Suggested Solution 5

1. We summarize the properties of the Lebesgue measure on \mathbb{R}^n . For $E \subset \mathbb{R}^n$, let

$$\mathcal{L}^n(E) = \inf \left\{ \sum_k |C_k| : E \subset \bigcup_k C_k, C_k \text{ closed cubes} \right\}.$$

We have

- (a) $\mathcal{L}^n(C) = 1$ for every unit cube C (open or closed).
- (b) \mathcal{L}^n is a σ -finite Borel measure.
- (c) \mathcal{L}^n is finite on bounded sets.
- (d) For every measurable E,

$$\mathcal{L}^n(E) = \inf \{ \mathcal{L}^n(G) : E \subset G, G \text{ open} \};$$

$$\mathcal{L}^n(E) = \sup \{ \mathcal{L}^n(K) : K \subset E, K \text{ compact} \}$$
.

(e) Let T be a linear transformation from \mathbb{R}^n to itself. For each measurable E, T(E) is also measurable and there is some constant C_T such that

$$\mathcal{L}^n(T(E)) = C_T \mathcal{L}^n(E)$$
.

(a)-(d) were covered in previous exercises. Prove (e).

Solution. You are referred Proposition 3.2 in my notes or Theorem 2.20 (e) in [R].

2. Let Φ be a Lipschitz continuous map on \mathbb{R}^n to \mathbb{R}^n , that is, for some L>0,

$$|\Phi(x) - \Phi(y)| \le L|x - y|$$
, $\forall x, y \in \mathbb{R}^n$.

Show that $\Phi(E)$ is measurable if E is (Lebesgue) measurable.

Solution. Assume that E is compact first. As the image of a compact set under a continuous map is again compact and so is Borel, we see that $\mathcal{L}^n(E)$ is also compact, hence measurable. Next, let E be a bounded measurable set. By inner regularity we can find a set $F \subset E$ which is the countable union of compact sets satisfying $\mathcal{L}^n(E \setminus F) = 0$.

Hence the set $N = E \setminus F$ is null and $\Phi(E) = \Phi(F) \cup \Phi(N)$. We have $\Phi(F) = \bigcup_j \Phi(K_j)$ where K_j are compact, so $\Phi(F)$ is Borel (hence measurable). Therefore, things boil down to show that the image of a null set under a Lipschitz map is a null set. This is the key point, and the proof is not difficult. Finally, we can write a measurable set as the countable union of bounded, measurable sets.

3. This problem is related to the σ -finiteness condition in Proposition 2.10. Define the distance between points (x_1, y_1) and (x_2, y_2) in the plane to be

$$|y_1 - y_2|$$
 if $x_1 = x_2$, $1 + |y_1 - y_2|$ if $x_1 \neq x_2$.

Show that this is indeed a metric, and that the resulting metric space X is locally compact. If $f \in C_c(X)$, let x_1, \ldots, x_n be those values of x for which $f(x, y) \neq 0$ for at least one y (there are only finitely many such x!), and define

$$\Lambda f = \sum_{j=1}^{n} \int_{-\infty}^{\infty} f(x_j, y) \, dy.$$

Let μ be the measure associated with this Λ by the representation theorem. If E is the x-axis, show that $\mu(E) = \infty$ although $\mu(K) = 0$ for every compact $K \subset E$.

Solution. Write $p_i = (x_i, y_i), i = 1, 2$. Denote

$$d(p_1, p_2) = \begin{cases} |y_1 - y_2|, & x_1 = x_2, \\ 1 + |y_1 - y_2|, & x_1 \neq x_2. \end{cases}$$

We prove that d is a metric.

- $d(p_1, p_2) \ge 0$ and $d(p_1, p_2) = 0$ if and only if $p_1 = p_2$.
- $d(p_1, p_2) = d(p_2, p_1)$.
- $d(p_1, p_2) \le d(p_1, p_3) + d(p_3, p_2)$ holds because $|y_1 y_2| \le |y_1 y_3| + |y_3 y_2|$.

Now we claim that (X, τ) is a locally compact Hausdorff space. Let τ_1 be the discrete topology on \mathbb{R} , so every singleton $\{x\}$ is an open set. Then every point $x \in \mathbb{R}$ has the compact set $\{x\}$ as a neighborhood, so that (\mathbb{R}, τ_1) is a locally compact Hausdorff space. Note that $(X, \tau) = (\mathbb{R}, \tau_1) \times (\mathbb{R}, \tau_2)$, where τ_2 is the usual topology of \mathbb{R} . The claim follows. If K is compact in X, the first projection $\mathrm{pr}_1(K)$ is compact in (\mathbb{R}, τ_1) . Hence it is a finite

set. Therefore K is a finite union

$$\{x_1\} \times K_1 \cup \cdots \cup \{x_n\} \times K_n,$$

where each K_i , i = 1, 2, ..., n, is a compact set in (\mathbb{R}, τ_2) .

If $f: X \to \mathbb{R}$ has compact support, then spt $f \subset \{x_1, \dots, x_n\} \times \mathbb{R}$. Thus,

$$\Lambda f = \sum_{j=1}^{n} \int_{-\infty}^{\infty} f(x_j, y) \, dy$$

defines a positive linear functional on $C_c(X)$.

By the proof of Riesz's representation theorem, the measure μ defined by the equalities

$$\mu(V) = \sup_{K \subset V \text{ compact}} \mu(K) = \sup_{f \prec V} \Lambda f,$$

$$\mu(E) = \inf_{V \supset E \text{ open}} \mu(V)$$

is a representing measure for Λ . Using the second equality with the Lebesgue measure m on \mathbb{R} , we observe that

$$\mu(\{x\} \times K) = m(K).$$

Thus μ is characterized by the identity

$$\mu(\lbrace x \rbrace \times [a, b]) = b - a, \qquad x \in \mathbb{R}.$$

Let V be an open set containing $\mathbb{R} \times \{0\}$. Then for $x \in \mathbb{R}$, $(x, 0) \in V$, so that there exists an $\varepsilon_x > 0$ with

$$\{x\} \times [-\varepsilon_x, \varepsilon_x] \subset V.$$

This implies that there must be an n with uncountably many $\varepsilon_x \geq 1/n$. (Otherwise, $\varepsilon_x \geq 1/n$ for at most countably many x, contradicting the fact that \mathbb{R} is uncountable.)

Let

$$K_x = \{x\} \times \left[-\frac{\varepsilon_x}{2}, \frac{\varepsilon_x}{2} \right], \quad \varepsilon_x \ge \frac{1}{n}.$$

For $K = \bigcup_{j=1}^{m} K_{x_j}$, we have $\mu(K) \geq \frac{m}{n}$. Hence, if $V \supset \mathbb{R} \times \{0\}$ is open, then $\mu(V) \geq \sup_{m \in \mathbb{N}} \frac{m}{n} = \infty$. This implies $\mu(\mathbb{R} \times \{0\}) = \infty$.

Now if K is a compact subset of $\mathbb{R} \times \{0\}$, then $K = \{x_1, \dots, x_n\} \times \{0\}$, which implies $\mu(K) = 0$.

Therefore for $E = \mathbb{R} \times \{0\}$, $\mu(E) = \infty$ while $\sup_{K \subset E \text{ compact}} \mu(K) = 0$. This means that μ is not inner regular.

4. Let μ be a Borel measure on \mathbb{R}^n such that $\mu(K) < \infty$ for all compact K. Show that μ is the restriction of some Riesz measure on \mathcal{B} .

Solution. For $f \in C_c$, define the linear functional by

$$\Lambda f = \int f d\mu$$
.

As μ is finite on compact sets, this is a well-defined and obviously a positive functional. By the representation theorem there is a Riesz measure μ_{Λ} such that

$$\int f d\mu = \int f \mu_{\Lambda} , \quad \forall f \in C^{c}(\mathbb{R}^{n}) .$$

For any open set G, we can find an ascending sequence of compact sets $\{K_n\}$ such that $G = \bigcup_n K_n$. Let f_n satisfy $K_n < f_n < G$ so that f_n increases to χ_G pointwisely. By Lebesgue monotone convergence we get

$$\mu(G) = \lim_{n \to \infty} \int_G f_n d\mu = \lim_{n \to \infty} \int_G f_n d\mu_{\Lambda} = \mu_{\Lambda}(G) .$$

Let $E \in \mathcal{B}$. For $\varepsilon > 0$, by Proposition 2.10, there exists an open set E and a closed set F with $F \subset E \subset G$ such that $\mu(G \setminus F) < \varepsilon$. Since G and $G \setminus F$ are open, λ and μ coincide on them, and one has

$$\mu(E) = \mu(G) - \mu(G \setminus E) \ge \mu(G) - \mu(G \setminus F) = \lambda(G) - \lambda(G \setminus F)$$

> $\lambda(E) - \varepsilon$.

By changing the position of μ and λ , one has

$$\lambda(E) - \varepsilon \le \mu(E) \le \lambda(E) + \varepsilon.$$

Since this holds for any $\varepsilon > 0$, one has $\mu(E) = \lambda(E)$.