixel (%) N L PSNR Active pixel (%)

Satellite 1 197.0 29.63 46.34 11.0 90.7 34.40 82.14 6.0 45.3 34.37 83.27
2 145.0 26.81 45.93 11.0 87.0 31.45 81.67 6.0 45.3 31.43 82.05
3 94.0 26.55 45.81 10.0 68.3 30.00 80.07 6.0 42.0 29.98 80.78

Church 1 102.0 29.69 15.41 20.3 220.7 31.14 21.44 5.0 45.3 31.13 24.54
2 64.0 27.81 15.55 8.0 51.3 29.01 24.16 5.0 42.6 28.99 24.41
3 48.0 26.95 15.57 6.7 35.0 28.03 22.85 5.0 38.3 28.01 23.87

Eagle 1 72.0 32.18 12.75 7.0 42.0 33.36 18.25 5.0 37.7 33.34 20.02
2 47.0 30.63 12.86 6.0 29.7 31.70 18.48 5.0 31.0 31.68 20.02
3 47.0 29.50 12.97 6.0 29.3 30.44 22.87 5.0 33.7 30.44 20.20

Bridge 1 184.0 26.69 14.78 48.0 872.7 27.51 18.21 5.0 51.0 27.52 22.23
2 105.0 24.00 14.79 17.7 188.3 25.15 20.40 5.0 45.0 25.10 22.89
3 75.0 23.43 15.07 8.3 58.0 23.95 22.60 5.0 42.3 23.95 23.09

projecting the image onto the dynamic range is not a good method and satisfying the constraints is necessary in getting a
substantially better image.
From Table 1, we also see that the solution to the projectionmethod xsfp is a good initial guess for both IN and RNmethods,

so both methods converge reasonably fast. However, the RN method converges faster than the IN method and the average
numbers of linear and nonlinear iterations required by the RN method are actually fairly constant between different runs.
Concerning the Church and Bridge images, the IN method converges very slowly for some values of η. This is because the
Cauchy step is taken at most iterations in the IN method (see Section 5). On the contrary, in all our experiments with the
RN method we observed that the active set settles down in the first few iterations and the steps generated provide a rapid
decrease in the value of the objective function so that Cauchy steps are rarely needed. We give the restored Satellite and
Church images in Figs. 2–5.
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Fig. 3. Restoration results for η = 3: (top-left) Blurred image PSNR = 25.26 dB, (top-right) P algorithm PSNR = 26.53 dB, (bottom-left) IN algorithm
PSNR = 29.97 dB, (bottom-right) RN algorithm PSNR = 29.94 dB.

Table 2
Elapsed time in seconds.

Image η Elapsed time
P method IN method RN method

Satellite 1 85.72 166.51 130.90
2 61.34 130.02 102.84
3 54.36 112.89 95.56

Church 1 48.98 184.16 81.24
2 45.28 84.92 77.12
3 43.65 71.48 73.54

Eagle 1 27.58 70.38 70.08
2 42.23 68.69 68.20
3 40.49 63.93 66.70

Bridge 1 73.81 551.14 102.68
2 57.36 191.58 98.74
3 47.58 85.21 79.08

In Table 2, we show the average time in seconds required by the three algorithms. Remarkably, the computational
overhead of the IN and RN algorithms is low and our RN method is typically more efficient than the IN method. In this
regard, note that the size of the linear systems arising in the RN method can be reduced significantly, e.g. in the Satellite
image the size can be reduced by about 80%.
An alternative to the Tikhonov approach in (1) is to use the total-variation (TV) regularization proposed in [5]. Recently,

in [6] the deblurring problem with TV regularization was separated into two parts: (i) a TV denoising part which can be
solved by many methods, and (ii) a Tikhonov-like deblurring part that minimizes: 12‖Ax− b‖

2
+ λ2‖x− b‖2. We note that

by setting x̄ = x− b, the second part takes the form (1)

min
l−b≤x̄≤u−b

1
2
‖Ax̄− (b− Ab)‖2 + λ2‖x̄‖2 (30)
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Fig. 4. Restoration results for η = 1: (top-left) Blurred image PSNR = 24.29 dB, (top-right) P algorithm PSNR = 29.70 dB, (bottom-left) IN algorithm
PSNR = 31.17 dB, (bottom-right) RN algorithm PSNR = 31.12 dB.

Table 3
Results for problem (30).

Image η P method RN method
L PSNR N L PSNR Pixel (%)

Satellite 1 222.0 28.58 6.0 47.3 34.34 84.70
2 121.0 26.86 6.0 43.7 31.22 83.24
3 84.0 26.27 6.0 39.7 29.65 81.86

Church 1 101.0 29.41 5.0 41.3 30.51 25.07
2 74.0 27.41 5.0 36.0 28.27 25.15
3 39.0 26.67 5.0 27.0 27.17 23.31

Eagle 1 72.0 32.68 4.0 24.0 33.32 19.36
2 38.0 31.25 4.0 18.0 31.63 19.31
3 39.0 30.26 4.0 18.0 30.67 19.22

Bridge 1 170.0 26.28 5.0 47.7 27.05 21.54
2 82.0 24.00 5.0 38.0 24.44 21.53
3 76.0 22.99 5.0 40.0 23.43 23.16

which can readily be solved by our RN method. Table 3 shows the results obtained by our RN method by conducting the
experiments in a way analogous to what we have done above. We see again from the table that our method gives better
images than projection method, especially when the number of active pixels is high.

7. Conclusion

In this paper, we propose a Reduced Newtonmethod that solves constrained linear least-squares problems andwe prove
its local quadratic convergence. We have applied it to deblurring problems and found that it gives better restored images
than those obtained by projecting the images onto the constraint set. Moreover, for images withmany black or white pixels,
such as astronomical images, the inner linear iteration matrices from our method will be small and hence easier to solve.
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Fig. 5. Restoration results for η = 3: (top-left) Blurred image PSNR = 24.29 dB, (top-right) P algorithm PSNR = 26.92 dB, (bottom-left) IN algorithm
PSNR = 28.01 dB, (bottom-right) RN algorithm PSNR = 28.00 dB.
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