TA's solution¹ to 5011 midterm exam

- Q1(a) Please refer to Lecture notes Chapter 1 Section 1.3 for a proof.
 - (b) Please refer to Exercise 1 solution Question 7 for a proof.
- Q2(a) Please refer to Lecture notes Chapter 1 Theorem 1.14.
 - (b) Please refer to Lecture notes Chapter 2 Theorem 2.12.
 - (c) Please refer to Exercise 1 solution Question 10 for a proof.
- **Q3(a)** Since $\mu(X) > 0$ and f is a measurable function in X which is positive almost everywhere, $\mu(\{x \in X : f(x) > 0\}) > 0$. Note that $\{x \in X : f(x) > 0\} = \bigcup_{k=1}^{\infty} \{x \in X : f(x) > \frac{1}{k}\}$ and $\{x \in X : f(x) > \frac{1}{k}\} \subseteq \{x \in X : f(x) > \frac{1}{k+1}\}, \forall k \in \mathbb{N}$. By continuity of measure, $0 < \mu(\{x \in X : f(x) > 0\}) = \lim_{k \to \infty} \mu\{x \in X : f(x) > \frac{1}{k}\}$. Hence, there exists $k_0 \in \mathbb{N}$ such that $\mu\{x \in X : f(x) > \frac{1}{k_0}\} > 0$. Take $\rho = \frac{1}{k_0}$. We are done.
 - (b) Please refer to Exercise 2 solution Question 6 for a proof.
- **Q4(a)** Plainly $\mu([a, b]) \leq \phi([a, b])$. To show the reverse inequality, let $\{I_k = [a_k, b_k]\}_{k=1}^{\infty}$ be a collection of closed and bounded intervals such that $[a, b] \subseteq \bigcup_k I_k$. Our aim is to show

$$\sum_{k=1}^{\infty} \phi(I_k) \ge \phi([a,b]) = g(b) - g(a).$$

Approach 1

Recall that g is a continuous, non-decreasing function on \mathbb{R} . By $[a, b] \subseteq \bigcup_k [a_k, b_k]$, we claim that $[g(a), g(b)] \subseteq \bigcup_k [g(a_k), g(b_k)]$, which may be justified as follows. Given $y \in [g(a), g(b)]$, by the intermediate value theorem, there exists $x \in [a, b]$ such that $y = g(x) \in g([a, b]) \subseteq g(\bigcup_k [a_k, b_k]) \subseteq \bigcup_k [g(a_k), g(b_k)]$.

As a result,

$$g(b) - g(a) = \mathcal{L}([g(a), g(b)]) \le \mathcal{L}(\bigcup_{k=1}^{\infty} [g(a_k), g(b_k)]) \le \sum_{k=1}^{\infty} \mathcal{L}([g(a_k), g(b_k)]) = \sum_{k=1}^{\infty} \phi(I_k),$$

which was to be demonstrated.

Approach 2

Fix an $\varepsilon > 0$. Since g is continuous and non-decreasing, there exist r_k, s_k such that

$$\begin{cases} -\infty < r_k < a_k \le b_k < s_k < \infty \\ g(s_k) - g(b_k) < \varepsilon/2^{k+1} \\ g(a_k) - g(r_k) < \varepsilon/2^{k+1}. \end{cases}$$

It follows that we have

$$[a,b] \subseteq \bigcup_k I_k \subseteq \bigcup_k (r_k, s_k) \subseteq \bigcup_k [r_k, s_k],$$

¹This solution is adapted from the work by former TAs.

and

$$\varepsilon + \sum_{k=1}^{\infty} \phi(I_k) \ge \sum_{k=1}^{\infty} \phi([r_k, s_k]).$$

As [a, b] is compact and covered by $\{(r_k, s_k)\}$, there is a finite sub-covering, say, $\{(r_k, s_k)\}_{k=1}^N$. Let $\{C_\ell\}_{\ell \in L}$ be the connected components of the set $\bigcup_{k=1}^N [r_k, s_k]$. Since [a, b] a connected subset of $\bigcup_{k=1}^N [r_k, s_k]$, it is contained in, say, C_1 . Given $1 \leq k \leq N$, as $[r_k, s_k]$ is connected, we have either $[r_k, s_k] \subseteq C_1$ or $[r_k, s_k] \cap C_1 = \emptyset$. Therefore, $C_1 = \bigcup_{k \in K} [r_k, s_k]$, where K := $\{1 \leq k \leq N : [r_k, s_k] \subseteq C_1\}$. Since connected subsets of \mathbb{R} are exactly singletons and intervals, we see that C_1 is a closed interval, which we denote by $[E_{\min}, E_{\max}]$.

Let $E := \{r_k\}_{k \in K} \cup \{s_k\}_{k \in K}$ be the set of all end points given by $[r_k, s_k], k \in K$. Given $e \in E$ with $e \neq E_{\max}$, we use e^{\uparrow} to denote the immediate successor of e in E. i.e. e^{\uparrow} is the smallest element in E which is greater than e. Noting that $E \subseteq [E_{\min}, E_{\max}]$, we have $[e, e^{\uparrow}] \subseteq [E_{\min}, E_{\max}] = \bigcup_{k \in K} [r_k, s_k]$, whence there exists $k \in K$ such that

$$\frac{e+e^{\uparrow}}{2} \in [r_k, s_k]$$

As a result,

$$\begin{cases} e < \frac{e + e^{\uparrow}}{2} \le s_k \Rightarrow e^{\uparrow} \le s_k \\ e^{\uparrow} > \frac{e + e^{\uparrow}}{2} \ge r_k \Rightarrow e \ge r_k. \end{cases}$$

i.e. $[e, e^{\uparrow}] \subseteq [r_k, s_k]$. Consequently, each such $[e, e^{\uparrow}]$ is contained in some $[r_k, s_k]$, whence

$$\varepsilon + \sum_{k=1}^{\infty} \phi(I_k) \ge \sum_{k=1}^{\infty} \phi([r_k, s_k]) \ge \sum_{k \in K} \phi([r_k, s_k]) = \sum_{k \in K} \sum_{\substack{e \in E \setminus E_{\max} \\ [e, e^{\uparrow}] \subseteq [r_k, s_k]}} \phi([e, e^{\uparrow}])$$
$$= \sum_{e \in E \setminus E_{\max}} \phi([e, e^{\uparrow}]) \sum_{\substack{k \in K \\ [e, e^{\uparrow}] \subseteq [r_k, s_k]}} 1 \ge \sum_{e \in E \setminus E_{\max}} \phi([e, e^{\uparrow}])$$
$$= \phi([E_{\min}, E_{\max}]) \ge \phi([a, b]) \quad \text{since } [a, b] \subseteq [E_{\min}, E_{\max}].$$

As $\varepsilon > 0$ is arbitrary, the result follows.

(b) Let \mathcal{G} be the collection of all closed and bounded intervals in \mathbb{R} . As (\mathcal{G}, ϕ) forms a gauge, μ is an outer measure on \mathbb{R} . We shall apply Caratheodory's criterion to show that μ is a Borel measure. So pick two sets $E, F \subseteq \mathbb{R}$ with $\delta_1 := \operatorname{dist}(E, F) > 0$. We want to show that $\mu(E \cup F) = \mu(E) + \mu(F)$. By subadditivity of μ we only need to show that $\mu(E \cup F) \ge \mu(E) + \mu(F)$.

Let $\varepsilon > 0$. By cutting intervals into smaller ones, we see that

$$\mu(E) = \inf\left\{\sum_{k} \phi(I_k) : E \subseteq \bigcup_{k} I_k, I_k \text{ closed and bounded interval with } \dim(I_k) < \delta_1/2\right\}$$

Therefore, we can find a countable collection \mathcal{I} of closed intervals such that $E \cup F \subseteq \bigcup_{J \in \mathcal{I}} J$,

$$\mu(E \cup F) + \varepsilon \ge \sum_{J \in \mathcal{I}} \phi(J),$$

and diam $(J) < \delta_1/2$ for all $J \in \mathcal{I}$. Thus each $J \in \mathcal{I}$ can only intersect at most one of E and F. Let $\mathcal{I}_1 := \{J \in \mathcal{I} : J \cap E \neq \emptyset\}$ and $\mathcal{I}_2 := \{J \in \mathcal{I} : J \cap F \neq \emptyset\}$. We have $E \subseteq \bigcup_{J \in \mathcal{I}_1} J, F \subseteq \bigcup_{J \in \mathcal{I}_2} J$, and $\mathcal{I}_1 \cap \mathcal{I}_2 = \emptyset$, whence

$$\begin{split} \mu(E \cup F) + \varepsilon &\geq \sum_{J \in \mathcal{I}} \phi(J) \\ &\geq \sum_{J \in \mathcal{I}_1} \phi(J) + \sum_{J \in \mathcal{I}_2} \phi(J) \\ &\geq \mu(E) + \mu(F). \end{split}$$

Since $\varepsilon > 0$ is arbitrary, The result follows.

- (c) Since g is continuously differentiable, $\int \chi_{[a,b]}g'd\mathcal{L} = \int_a^b g'd\mathcal{L} = g(b) g(a)$. By (a), $\int \chi_{[a,b]}d\mu = \mu([a,b]) = g(b) g(a)$. Thus, $\int \chi_{[a,b]}g'd\mathcal{L} = \int \chi_{[a,b]}d\mu$. By linearity, $\int sg'd\mathcal{L} = \int sd\mu$, \forall step function s. Note that $\forall f \in C_c(\mathbb{R}), \exists$ an increasing sequence of step functions $\{s_n\}_{n=1}^{\infty}$ such that $s_n \to f$ pointwisely. By Monotone Convergence Theorem, $\int fg'd\mathcal{L} = \lim_{n\to\infty} \int s_ng'd\mathcal{L} = \lim_{n\to\infty} \int s_nd\mu = \int fd\mu$.
- Q5 Plainly μ is a nonnegative function on \mathcal{M} and $\mu(\emptyset) = 0$. Let $\{E_k\}$ be a countable collection of mutually disjoint sets in \mathcal{M} . Writing $E := \bigcup_k E_k$, we would like to show that

$$\mu(E) = \sum_{k} \mu(E_k)$$

On the one hand, given $F_0 \in \mathcal{M}$, we have

$$\sum_{k} \mu(E_{k}) = \sum_{k} \inf \{ \mu_{1}(E_{k} \setminus F) + \mu_{2}(E_{k} \cap F) : F \in \mathcal{M} \}$$

$$\leq \sum_{k} [\mu_{1}(E_{k} \setminus F_{0}) + \mu_{2}(E_{k} \cap F_{0})] = \mu_{1}(E \setminus F_{0}) + \mu_{2}(E \cap F_{0}),$$

whence $\sum_{k} \mu(E_k) \leq \mu(E)$ by taking inf over $F_0 \in \mathcal{M}$ on the R.H.S.

To get the reverse inequality, let $\varepsilon > 0$ be fixed. For each k, there exists $F_k \in \mathcal{M}$ such that

$$\mu_1(E_k \setminus F_k) + \mu_2(E_k \cap F_k) \le \mu(E_k) + \frac{\varepsilon}{2^k}$$

Let $F := \bigcup_k (E_k \cap F_k)$. Note that $F \subseteq E$ and $E \setminus F = \bigcup_k (E_k \setminus F_k)$. Hence

$$\mu(E) \leq \mu_1(E \setminus F) + \mu_2(E \cap F)$$

= $\sum_k \mu_1(E_k \setminus F_k) + \sum_k \mu_2(E_k \cap F_k)$
= $\sum_k [\mu_1(E_k \setminus F_k) + \mu_2(E_k \cap F_k)]$
 $\leq \sum_k \mu(E_k) + \varepsilon.$

Since $\varepsilon > 0$ is arbitrary, we finish the proof.