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TA’s solution to 5011 midterm exam

Please refer to Lecture notes Chapter 1 Section 1.3 for a proof.
Please refer to Exercise 1 solution Question 7 for a proof.
Please refer to Lecture notes Chapter 1 Theorem 1.14.

Please refer to Lecture notes Chapter 2 Theorem 2.12.

Please refer to Exercise 1 solution Question 10 for a proof.

Since u(X) > 0 and f is a measurable function in X which is positive almost everywhere, u({z €
X : f(z) > 0}) > 0. Note that {z € X : f(z) > 0} = Up_ {z € X : f(z) > ;} and
{r e X : flx) > 1} € {or e X : f(x) > 75},Vk € N. By continuity of measure, 0 <
p{zr € X : f(x) > 0}) = limy 00 p{x € X : f(z) > 7}. Hence, there exists ky € N such that
wf{r e X @ f(z) > }>O Takep— . We are done.

Please refer to Exercise 2 solution Question 6 for a proof.

Plainly x([a, b]) < ¢([a, b]). To show the reverse inequality, let {I), = [ax, bg]},-; be a collection of
closed and bounded intervals such that [a,b] C |J,, I5. Our aim is to show

> 6(Lx) = ¢([a, b]) = g(b) — g(a).

Approach 1

Recall that g is a continuous, non-decreasing function on R. By [a, b] C |, [ax, bk], we claim that
lg(a), g(b)] € U,lg(ax), g(by)], which may be justified as follows. Given y € [g(a), g(b)], by the
intermediate value theorem, there exists = € [a, b] such that y = g(z) € g([a,b]) C g(U,lax, bx]) €

Uslg(ar), g(bx)].

As a result,

9(b) = ga) = L([g(a), 9®)]) < LU lglar), 9(0)]) < > L(0glar), (b)) = Y d(Ly),

which was to be demonstrated.
Approach 2

Fix an € > 0. Since g is continuous and non-decreasing, there exist 7y, s such that

—00 <1 < ag < by < s <00
g(sk) — g(bx) < g/25!
glag) — g(ry) < e/2.

la, ) € | Ze € [ J(res ) € Jlres s,
k k

k

It follows that we have

! This solution is adapted from the work by former TAs.
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As [a,D] is compact and covered by {(r, sx)}, there is a finite sub-covering, say, {(r%, sx)}n,.
Let {Cy},c; be the connected components of the set U, [, s&). Since [a,b] a connected sub-
set of ngl[m,sk], it is contained in, say, C;. Given 1 < k < N, as [ry, sx] is connected, we
have either [ry,si] € Cy or [rg,si] N Cy = 0. Therefore, C1 = Upcxlr, k), where K =
{1 <k <N :rgsk) CCr}. Since connected subsets of R are exactly singletons and intervals,
we see that () is a closed interval, which we denote by [Emmin, Fmax)-

Let B := {7} e U{sk }rex be the set of all end points given by [ry, si], k € K. Given e € E with
e # Eyax, we use e to denote the immediate successor of e in E. i.e. el is the smallest element
in E which is greater than e. Noting that £ C [Eunin, Fmax), we have [e,e'] C [Fuin, Pmax] =
Ukex [Tk 5k], whence there exists k € K such that

e+el
2

€ [k, Sk)-

As a result,
e+el

e < <sp=el <y

e—l—eT

el > > T = € > T

i.e. [e,el] C [ry,si]. Consequently, each such [e, '] is contained in some [ry, s], whence

€+ Zgb (Ix) > Z o([rr, sil) > Zéb([rkask]) = Z Z o([e,e'])

keK keK EEE\Emax
le,€"]C[rg,s]

= Y ded) Y 1= Y

e€F\ Emax keK e€F\ Emax
[e,eM)Clr 5]

= ¢([Emin7 Emax]) Z ¢([CL, b]) SiIlCe [CL, b] g [Emina Emax]-
As e > 0 is arbitrary, the result follows.
Let G be the collection of all closed and bounded intervals in R. As (G, ¢) forms a gauge, p is an
outer measure on R. We shall apply Caratheodory’s criterion to show that u is a Borel measure. So

pick two sets £, F' C R with 6, := dist(F, F') > 0. We want to show that u(EUF) = u(E)+ u(F).
By subadditivity of u we only need to show that u(E U F) > u(E) + u(F).

Let € > 0. By cutting intervals into smaller ones, we see that

pu(E) = inf {Z o(Iy) : E C UI’“ I, closed and bounded interval with diam(/) < 51/2} .
! k

Therefore, we can find a countable collection Z of closed intervals such that EU F' C |J,.; J

WEUF) +e2) o))

JET



and diam(J) < 6;/2 for all J € Z. Thus each J € Z can only intersect at most one of £ and F'. Let
Li={Jel:JNE#Wand Iy :={J € T: JNF #0}. We have E C J;er, J, F € U, eq, J
and Z; N Z, = (), whence

WEUF) +e>> ¢(J)
> () + D o))
JeTy JeTy

Since € > 0 is arbitrary, The result follows.

(c) Since g is continuously differentiable, fx[ayb]g/dﬁ = fab gdL = g(b) — g(a). By (a), J Xy dp =
w(la,b]) = g(b) — g(a). Thus, fx[a,b]g'dﬁ = [ X{apdp. By linearity, fsg/dﬁ = [ sdu, ¥ step

function s.
Note that Vf € C.(R),3 an incresing sequence of step functions {s,}>; such that s, — f point-
wisely. By Monotone Convergence Theorem, [ fg'dL = lim, o [ 8,9 dL = lim, oo [ spdu =

[ fdp.

Q5 Plainly 4 is a nonnegative function on M and (@) = 0. Let {E.} be a countable collection of
mutually disjoint sets in M. Writing E := | J, Ex, we would like to show that

plE) = 3 (B,

On the one hand, given Iy € M, we have
D B =D inf {u(Ep \ F) + pa(Ex N F) : F € M}
k k

< Z[Ml(Ek \ Fo) + po( By N Fy)] = (B \ Fo) + pe(E N Fy),
%

whence ), u(Ex) < p(E) by taking inf over Fy € M on the R.H.S.
To get the reverse inequality, let € > 0 be fixed. For each k, there exists Fj, € M such that

(B \ Fi) + po(Ep N Fy) < p(Ey) + %
Let F := |, (Ex N Fy). Note that F' C E and E\ F = J,(Ey, \ Fy). Hence
w(E) < p(E\F)+ p(ENF)
= B\ F) + Y pe(Ep N F)
= i[ul(Ek \ Fy) + M];(Ek N Fy)]

K
< ZM(Ek) t+e.

Since € > 0 is arbitrary, we finish the proof.



