
MATH 2010B Advanced Calculus I
(2014-2015, First Term)

Quiz 2
Suggested Solution

1. (a) Method 1:

xz + y2 = 0
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And the corresponding orthonormal eigenvectors are
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which is a cone.

Method 2:

xz + y2 = 0

4xz + 4y2 = 0

(x+ z)2 − (x− z)2 + 4y2 = 0
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Take u = x+ z, v = x− z, w = y, then it becomes

u2 − v2 + 4w2 = 0

u2 + 4w2 = v2

Which is a cone.
(b) Put z = x+ y + 1 into xz + y2 = 0, then

x(x+ y + 1) + y2 = 0

x2 + xy + x+ y2 = 0
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Thus λ1λ2 > 0⇒ ellipse.

2. Method 1: Take the polar coordinate x = r cos θ and y = r sin θ, then

lim
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Therefore the limit does not exist since | cos θ| varies for different value of θ.

Method 2: Consider the limit along x = 0 and y = 0.

Along x = 0, we have

lim
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Along y = 0, we have
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Since the limits along two different paths are not the same, the limit does not exist.
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