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Suggested Solution to Assignment 1(the first edition)

Exercise 1.1

1. Example 1,2,3,,4,7,8 are linear, and Example 5,6 are nonlinear. �

2. By the definition of linearity for operators in 1.1(3), the operators in (a) and (e) are linear, others are not
linear. �

3. (a) order 2 with uxx, linear inhomogeneous; (b) order 2 with uxx, linear homogeneous; (c) order 3 with uxxt,
nonlinear; (d) order 2 with with utt, uxx, linear inhomogeneous; (e) order 2 with uxx, linear homogeneous;
(f) order 1 with ux and uy, nonlinear; (g) order 1 with ux and uy, linear homogeneous; (h) order 4 with
uxxxx, nonlinear. �

4. Suppose that L u1 = g and L u2 = g and let u = u1 − u2, then L u = L u1 −L u2 = g − g = 0, where
the operator L is linear. �

10. Since the differential equation is linear and homogeneous, its solutions form a vector space. Since a3 −
3a2 + 4 = (a− 2)2(a+ 1), a basis of it is {e2x, xe2x, e−x}. �

11. Let u(x, y) = f(x)g(y), then by direct calculation we have

u(x, y)uxy(x, y) = f(x)g(y)f ′(x)g′(y)

= f ′(x)g(y)f(x)g′(y)

= ux(x, y)uy(x, y)

Hence, uuxy = uxuy is verified. �

12. Let un(x, y) = sinnx sinhny, then for n > 0,

uxx + uyy = −n2 sin(nx) sinh(ny) + n2 sin(nx) sinh(ny) = 0.

Thus, uxx + uyy = 0 is verified. �

Exercise 1.2

1. Using the characteristic curve method or the coordinate method, we have u(t, x) = f(3t−2x). �. Setting
t = 0 yields the equation f(−2x) = sinx. Letting w = −2x yields f(w) = − sin(w/2). Therefore,
u(t, x) = sin(x− 3t/2). �

2. Let v = uy, then 3v + vx = 0. Thus we have v(x, y) = f(y)e−3x, i.e., uy(x, y) = f(y)e−3x, which implies
u(x, y) = F (y)e−3x + g(x), where both F and g are arbitrary (differentiable) functions. �

3. The characteristic curves satisfy the ODE: dy/dx = 1/(1 + x2), which implies y = arctanx + C. Thus
u(x, y) = f(y − arctanx). We omit the easy figure here. �

5. The characteristic curves satisfy the ODE: dy/dx = 1/
√

1− x2, which implies y = arcsinx + C. Thus
u(x, y) = f(y − arcsinx). Setting x = 0 yields the equation f(y) = y, and then u(x, y) = y − arcsinx. �

6. (a)The characteristic curves satisfy the ODE: dy/dx = x/y, which implies y2 = x2 +C and then u(x, y) =
f(y2 − x2). Setting x = 0 yields the equation f(y2) = e−y

2
. Letting w = y2 yields f(w) = e−w and

u(x, y) = ex
2−y2 . (b)Please see the following figure 1. �
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7. Change variables to x = ax+ by, y = bx− ay. By the chain rule,

ux = aux′ + buy′ , uy = bux′ − auy′

. We have (a2 + b2)ux′ + cu = 0 which implies u(x, y) = f(y)e−cx/(a
2+b2) and then u(x, y) = f(bx −

ay)e−c(ax+by)/(a
2+b2), where f is a arbitrary (differentiable) function. �

8. Note that u(x, y) = ex+2y/4 is a special solution of the inhomogeneous equation, and by the result of
Exercise 1.2.7 above, the general solution of the corresponding homogeneous equation is f(x−y)e−(x+y)/2.
Thus the general solution of ux + uy + u = ex+2y is

u(x, y) = f(x− y)e−(x+y)/2 + ex+2y/4,

where f is a arbitrary function. Let y = 0, and then we have f(x)e−x/2 + ex/4 = 0, i.e. f(x) = −e3x/2/4.
So the solution is u(x, y) = (ex+2y − ex−2y)/4.

9. By changing variables,x′ = ax+ by, y′ = bx−ay. The original equation is equivalent to the following form

(a2 + b2)ux′ = f(
ax′ + by′

a2 + b2
,
bx′ − ay′

a2 + b2
).

Therefore, we have the general solution to the above equation is

u(x′, y′) =
1

a2 + b2

∫ x′

0
f(
as′ + by′

a2 + b2
,
bs′ − ay′

a2 + b2
) ds′ + g(y′),

where we let g(y′) = u(0, y′), and g is a arbitrary function. Returning back to the original parameters,
the integral changes to be the integral along the line

L = {(m,n); 0 ≤ s′ = am+ bn ≤ ax+ by, y′ = bm− an = bx− ay}.

When denoting s the parameter of arc length, we have ds =
√

(dm)2 + (dn)2. Note that along the line

L the condition bm − an = bx − ay is satisfied. Thus, b(dm) − a(dn) = 0, and then ds =
√
a2+b2

a dm,

ds′ = a(dm) + b(dn) = a2+b2

a . Hence, the solution is

u(x, y) =
1

(a2 + b2)1/2

∫
L
fds+ g(bx− ay),

where L is shown above(actually, the line segment is not from the y axis). �

Figure 1:
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11. Using Coordinate Method, we change variables x′ = x + 2y, y′ = 2x − y, then the original equation is
changed into

5ux′ + y′u = x′y′.

Note that u(x′, y′) = x′ − 5
y′ is a special solution and u(x′, y′) = f(y′)e−(x

′y′/5) is the general solution of
the corresponding homogeneous equation. Hence the general solution of original equation is

u(x, y) = f(2x− y)e−
(x+2y)(2x−y)

5 + x+ 2y − 5

2x− y

where f is an arbitrary (differentiable) function. �

Exercise 1.3

1. According to Example 2, we only need to add the resistance in the transverse equation. Under the
assumption that the resistance is proportional to the velocity, the transverse equation becomes

Tux√
1 + u2x

∣∣∣∣x1
x0

+

∫ x1

x0

−kutdx =

∫ x1

x0

ρuttdx

where k > 0 is a coefficient depending on the property of the medium (e.g. the density of the medium).
Note that the direction of resistance should be opposite to the velocity, thus we have the negative sign
before k. The equation, differentiated, says that

(Tux)x − kut = ρutt

That is,
utt − c2uxx + rut = 0

where c =
√
T/ρ,r = k/ρ > 0.

2. By the assumption in the question, T = −
∫ x
l ρgdx = ρg(l − x). Then, similar to Example 2 given in the

text, we can obtain the PDE satisfied by the chain,

((l − x)ρgux)x = ρutt.

3. The heat energy contained in the part between x0 and x1 of the thin rod at time t is Q(t) =
∫ x1
x0
cρuAdx

where A is the area of of the cross section. The heat energy flowing across the two ends per unit
time is kuxA|x

1

x0 and that flowing out the lateral sides per unit time (by Newton’s law of cooling) is∫ x1
x0
µP (u − T0)dx where P is the perimeter of the cross section and µ is the conductance across the

contact surface. Hence,
dQ(t)

dt
= kuxA|x

1

x0 −
∫ x1

x0

µP (u− T0)dx,

which implies
Acρut = A(kux)x − µP (u− T0)

5. Let u(x, t) be the concentration (mass per unit length) of the dye at position x of the pipe at time t. The
mass of dye is M(t) =

∫ x
x0
u(y, t)dy, so ∂M

∂t =
∫ x
x0
ut(y, t)dy. Then by the Fick’s law,

∂M

∂t
= flow in− flow out = V (u(x0, t)− u(x, t)) + kux(x, t)− kux(x0, t).

Differentiating with respect to x, we get ut = kuxx − V ux. �
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6. Since the heat flow depends only on t and on the distance r =
√
x2 + y2 to the axis of the cylinder,

u(x, y, z, t) = u(
√
x2 + y2, t) = u(r, t).

Then by the chain rule,

ux = uxx/r, uy = ury/r, uz = 0,

uxx = urrx
2/r2 + ur(r

2 − x2)/r3, uyy = urry
2/r2 + ur(r

2 − y2)/r3, uzz = 0.

Therefore, ut = k(uxx + uyy + uzz) = k(urr + ur/r). �

7. Since the heat flow depends only on t and on the distance r =
√
x2 + y2 + z2 to the cylinder,

u(x, y, z, t) = u(
√
x2 + y2 + z2, t) = u(r, t).

Then by the chain rule,

ux = uxx/r, uy = ury/r, uz = urz/r,

uxx =
urrx

2

r2
+
ur(r

2 − x2)
r3

, uyy =
urry

2

r2
+
ur(r

2 − y2)
r3

, uzz =
urrz

2

r2
+
ur(r

2 − z2)
r3

.

Therefore, ut = k(uxx + uyy + uzz) = k(urr + 2ur/r). �

Exercise 1.4

1. Setting u(x, t) = f(t)+x2 yields the equations f(t) = 2 and f(0) = 0. Hence, f(t) = 2t and u(x, t) = 2t+x2

is a solution of the diffusion equation. �

2. (a) No heat flows across the boundary, by the Fouriers law, we have ∂u/∂x = 0;

(b) No gas flows across the boundary, by the Ficks law, we have ∂u/∂x = 0;

(c) No heat or gas flows across the boundary, by the Fouriers or Ficks law, we have ∂u/∂n = 0. �

3. After long time, if this homogeneous body reaches a steady state, then ∂tu = 0, therefore, uxx = 0. Since

it is insulated, therefore, we have u ≡ constant. So the steady -state temperature is

∫
D fdx∫
D dx

. �

4. kuz + V u = 0 on z = a

Exercise 1.5

1. The general solution of the ODE: d
2u
dx2

+u = 0 is u(x) = C1 cosx+C2 sinx. Hence, to satisfy the boundary
conditions,

C1 = 0 and C1 cos(L) + C2 sin(L) = 0.

Therefore, C1 = 0 and C2 sin(L) = 0. So the solution u ≡ 0 if and only if L is not an integer multiple of
π. �

2. (a) The solution is not unique. Indeed, if there exists a solution u0, then u0+C(e−x−2) is also a solution
of equation for any constant C.

(b) The solution does not necessarily exist, since the condition that f(x) must satisfy for the existence
is: ∫ l

0
f(x)dx =

∫ l

0
[u′′(x) + u′(x)] dx = [u′(l) + u(l)]− [u′(0) + u(0)] = 0. �
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3. The general solution of u′′(x) = 0 is u(x) = ax+ b, where a and b are constants. Hence, when we do the
+ case, a and b have to satisfy a + kb = 0 and a + k(a + b) = 0, and then solution(s) of the boundary
problem would be

u(x) =

{
0 if k 6= 0

b if k = 0
;

when we do the − case, the solution(s) of the boundary problem would be

u(x) =


0 if k 6= 0, 2

b if k = 0

− 2bx+ b if k = 2

.

If k = 2, the boundary problem is unique for the + case, but not for the − case. �

4. (a) Adding a constant C to a solution will give another solution, so we do not have uniqueness if there
is a solution;

(b) Integrating f(x, y, z) on D and using the divergence theorem, we obtain∫∫∫
D

f(x, y, z)dxdydz =

∫∫∫
D

∆udxdydz =

∫∫∫
D

∇ · ∇udxdydz =

∫∫
∂D

∇u · ndS = 0

(c) For heat flow or diffusion, u is a physical quantity in terms of time t. The equation here can only
describe the derivatives of u with respect to (x, y, z). So (a) shows that u up to a constant has the
same derivatives with respect to (x, y, z).
Since for heat flow and diffusion ut = k∆u = kf(x, y, z), (b) shows that to satisfy the boundary
condition(insulated solid or impermeable container), the change of the whole heat energy or the whole

substance with respect to time, which is proportion to
∫∫∫
D

∂u

∂t
dxdydz = k

∫∫∫
D

f(x, y, z)dxdydz, has

to be 0. �

5. (a) The characteristic curves satisfy the ODE:

dy

dx
= y.

By separation of the variables and integration, we see that the ODE has the solutions

y = Cex.

Any solution u(x, y) stays constant along the characteristic curves. It follows that u(x, y) = f(e−xy)
is the general solution of this PDE. Applying the boundary condition u(x, 0) = x, we get

u(x, 0) = f(0) = x.

But f(0) is a constant, and so the equality can not hold for all x. There is no solution to this
boundary value problem.

(b) Applying the boundary condition u(x, 0) = 0, we would have

u(x, 0) = f(0) = 0.

Since there are infinitely many smooth function f(x) with f(0) = 0, (for examples, f(x) = 1 + cx,
where c is an arbitrary real number), setting u(x, y) = f(e−xy) we have infinitely many solutions to
the BVP. �

6. Check Example 3 in Section 1.2 of the text book. �
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Exercise 1.6

1. Indeed, we check the sign of the “discriminant” D = a212 − a11a22.

(a) D = [(−1− 3)/2]2 − 1 · 1 = 3 > 0, so it is hyperbolic.

(b) D = [6/2]2 − 9 · 1 = 0, so it is parabolic. �

2. Indeed, its discriminant is

D = (xy)2 − (1 + x)(−y2) = (x2 + x+ 1)y2 = [(x+ 1/2)2 + 3/4]y2,

So it is hyperbolic in {y 6= 0}, parabolic on {y = 0}, and elliptic nowhere. We omit the easy figure here.
�

3. In the equations of the form (1), suppose A = (aij), n = (ai) and b = a0. Denote B = (bij) as the matrix
of the rotation. Therefore, the new variables (ξ, η) satisfy (ξ, η)T = B(x, y)T , and the new coefficients
satisfy A′ = BABT , n′ = nBT and b′ = b. So the rotationally invariant equations have to satisfy

A = BABT , n′ = nBT ∀ normal matrix B.

Thus, A is a unit matrix multiple of a constant a, and n = 0. So all rotationally invariant equations of
the form (1) have the form a(uxx + uyy) + bu = 0. �

4. It is parabolic since its discriminant D = (−4/2)2−1·4 = 0. By direct subtitution, if u(x+y) = f(y+2x)+
xg(y+2x), then uxx = 4f ′′(y+2x)+4xg′′(y+2x)+4g′(y+2x), uxy = 2f ′′(y+2x)+2xg′′(y+2x)+g′(y+2x)
and uyy = f ′′(y + 2x) + xg′′(y + 2x), and then the equation is satisfied. �

5. Let u = ve(αx+βy), then

ux = (vx + αv)e(αx+βy) uy = (vy + βv)e(αx+βy)

uxx = (vxx + 2αvx + α2v)e(αx+βy) uyy = (vyy + 2βvy + β2v)e(αx+βy)

Hence, by direct substituting,

(vxx + 2αvx + α2v) + 3(vyy + 2βvy + β2v)− 2(vx + αv) + 24(vy + βv) + 5v = 0,

vxx + 3vyy + (2α− 2)vx + (6β + 24)vy + (α2 + 3β2 − 2α+ 24β + 5)v = 0.

Let α = 1 and β = −4, the equation turns out to be vxx+3vyy−44v = 0. By setting x′ = x and y′ =
√

3y,
the equation turns out to be vx′x′ + vy′y′ − 44v = 0. �

6. (a) It is hyperbolic since its discriminant D = (1/2)2 > 0;

(b) Set v = uy, we have 3v+vx = 0 which implies v(x, y) = f(y)e−3x and thus u(x, y) = F (y)e−3x+g(x),
where F, g are arbitrary (differential) functions.

(c) Setting y = 0 yields

e−3x = u(x, 0) = F (0)e−3x + g(x)

0 = uy(x, 0) = F ′(0)e−3x.

Therefore,
u(x, y) = (F (y) + 1− F (0))e−3x,

where F (y) satisfy F ′(0) = 0. By setting F (y) = ny2, n = 1, 2, · · · , we obtain infinitely many
solutions u(x, y) = (ny2 + 1)e−3x of the problem. �
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