THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics MATH2230 Tutorial 2

(Prepared by Tai Ho Man)

0.1 Polynomial and Rational function

The domain of definition (or simply the domain) of a function is the set of input for which the function value is defined.

Definition 1. We call the function in the form of

$$P_n(z) = a_0 + a_1 z + a_2 z^2 + ... + a_n z^n$$
 for $n = 0, 1, 2, ...$ and $a_n \neq 0$

to be the polynomial of degree n.

Remark: The domain of definition of polynomial is clearly \mathbb{C} .

Remark: The condition of $a_n \neq 0$ is meaningful. Otherwise, the degree of the polynomial is no longer n, it could be smaller than n.

Definition 2. Given two polynomials $P_n(z)$ and $Q_m(z)$, the function $R(z) = \frac{P_n(z)}{Q_m(z)}$ is called the rational function.

Remark: The domain of definition of rational function is clearly $\mathbb{C} \setminus \{z_1, z_2, ..., z_m\}$ where $z_1, z_2, ..., z_m$ are the roots of $Q_m(z) = 0$.

0.2 Trigonometric function

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$

$$\sinh z = -i\sin(iz) = \frac{e^z - e^{-z}}{2}$$

$$\cosh z = \cos(iz) = \frac{e^z + e^{-z}}{2}$$

Remark: The domain of definition of these trigonometric functions are clearly \mathbb{C} since that of exponential function is also \mathbb{C} .

0.3 Logarithmic function

If the logarithmic is the "inverse" of exponential function, we let $z_0 = re^{i\theta} \neq 0$ for $-\pi < \theta \leq \pi$ $(\theta = Arg(z))$ and we expect to have

$$\log(z_0) = \log(re^{i\theta}) = \log(r) + i\theta$$

However, $z_0 = re^{i\theta} = re^{i\theta+2k\pi i}$ for any integers k, hence we have

$$\log(z_0) = \log(re^{i\theta + 2k\pi i}) = \log(r) + i\theta + 2k\pi i$$

It shows that the logarithmic defined in this way is not a function. We see that $\log(z_0)$ represent a set

$$\log(z_0) := \{ \log(r) + i\theta + 2k\pi i \mid k \in \mathbb{Z} \}$$

or we will call log is a multiple-valued function. It is quite similar to the definition of argument of a complex number. Therefore we should define logarithmic in a unique way.

Definition 3. The principal value of $\log(z)$ equals to

$$Log(z) = \log|z| + iArg(z)$$

where $-\pi < Arg(z) \le \pi$.

Remark 1: Since it is reasonable to define the range of the angle of z_0 in another way, say, $z_0 = re^{i\theta} \neq 0$ for $a < \theta \leq 2\pi + a$ for any real number a. Such a choice of range of the angle of z is called branch. And we can define another single-value function for log by $\log(r) + i\theta$ with $a < \theta \leq 2\pi + a$. (The word "principal" in definition 3 means that $a = -\pi$. We would not call the single-valued log to be principal if $a \neq 0$.) And the range $-\pi < \theta \leq \pi$ is called principal branch.

Remark 2: The domain of definition of Log(z) is $\mathbb{C} \setminus \{0\}$ because of $\log |z|$.

Remark 3: Although Log(z) can be defined on the ray $\theta = a$, Log(z) is not continuous there (not analytic).

Remark 4: Log(z) is analytic in the domain r > 0 and $-\pi < Arg(z) < \pi$ (or other branch).

0.4 Power function

Definition 4. Let $z \neq 0$ and $c \in \mathbb{C}$, the power is defined as

$$z^c = e^{c \, Log(z)}$$

Clearly it can be defined for other branch.

Remark: The domain of definition of power function is again $\mathbb{C} \setminus \{0\}$.

Remark: Some operations which is true in real number turn out is false in complex number:

(a)
$$z^{c_1}z^{c_2}$$
 $z^{c_1+c_2}$; (b) $(z^{c_1})^{c_2}$ $z^{c_1c_2}$ (c) $(zw)^c$ z^cw^c

0.5 Continuity of a Function

Definition 5. Let Ω be open subset of \mathbb{C} and $f:\Omega\to\mathbb{C}$. Let $z_0\in\Omega$, we say $\lim_{z\to z_0}f(z)=c$ if for all $\varepsilon>0$ there is a $\delta>0$ such that if $|z-z_0|<\delta$, then $|f(z)-c|<\varepsilon$.

Definition 6. Let Ω be open subset of \mathbb{C} and $f = f_1 + if_2 : \Omega \to \mathbb{C}$. Let $z_0 \in \Omega$, then f is continuous at z_0 if and only if f_1 and f_2 are continuous at z_0 . In other words, $\lim_{z \to z_0} f(z) = f(z_0)$ if and only if $\lim_{z \to z_0} f_1(z) = f_1(z_0)$ and $\lim_{z \to z_0} f_2(z) = f_2(z_0)$.

0.6 Exercise

- 1. Compute the value of $\log(-1 + \sqrt{3}i)$ with branch $-\pi < Arg(z) \le \pi$.
- 2. Find the domain of f(z) = Log(z i).
- 3. Find the principal values of $(1+i)^i$.
- 4. Describe the image under $f = e^z$ of the following sets:
- (a) The set of z = x + yi such that $x \le 1$ and $0 \le y \le \pi$.
- (b) The set of z = x + yi such that $0 \le y \le \pi$.