Find and classify the critical points of the functions in Problems 1 through 22. If a computer algebra system is available, check your results by means of contour plots like those in Figs. 12.10.14-12.10.17.

1.
$$f(x, y) = 2x^2 + y^2 + 4x - 4y + 5$$

2.
$$f(x, y) = 10 + 12x - 12y - 3x^2 - 2y^2$$

3.
$$f(x, y) = 2x^2 - 3y^2 + 2x - 3y + 7$$

$$4 \int f(x, y) = xy + 3x - 2y + 4$$

5.
$$f(x, y) = 2x^2 + 2xy + y^2 + 4x - 2y + 1$$

6.
$$f(x, y) = x^2 + 4xy + 2y^2 + 4x - 8y + 3$$

$$7/f(x, y) = x^3 + y^3 + 3xy + 3$$
 (Fig. 12.10.14)

$$8. \int f(x, y) = x^2 - 2xy + y^3 - y$$

9.
$$f(x, y) = 6x - x^3 - y^3$$

10.
$$f(x, y) = 3xy - x^3 - y^3$$

11.
$$f(x, y) = x^4 + y^4 - 4xy$$

12.
$$f(x, y) = x^3 + 6xy + 3y^2$$

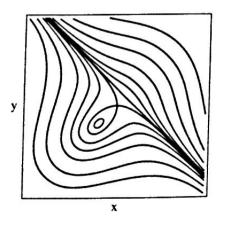
13.
$$f(x, y) = x^3 + 6xy + 3y^2 - 9x$$
 (Fig. 12.10.15)

14.
$$f(x, y) = x^3 + 6xy + 3y^2 + 6x$$

$$f(x, y) = 3x^2 + 6xy + 2y^3 + 12x - 24y$$

$$16_1 f(x, y) = 3x^2 + 12xy + 2y^3 - 6x + 6y$$

17.
$$f(x, y) = 4xy - 2x^4 - y^2$$
 (Fig. 12.10.16)



y X

FIGURE 12.10.14 Contour plot for Problem 7.

FIGURE 12.10.15 Contour plot for Problem 13.

18.
$$f(x, y) = 8xy - 2x^2 - y^4$$

19.
$$f(x, y) = 2x^3 - 3x^2 + y^2 - 12x + 10$$

20
$$f(x, y) = 2x^3 + y^3 - 3x^2 - 12x - 3y$$
 (Fig. 12.10.17)

21.
$$f(x, y) = xy \exp(-x^2 - y^2)$$

22.
$$f(x, y) = (x^2 + y^2) \exp(x^2 - y^2)$$

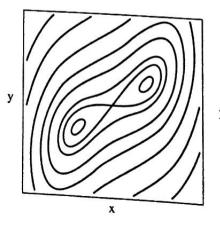
In Problems 23 through 25, first show that $\Delta = f_{xx} f_{yy} - (f_{yy})^2$ is zero at the origin. Then classify this critical point by visualizing the surface z = f(x, y).

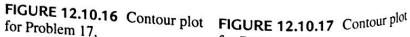
$$(x, y) = x^4 + y^4$$

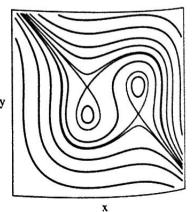
24.
$$f(x, y) = x^3 + y^3$$

25.
$$f(x, y) = \exp(-x^4 - y^4)$$

- **26.** Let f(s, t) denote the square of the distance between a typical point of the line x = t, y = t + 1, z = 2t and a typical point of the line x = 2s, y = s - 1, z = s + 1. Show that the single critical point of f is a local minimum. Hence find the closest points on these two skew lines.
- 27. Let f(x, y) denote the square of the distance from (0, 0.2)to a typical point of the surface z = xy. Find and classify the critical points of f.







for Problem 20.

28. Show that the surface

$$z = (x^2 + 2y^2) \exp(1 - x^2 - y^2)$$

looks like two mountain peaks joined by two ridges with a pit between them.

- 29. A wire 120 cm long is cut into three pieces of lengths x, y, and 120 x y, and each piece is bent into the shape of a square. Let f(x, y) denote the sum of the areas of these squares. Show that the single critical point of f is a local minimum. But surely it is possible to maximize the sum of the areas. Explain.
- 30. Show that the graph of the function

$$f(x, y) = xy \exp(\frac{1}{8}[x^2 + 4y^2])$$

has a saddle point but no local extrema.

Find and classify the critical points of the function

$$f(x, y) = \sin \frac{\pi x}{2} \sin \frac{\pi y}{2}.$$

32. Let $f(x, y) = x^3 - 3xy^2$. (a) Show that its only critical point is (0, 0) and that $\Delta = 0$ there. (b) By examining the behavior of $x^3 - 3xy^2$ on straight lines through the origin, show that the surface $z = x^3 - 3xy^2$ qualifies as a monkey saddle (Fig. 12.10.18).

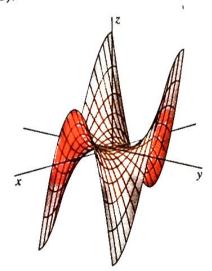


FIGURE 12.10.18 The monkey saddle of Problem 32.

33. Repeat Problem 32 with $f(x, y) = 4xy(x^2 - y^2)$. Show that near the critical point (0, 0) the surface z = f(x, y) qualifies as a "dog saddle" for a dog with a very short tail (Fig. 12.10.19).

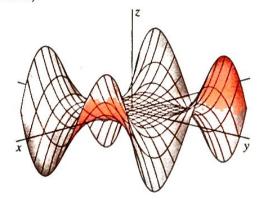


FIGURE 12.10.19 The dog saddle of Problem 33.

34. Let

$$f(x, y) = \frac{xy(x^2 - y^2)}{x^2 + y^2}.$$

Classify the behavior of f near the critical point (0, 0).

In Problems 35 through 39, use a computer algebra program (as illustrated in the project material for this section) to approximate numerically and classify the critical point of the given function.

35.
$$f(x, y) = 2x^4 - 12x^2 + y^2 + 8x$$

36.
$$f(x, y) = x^4 + 4x^2 - y^2 - 16x$$

37.
$$f(x, y) = x^4 + 12xy + 6y^2 + 4x + 10$$

38.
$$f(x, y) = x^4 + 8xy - 4y^2 - 16x + 10$$

39.
$$f(x, y) = x^4 + 2y^4 - 12xy^2 - 20y^2$$

Exercises 14.9

Find quadratic approximation near (0,0).

In Exercises 1–10, use Taylor's formula for f(x, y) at the origin to find quadratic approximations of f near the origin.

1.
$$f(x, y) = xe^y$$

$$2. f(x, y) = e^x \cos y$$

3.
$$f(x, y) = y \sin x$$

4.
$$f(x, y) = \sin x \cos y$$

5.
$$f(x, y) = e^x \ln(1 + y)$$

6.
$$f(x, y) = \ln(2x + y + 1)$$

5.
$$f(x, y) = e^x \ln(1 + y)$$

7. $f(x, y) = \sin(x^2 + y^2)$

8.
$$f(x, y) = \cos(x^2 + y^2)$$

9.
$$f(x,y) = \frac{1}{1-x}$$

9.
$$f(x,y) = \frac{1}{1-x-y}$$
 10. $f(x,y) = \frac{1}{1-x-y+xy}$

- 11. Use Taylor's formula to find a quadratic approximation of $f(x, y) = \cos x \cos y$ at the origin. Estimate the error in the approximation if $|x| \le 0.1$ and $|y| \le 0.1$.
- 12. Use Taylor's formula to find a quadratic approximation of $e^x \sin y$ at the origin. Estimate the error in the approximation if $|x| \le 0.1$ and $|y| \leq 0.1$.