
TA’s solution1 to 5011 midterm exam

Q1(a) Please refer to Lecture notes Chapter 1 Section 1.3 for a proof.

(b) Please refer to Exercise 1 solution Question 7 for a proof.

Q2(a) Please refer to Lecture notes Chapter 1 Theorem 1.14.

(b) Please refer to Lecture notes Chapter 2 Theorem 2.12.

(c) Please refer to Exercise 1 solution Question 10 for a proof.

Q3(a) Since µ(X) > 0 and f is a measurable function in X which is positive almost everywhere, µ({x ∈
X : f(x) > 0}) > 0. Note that {x ∈ X : f(x) > 0} =

⋃∞
k=1{x ∈ X : f(x) > 1

k
} and

{x ∈ X : f(x) > 1
k
} ⊆ {x ∈ X : f(x) > 1

k+1
},∀k ∈ N. By continuity of measure, 0 <

µ({x ∈ X : f(x) > 0}) = limk→∞ µ{x ∈ X : f(x) > 1
k
}. Hence, there exists k0 ∈ N such that

µ{x ∈ X : f(x) > 1
k0
} > 0. Take ρ = 1

k0
. We are done.

(b) Please refer to Exercise 2 solution Question 6 for a proof.

Q4(a) Plainly µ([a, b]) ≤ φ([a, b]). To show the reverse inequality, let {Ik = [ak, bk]}∞k=1 be a collection of
closed and bounded intervals such that [a, b] ⊆

⋃
k Ik. Our aim is to show

∞∑
k=1

φ(Ik) ≥ φ([a, b]) = g(b)− g(a).

Approach 1

Recall that g is a continuous, non-decreasing function on R. By [a, b] ⊆
⋃

k[ak, bk], we claim that
[g(a), g(b)] ⊆

⋃
k[g(ak), g(bk)], which may be justified as follows. Given y ∈ [g(a), g(b)], by the

intermediate value theorem, there exists x ∈ [a, b] such that y = g(x) ∈ g([a, b]) ⊆ g(
⋃

k[ak, bk]) ⊆⋃
k[g(ak), g(bk)].

As a result,

g(b)− g(a) = L([g(a), g(b)]) ≤ L(
∞⋃
k=1

[g(ak), g(bk)]) ≤
∞∑
k=1

L([g(ak), g(bk)]) =
∞∑
k=1

φ(Ik),

which was to be demonstrated.

Approach 2

Fix an ε > 0. Since g is continuous and non-decreasing, there exist rk, sk such that
−∞ < rk < ak ≤ bk < sk <∞
g(sk)− g(bk) < ε/2k+1

g(ak)− g(rk) < ε/2k+1.

It follows that we have
[a, b] ⊆

⋃
k

Ik ⊆
⋃
k

(rk, sk) ⊆
⋃
k

[rk, sk],

1This solution is adapted from the work by former TAs.
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and

ε+
∞∑
k=1

φ(Ik) ≥
∞∑
k=1

φ([rk, sk]).

As [a, b] is compact and covered by {(rk, sk)}, there is a finite sub-covering, say, {(rk, sk)}Nk=1.

Let {C`}`∈L be the connected components of the set
⋃N

k=1[rk, sk]. Since [a, b] a connected sub-

set of
⋃N

k=1[rk, sk], it is contained in, say, C1. Given 1 ≤ k ≤ N , as [rk, sk] is connected, we
have either [rk, sk] ⊆ C1 or [rk, sk] ∩ C1 = ∅. Therefore, C1 =

⋃
k∈K [rk, sk], where K :=

{1 ≤ k ≤ N : [rk, sk] ⊆ C1}. Since connected subsets of R are exactly singletons and intervals,
we see that C1 is a closed interval, which we denote by [Emin, Emax].

Let E := {rk}k∈K ∪{sk}k∈K be the set of all end points given by [rk, sk], k ∈ K. Given e ∈ E with
e 6= Emax, we use e↑ to denote the immediate successor of e in E. i.e. e↑ is the smallest element
in E which is greater than e. Noting that E ⊆ [Emin, Emax], we have [e, e↑] ⊆ [Emin, Emax] =⋃

k∈K [rk, sk], whence there exists k ∈ K such that

e+ e↑

2
∈ [rk, sk].

As a result, 
e <

e+ e↑

2
≤ sk ⇒ e↑ ≤ sk

e↑ >
e+ e↑

2
≥ rk ⇒ e ≥ rk.

i.e. [e, e↑] ⊆ [rk, sk]. Consequently, each such [e, e↑] is contained in some [rk, sk], whence

ε+
∞∑
k=1

φ(Ik) ≥
∞∑
k=1

φ([rk, sk]) ≥
∑
k∈K

φ([rk, sk]) =
∑
k∈K

∑
e∈E\Emax

[e,e↑]⊆[rk,sk]

φ([e, e↑])

=
∑

e∈E\Emax

φ([e, e↑])
∑
k∈K

[e,e↑]⊆[rk,sk]

1 ≥
∑

e∈E\Emax

φ([e, e↑])

= φ([Emin, Emax]) ≥ φ([a, b]) since [a, b] ⊆ [Emin, Emax].

As ε > 0 is arbitrary, the result follows.

(b) Let G be the collection of all closed and bounded intervals in R. As (G, φ) forms a gauge, µ is an
outer measure on R. We shall apply Caratheodory’s criterion to show that µ is a Borel measure. So
pick two sets E,F ⊆ R with δ1 := dist(E,F ) > 0. We want to show that µ(E∪F ) = µ(E)+µ(F ).
By subadditivity of µ we only need to show that µ(E ∪ F ) ≥ µ(E) + µ(F ).

Let ε > 0. By cutting intervals into smaller ones, we see that

µ(E) = inf

{∑
k

φ(Ik) : E ⊆
⋃
k

Ik, Ik closed and bounded interval with diam(Ik) < δ1/2

}
.

Therefore, we can find a countable collection I of closed intervals such that E ∪ F ⊆
⋃

J∈I J ,

µ(E ∪ F ) + ε ≥
∑
J∈I

φ(J),

2



and diam(J) < δ1/2 for all J ∈ I. Thus each J ∈ I can only intersect at most one of E and F . Let
I1 := {J ∈ I : J ∩ E 6= ∅} and I2 := {J ∈ I : J ∩ F 6= ∅}. We have E ⊆

⋃
J∈I1 J , F ⊆

⋃
J∈I2 J ,

and I1 ∩ I2 = ∅, whence

µ(E ∪ F ) + ε ≥
∑
J∈I

φ(J)

≥
∑
J∈I1

φ(J) +
∑
J∈I2

φ(J)

≥ µ(E) + µ(F ).

Since ε > 0 is arbitrary, The result follows.

(c) Since g is continuously differentiable,
∫
χ[a,b]g

′
dL =

∫ b

a
g

′
dL = g(b) − g(a). By (a),

∫
χ[a,b]dµ =

µ([a, b]) = g(b) − g(a). Thus,
∫
χ[a,b]g

′
dL =

∫
χ[a,b]dµ. By linearity,

∫
sg

′
dL =

∫
sdµ, ∀ step

function s.
Note that ∀f ∈ Cc(R),∃ an incresing sequence of step functions {sn}∞n=1 such that sn → f point-
wisely. By Monotone Convergence Theorem,

∫
fg

′
dL = limn→∞

∫
sng

′
dL = limn→∞

∫
sndµ =∫

fdµ.

Q5 Plainly µ is a nonnegative function on M and µ(∅) = 0. Let {Ek} be a countable collection of
mutually disjoint sets in M. Writing E :=

⋃
k Ek, we would like to show that

µ(E) =
∑
k

µ(Ek).

On the one hand, given F0 ∈M, we have∑
k

µ(Ek) =
∑
k

inf {µ1(Ek \ F ) + µ2(Ek ∩ F ) : F ∈M}

≤
∑
k

[µ1(Ek \ F0) + µ2(Ek ∩ F0)] = µ1(E \ F0) + µ2(E ∩ F0),

whence
∑

k µ(Ek) ≤ µ(E) by taking inf over F0 ∈M on the R.H.S.

To get the reverse inequality, let ε > 0 be fixed. For each k, there exists Fk ∈M such that

µ1(Ek \ Fk) + µ2(Ek ∩ Fk) ≤ µ(Ek) +
ε

2k

Let F :=
⋃

k(Ek ∩ Fk). Note that F ⊆ E and E \ F =
⋃

k(Ek \ Fk). Hence

µ(E) ≤ µ1(E \ F ) + µ2(E ∩ F )

=
∑
k

µ1(Ek \ Fk) +
∑
k

µ2(Ek ∩ Fk)

=
∑
k

[µ1(Ek \ Fk) + µ2(Ek ∩ Fk)]

≤
∑
k

µ(Ek) + ε.

Since ε > 0 is arbitrary, we finish the proof.
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