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Exercise 3.A

1* First we prove the “if” part. b = ¢ = 0 implies that 7' : R3 — R? is defined as T'(x,y,2) =
(2z — 4y + 3z, 6x). For any (x,v, 2), (u,v,w) € R3,

T((x,y,2) + (u,v,w)) =T(z +u,y +v,2+w)
2(z+u) —4(y+v) +3(z 4+ w),6(x + u))
(22 — 4y + 3z,6x) + (2u — 4v + 3w, 6u)

T(z,y,2) + T(u,v, w)

Thus, this map is additive.
For any (x,,2) € R? and a € R,
T(a(x,y,z2)) = T(ax,ay,az)
= (2ax — 4ay + 3az, 6ax)
= a(2z — 4y + 2z,6x)
=aT(z,y,2)
Thus, this map is homogeneous of degree 1. We conclude that T is a linear map.

Then we prove the “only if” part. Now T is linear, thus additive and homogeneous of degree
1 by definition. For any (z,y,2) € R® and a € R,

T(a(x,y,z)) =T (ax,ay,az)
= (2ax — 4ay + 3az + b, 6ax + ca’ryz)
and
aT(x,y,2) = a(2x — 4y + 22 + b, 62 + cayz)
= (2ax — 4ay + 3az + ab, 6ax + caxyz)

By homogeneity, T'(a(z,y, z)) = aT'(x,y, z). This implies that (2ax — 4ay + 3az + b, 6az +
calryz) = (2ax — 4ay + 3az + ab, 6ax + caxyz) for any (z,y, z) € R3 and a € R. Thus b = ab,
cazryz = caxyz for any x,y, z,a € R. This can only happen when b = ¢ = 0 (say, take a = 2
and x =y = z = 1 to see this). This proves the “only if” part.

4* Suppose there exists a1, ..., a,, € F such that
aivy + - amvm = 0.
Then apply the linear transformation 7" on both sides, we have
T(a1v1 + - - - amvy) = T(0).

By linearity of T', we have
arTvi + - -apTv, =0.

Since (Tvi,...,Tvy,) is given to be linearly independent, by definition, we have a1, ..., an
being all zero. Therefore (v1,...,v,,) is linearly independent.
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Consider the conjugation function on C defined by ¢(a + bi) = a — bi for all a,b € R. Let
w=a+bi,z=c+di € C with a,b,c,d € R. We see that

ow)+p(z)=(a=bi)+ (c—di)=(a+c)— (b+d)i=¢((a+c)+ (b+d)i) = p(w+ 2).

However, we check that ip(1) = i-1 = ¢ while p(i- 1) = p(i) = —i # i. Therefore ¢ is not
C-linear.

(For the R case: Consider R as a vector space over Q. Let (1,7) be a list of vectors in R. It
is linearly independent over QQ by irrationality of m. The advance tools that we will use are
“Every linearly independent subset of a vector space can be extended to a basis” and “Value
at basis of domain determines a linear map” which are analogs to Theorem 2.33 and 3.5 of
textbook in vector spaces which are not necessarily finite dimensional. Let 8 be a Q-basis of
R containing 1 and 7. Define a Q-linear operator ¢ on R such that ¢(1) = 7, ¢(7) = 1, and
¢(x) = z for x € B not equal to 1 nor w. Then it is additive but not R-linear since mp(1) = >
while p(7) = 1.)

V' is a finite dimensional vector space and U is a subspace of V. Hence we can pick a basis
{u1,--- ,u} of U, which extends to a basis {uy, -+ ,ug,v1, - ,v;} of V. S(uq), -, S(ug)
are vectors in W and we pick ¢ vectors {wi, - ,w} in W. Then by Theorem 3.5 in the
textbook, we have a unique linear map 17" : V' — W such that Tu; = Su; fori =1,--- , k and
Tvj =w;j for j=1,--- /L.

Finally, Tu = Su for all w € U. Indeed, for any v € U, write u = aju; + - -+ + axuy since
{u1, - ,uy} is a basis of U. Then

Tu=T(aus + -+ apug)
=a1Tu +---+ aTug
=a1Suy + - + apSuy
= S(a1uy + - + apug)
= Su

Note that we used above the linearity of S and T'.

Exercise 3.B

5*

6*

8*

Let {v1,---,v4} be the standard basis of R*. Let Tw; = Twy = 0, Twz = v1 and Ty = vo.
For any v € R, v = ajv1 + - - - +aqvy for some aq,--- ,as. Define Tv = a;Tvi + - - -+ asTvs.
This defines a linear map T : R* — R*. Then ker T = span{wv;, v2} = rangeT' (Here we used
Exercise 3.B Q10).

Suppose that there exists such a linear map. By the fundamental theorem dimrangeT +
dimkerT = 5. And by assumption, kerT' = rangeT’. Thus dimrangeT = dimkerT = 2.5.
This is absurd because by definition, dimensions are integers. This shows that there does not
exist such a linear map.

Let (vi,...,v,) and (wy,...,wy) be bases of V and W respectively, where n = dim V' and
m = dim W. It is given that n > m > 2. Define linear maps T, S € L(V, W) by

T(v;) =

w; fori=1,...,m—1;
0 otherwise,
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and

S(vi) =

Wy, for i =m;
0 otherwise.

We claim that T and S are not surjective. Note that

range T = span{T'(v1),...,T(v,)} = span{wy, ..., wpy-1,0,...,0}

and

range S = span{S(v1),...,S(v,)} = span{O0,...,0,wy,,0,...,0}
(Here we used Exercise 3.B Q10). Since (ws, ..., wy,) is linearly independent by construction,
W, & {w1, ..., wm—1} =rangeT and w; ¢ span{w,,} = rangeS.

Now the sum (7" + S) satisfies

w; fori=1,...,m;

(T'+ 5)(vi) = {

0 otherwise.

Therefore range(T'+S) = span{(T+5)(v1), ..., (T+S)(v,)} = span{wy, ..., wpy,0,...,0} =
span{wi, ..., wy,} = W. Therefore the sum of two non-surjective map can be surjective and
the set

{T € L(V,W) : T is not surjective.}

is not a subspace of L(V,W).

Suppose there exists a1, ...,a, € F such that
arTvy + - a,Tv, = 0.

Since T is linear, we have
T(ayv1 + - - apvy) = 0.

By injectivity of T', we have
aivi + - - apv, = 0.

Since (v1,...,vy,) is given to be linearly independent, by definition, we have ay, ..., a, being
all zero. Therefore (T'vy,...,Tv,) is linearly independent in W.

By definition of range, Tvy,...,Tv, € rangeT. Therefore span(Tv; ..., Tv,) C rangeT.

Let w € rangeT. There exists v € V such that T'(v) = w. Since vy, ..., v, spans V, there
exists ay,...,a, € F such that ajvy + - -+ + anpv, = v. Thus

w=TwW)=T(a1v1 + -+ apvy) = a1Tvy + - - - + apyTv, € span(Tv; ..., Tv,).

Hence span(Tv; ..., Tv,) = rangeT.

Since V is finite dimensional, null7 is finite dimensional too. Let (v1,...,v,) be a ba-
sis of nullT. Extend it to (vi,...,vp,wi,...,wy) a basis of V. We claim that U =
span(wi,...,w,,) has the desired property. By construction, it is a subspace of V. By

Theorem 2.34 in the textbook, we have U @ nullT = V. In particular, U NnullT = {0}.
By definition of range, Tu € rangeT for all u in U. Therefore {Tu : uw € U} C rangeT. It
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remains to show that rangeT C {Tu : uw € U}. Suppose w € rangeT. Then there exists
v € V such that w = T'(v). Since U + nullT = V| there exists v € U, = € null T such that
v = u + x. Therefore

w=Tw)=Tu+z)=Tu+Tx=Tu+0=Tu
and rangeT = {Tu:u € U}.

Let N = {(x1, 72, 73,74, 25) € F° : 1 = 3w2 and 23 = 24 = x5}. We claim that dim N = 2. It
suffices to show that span{(3,1,0,0,0),(0,0,1,1,1)} = N since {(3,1,0,0,0),(0,0,1,1,1)} is
linearly independent (compare the components). By direct check (3,1,0,0,0),(0,0,1,1,1) €
N so span{(3,1,0,0,0),(0,0,1,1,1)} C N. If x = (21,22, 23,24, 25) € N, x1 = 3z and x3 =
x4 = x5. Therefore x = 24(3,1,0,0,0) + x5(0,0,1,1,1) € span{(3,1,0,0,0),(0,0,1,1,1)}.
Hence we have the claim.

Since dim N = 2, if N was the kernel of a linear map 7" from F° to F2, then by the fundamental
theorem, we would have

dimnull 7" 4+ dim range T = 5.

However, range T' C F? so dimrange T < 2. Therefore 5 = dimnull 7 +dim range 7 < 242 =
4, a contradiction. Therefore there is no such transformation.

Let {v1,...,v,} be a basis of V.

(=) Suppose T is a surjective linear map from V onto W. Then rangeT = W. By Exercise
3.B Q10, range T' = span(T'v; ..., Tv,). Therefore W is span by n vectors. Since length
of a spanning list is not less than the dimension, dim W <n =dimV.

(<) Suppose m :=dim W < dimV, let {wi,...,wy,} be a basis of W. Define a linear map
T from V to W by

T(w) w; fori=1,...,m;
v;) =
’ 0 otherwise.

This is possible since n > m. Then we have rangeT = span{T(vi),...,T(v,)} =
span{wi, ..., Wn,0,...,0} =span{wy, ..., wy,} = W and T is surjective.

Since U is finite dimensional, let @ = {u1,...,u,} be a basis of nullT. If v € nullT,
ST(v) = S(0) = 0. Therefore v € null ST and null7 C null ST. Extend « to a basis f =
{u1,...,un,v1,...,vn}of null ST. Note that ST'(v;) = 0 for all i. Therefore {Tvy,...Tvp} C
null S. We claim that {Tv1,...Tv,,} is linearly independent in null.S. Suppose there exists
ai,...,amn € F such that

aiTvy + - apTv, = 0.

Since T is linear, we have
T(a1vy + - - amvy) = 0.

Therefore a1v1 + - - - amvy, € nullT and there exists bq,...,b, € F such that
a1vy + - Uy = biur + - - + bpuy,.

Rewriting, we have
a1v1 + - QpUm — bjur — - -+ — byuy, = 0.

4



Since {ui,...,upn,v1,...,0y,} is constructed to be linearly independent, by definition, we
have ai,...,am,b1,...,b, being all zero. Therefore {T'v1,...,Tvy} is linearly independent
in null S. Hence dimnull S > #{Tvy,...,Tv,} = m. Therefore

dimnull ST =n+m < dimnull S + dimnull 7.

27 Suppose p € P(R). If p = 0 the zero polynomial, take ¢ = 0 € P(R). So we may assume
p # 0. Let d be the degree of p which is a non-negative integer. Let V = Py1(R) and
W = P4(R). Define the linear map T : V. — W by T(f) = 5f” + 3f’. Suppose f € V such
that T(f) =0, i.e. 5f” +3f' = 0. Then 5f" 4+ 3f = ¢ where c is a constant. If f # 0, then
the degree of f is greater than the degree of f’. So the highest degree term of 3f + 5’ is that
of 3f. By comparing the coefficient of the highest degree term on both sides, the degree of f
can only be 0 and so f/ = 0. Hence f can only be constant. It is also true that T'f = 0 for any
constant polynomial f. Therefore the kernel of T' must be the subspace of constant functions
which has dimension 1. By fundamental theorem, dimnullT" + dimrange T = dim V' = d + 2.
Therefore dimrangeT = d+2—1=d+1 = dim W and range T = W (note that range T C W
by construction of T'). So T is surjective and there exists ¢ € Py1(R) C P(R) such that
Tq=5¢"+3¢ =p.

Exercise 3.C

2 Let 8 = (23,2%,2,1) C P3(R) and v = (32%,22,1) C P2(R). Since the elements in 3
(resp. <) have different degree, they are linearly independent. Since || = dimP3(R) and
|7| = dim P2(R), they are basis of P3(R) and P2(R) respectively.

Now we have Dz3 = 322, Da? = 22, Dz = 1, D1 = 0. Therefore we have
M(D, B,7) = [M(Da?~) M(Dz*~) M(Dz,y) M(D1,7)]
= [M(Ba?,9) M(22,7) M(1,7) M(0,7)]

_ o o

10 0
=0 1 0
00 0

3 Let (u1,...,u,) be a basis of null7. Extends it to a basis (u1,...,u,,v1,...,v,) of V. We
may we order it into « := (v1, ..., Up, UL, ..., Up).

We claim that (T'vy, ... Tv,) is linearly independent in W. Suppose there exists ai,...,a, € F
such that
aiTvy + - -a,Tv, = 0.

Since T is linear, we have
T(aivy + -+ apvy) = 0.

Therefore aiv1 + - - - anv, € nullT and there exists by,...,b, € F such that
a1v1 + - - ApUy = biug + - - - + bru,.

Rewriting, we have
aivy + - apvy, — biug — - — b, = 0.



Since (v1,...,Un,u1,...,u,) is constructed to be linearly independent, by definition, we have
ai,...,an,b1,...,b, being all zero. Therefore (Tvy,...,Tv,) is linearly independent in W.

Extend (Twv1,...,Tv,) to a basis 8 := (Tv1,...,Tvp, w1, ..., wy) of W. We check that
M(Tv;, B) = e, M(Tu;,8)=0fori=1,...,n, j=1,...r

where ¢; is the (n4+m) x 1 column vector with only non-zero entry is the i-th one with value

1. Hence
M(T,a,B)=1[e1 es -+ e, O --- 0].

By Exercise 3.B Q10, we have
range T' = span(Tvy, ..., Tvy, Tuy, ..., Tu,) = span(Tvy,. .., Tvy,).

Since (T'vy,...,Tv,) is linearly independent, dimrange T = n.

Exercise 3.D

1 Note that
(STYT7's =817 s =815t =851 =71

and
T8 YST) =T(SS HT=TIT ' =TT ' = 1.

Therefore ST is invertible and (ST)~! =T-1571.

2 Let (v1,...,v,) be a basis of V where n = dim V' > 2. Define linear maps 7, S € £(V') by

T(w:) v; fori=1,....n—1;
Vi) =
’ 0 otherwise,

and

0 otherwise.

S(v) = {Un for i = n;

We claim that 7" and S are non-invertible. Note that T'(v,) = 0 and S(v;) = 0. Therefore
they are not injective and hence non-invertible.

Now the sum (T + S) satisfies
(T 4 S)(v;) = v; for all 4.
Therefore (T4 S) = Iy and hence invertible. As a result,
{T € L(V) : T is not invertible.}

is not a subspace of L(V).
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(=)

Assume null 7} = null7s. Let U; = range T}, Uy = rangeT>. We claim that Uy and Us
are isomorphic.

For uw € Uy, we claim that for any v,v’ € V satisfying Tov = Thv' = u, we have
Tiv = Tyv'. Indeed, if Thv = Tho' then Th(v — V') = Tov — Tov' = uw—u = 0. By
assumption, v — v/ € nullTy. Therefore Thv — T1v' = Ti(v —v') = 0. Hence we may
define a function @ : Uy — U; by Qu = Thiv for any u € Uy and v € V such that
u = Tyv. Suppose u,u’ € Uy and v,v" € V such that u = Thv and v = T and
A € F, we have \u + v = ANThv + Tov' = Th(Av + v') and Av + o' € V. Therefore
QA\u+u) =Ti(\w+ ') = Ao+ Tiv' = AQu + Qu’. Hence @ is linear. Suppose
u € Us such that Qu = 0. Pick v € V such that Tov = u. Then Qu = 0 implies Tiv =0
and v € null7T; = null7,. Thus v = 0 and Q is injective. Let v’ € U;. Pick v € V
such that Tiv = u/. Let uw = Thv. Then Qu = Thv = v/ and Q is surjective. Hence Q is
bijective and invertible.

Now we have U; and Us being isomorphic through the isomorphism ). In particular,
dim U; = dim Us. By Theorem 2.34 in the textbook, there exist subspaces Z1, Zs of W
such that W = Z; & Uy = Zs ® Us. Apply Theorem 2.43 in the textbook, dim W =
dimZ; + dimU; = dim Z; + dimUs. So dim Z; = dim Z5 since every terms in the
previous equation are just integers. By Theorem 3.59 in the textbook, Z; is isomorphic
to Zs. Let R : Zy — Z; be such an isomorphism. For any w € W, since we have
W = Zy @ U,y, there exist unique z € Zs and u € Uy such that w = z + u. Define a
function S : W — W by Sw = Rz + Qu. Suppose A € F and w’ = 2/ + 4’ € W such that
2 € Zy and v € Us. Then A\w +w' = Az+u)+ 2 +u = A2+ 2) + (Au+ ). Note
that Az + 2’ € Zs and Au+u' € Us since they are vector subspaces. Therefore this is the
decomposition of Aw + w’ into a sum of an element of Z, and an element of Us. Hence

SAw+w') =Rz +2") + QAu+ ') = ARz + RZ' + AQu + Qu/
=A(Rz 4+ Qu) + (RZ' + Qu') = A\Sw + Su’

and so S is linear. If w = 2z 4+ u € W such that z € Z5 and u € Uy and Sw = 0. Then
Rz + Qu=0. Since Rz € Z;, Qu € Uy and Z; NU; = {0}, Rz = Qu = 0. Since R and
Q@ are invertible, they are injective. Therefore z = u = 0. As a result S is injective. By
Theorem 3.69 of textbook, S is invertible.

Assume there exists invertible S € L£(V) such that ST, = Tj. Suppose v € nullT}
then 0 = Tyv = SThv. Since S is invertible, it is injective. Therefore Tov = 0 and
v € nullTy. Suppose v € nullT>. Then Tiu = STou = SO = 0. Hence u € nullT}.
Hence null 77 = null T5.

(Remark: the “only if” direction will be much easier if we have the quotient space construc-

tion. By Theorem 3.91, we have range T} isomorphic to V/ null T} which is equal to V/null 75,

which in turn isomorphic to range T». Therefore the isomorphism () can be obtained easily.)

(a)

(b)

We have Ty € E since Tov = 0 by definition of Ty. Suppose T, S5 € E, i.e. Tv =0 and
Sv=0. Then (I'+ S)v =Tv+Sv=0+0=0 and (aT)v = a(Tv) = a(0) = 0 for any
a € F. Hence, FE is closed under addition and scalar multiplication, which means F is a
subspace.

Let dimV =n and dim W = m. If v # 0, let U = span{v}. We can write V =U & V'
for some subspace V' of V with dim V' =n — 1. We claim that £(V’, W) is isomorphic
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to E. For z € V, there exists unique u € span{v} and z € V' such that z = u + z.
Define a function (e); : L(V/, W) — E by Ti(x) = Tz. We check that T} € E. Note
that for A € F and 2/ € V|, there exists unique v € span{v} and 2z’ € V' such that
¥ =u+272. Sodx+a = (Mu+u)+ (Az+ 2') is the unique decomposition. Now
Ti(Ax+2") =TAz+2") = \Tz+ T2 = \T)(z) + Tiy(2'). Also for u € U, u = u+ 0.
Therefore Ti(u) = T0 = 0. Now we check that (e); is linear. We have

(AT + S)(x) = (AT + S)(2) = A\Tz+ Sz = \N(Tix) + Six.

Let (e)|y+ be the restriction map from E C L(V,W) to L(V',W). It is easy to check
that it is linear and the composition (e)|y o (e); is the identity map on L(V', W).

Now we check that the composition (e); o (e)|y is the identity map on E. Let T € E.
For all z € V with decomposition z = u + 2z, we have

(T’V/)I(x) = (T’V/)(Z) =Tz=Tu+Tz="Tx.

Since z is arbitrary, (T|y+); = T. Therefore we obtain an isomorphism between E and
L(V',W). Hence we have the following formula

dim B = dim{T € L(V,W) : Tv =0} = dim L(V', W) = dim V' dim W = (n — 1)m.

10* Suppose ST = I. Assume v € V such that Tv = 0. Then v = v = STv=50=0 and T

18

is injective. By Theorem 3.69 in the textbook, T is invertible. So there exists T-! € L(V)
such that 7T~ = I. In particular

S=8I=8TT '=1T"'=T7""1.

By definition of inverse, T'S = TT~! = I. The reverse direction can be achieved by exchanging
T and S in the above proof.

Define a map eval; : L(F,V) — V by (evaly T') = T'(1) for all T € L(F, V). Note that for all
T,5 € L(F, V), A € F, we have

evaly (AT + 5) = (AT + S)(1) = AT (1) + S(1) = Aevaly (T') + eval;(S)

and hence eval; is linear. If eval;(7T") = O the zero vector, for all A € F, T'(\) = A\T'(1) =
A0 = 0. Therefore T' = Tj the zero transformation and eval; is injective. For v € V, define
T, : F — V by Ty,(c) = cv. It is clearly linear and eval;(T3,) = T,,(1) = 1v = v. Therefore
evaly is surjective. Hence eval; is invertible and thus V' and £(F, V') are isomorphic.



