MATH2010 Advanced calculus, 2020-21 HOMEWORK ONE Suggested Solution

1. By putting coordinates, the required angle θ is the angle between the vector u = (0, 0, 1) and the vector v = (1, 1, 1).

So
$$\cos \theta = \frac{u \cdot v}{|u||v|} = \frac{1}{\sqrt{3}} < \frac{1}{\sqrt{2}} = \cos \frac{\pi}{4}$$

Since cos is decreasing on the interval $\left[0, \frac{\pi}{2}\right]$, we conclude that $\theta > \frac{\pi}{4}$.

Remark: A few students conclude that $\theta < \frac{\pi}{4}$ in the last step, missing the fact that cos is decreasing on that interval.

2. (a) Suppose $P_2 = (x_2, y_2, z_2)$ be a point on the plane. Hence we have $Ax_2 + By_2 + C_2 = D$.

The unit normal of the plane is $N = \frac{(A,B,C)}{\sqrt{(A^2+B^2+C^2)}}$. Hence the distance d from P_1 to the plane is

$$d = | < P_2 P_1, N > |$$

$$= |\frac{A(x_2 - x_1) + B(x_2 - x_1) + C(x_2 - x_1)}{\sqrt{(A^2 + B^2 + C^2)}}|$$

$$= \frac{|(Ax_2 + Bx_2 + Cx_2) - (Ax_1 + Bx_1 + Cx_1)|}{\sqrt{(A^2 + B^2 + C^2)}}$$

$$= \frac{|Ax_1 + Bx_1 + Cx_1 - D|}{\sqrt{(A^2 + B^2 + C^2)}}.$$
(1)

(b) By solving the equation 2x - y = 3x - z = 0, we may assume the center P = (3t, 2t, t). Since the sphere is tangent to the planes x + y + z = 3 and x + y + z = 9, the distance from P to the two planes must equal, i.e.

$$\frac{|3t+2t+t-3|}{\sqrt{(1+1+1)}} = \frac{|3t+2t+t-9|}{\sqrt{(1+1+1)}}.$$
(2)

Hence we obtain t = 1. Since the sphere is tangent the plane x + y + z = 3, the distance is just the radius, $r = \frac{|3+2+1-3|}{\sqrt{(1+1+1)}} = \sqrt{3}$. Therefore, we have the equation $(x - 1)^2 + (y - 2)^2 + (z - 3)^2 = 3$.

3. (a) The velocity $v(t) = r'(t) = (-5\sin t)\hat{\mathbf{j}} + (3\cos t)\hat{\mathbf{k}}$. The acceleration $a(t) = v'(t) = (-5\cos t)\hat{\mathbf{j}} + (-3\sin t)\hat{\mathbf{k}}$. Then $0 = \langle v(t), a(t) \rangle$ is equivalent to $16\sin t\cos t = 8\sin 2t = 0$. The solution is $t = 0, \frac{\pi}{2}$, or π .

(b)
$$\int_0^{\pi} |v(t)| dt = \int_0^{\pi} \sqrt{(-5\sin t)^2 + (3\cos t)^2} dt$$
.

4. (a)

$$\lim_{\substack{(x,y)\to(2,-4)}} \frac{y+4}{x^2y-xy+4x^2-4x}$$

$$= \lim_{\substack{(x,y)\to(2,-4)}} \frac{y+4}{(x^2-x)(y+4)}$$

$$= \lim_{\substack{(x,y)\to(2,-4)}} \frac{1}{x^2-x}$$

$$= \frac{1}{2}$$
(3)

(b) $\lim_{(x,y)\to(0,0)} |2x^2 + y^2| = 0.$

Hence, by squeeze theorem, $\lim_{(x,y)\to(0,0)} (2x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + 4y^2}} = 0$

(c) Along the path $y^2 = kx^5$,

$$\lim_{\substack{(x,y)\to(0,0),y^2=kx^5\\x\to0}} \frac{x^5y^2}{x^{10}-y^4}$$

$$=\lim_{x\to0} \frac{kx^{10}}{x^{10}-k^2x^{10}}$$

$$=\frac{k}{1-k^2}$$
(4)

This limit depends on the path taken, so the limit does not exist. (d) Along x = 1,

$$\lim_{\substack{(x,y)\to(1,-1),x=1\\y\to-1}}\frac{xy+1}{x^2-y^2}$$

=
$$\lim_{y\to-1}\frac{y+1}{1-y^2}$$

=
$$\lim_{y\to-1}\frac{1}{1-y}$$

=
$$\frac{1}{2}$$
 (5)

Along y = -1,

$$\lim_{(x,y)\to(1,-1),y=-1} \frac{xy+1}{x^2-y^2}$$

$$= \lim_{x\to 1} \frac{-x+1}{x^2-1}$$

$$= \lim_{x\to 1} \frac{-1}{x+1}$$

$$= -\frac{1}{2}$$
(6)

The two limits do not agree, so the limit does not exist.

(e) Along x = 0,

$$\lim_{(x,y)\to(0,0),x=0}\frac{2x}{x^2+x+y^2} = 0$$
(7)

Along y = 0,

$$\lim_{\substack{(x,y)\to(0,0),y=0\\x\to0}} \frac{2x}{x^2 + x + y^2}$$

$$= \lim_{x\to0} \frac{2x}{x^2 + x}$$

$$= \lim_{x\to0} \frac{2}{x+1}$$

$$=2$$
(8)

The two limits do not agree, so the limit does not exist.