Lecture 8

4.4 Calculation of entropy

Lemma 4.9. (i)
$$H(T^{-k}\xi|T^{-k}\eta) = H(\xi|\eta)$$
 for $k > 0$.
(ii) $h(T,\xi) \le h(T,\eta) + H(\xi|\eta)$.
(iii) $h(T,\xi \vee T^{-1}\xi \vee \cdots \vee T^{-(n-1)}\xi) = h(T,\xi)$ for $n > 0$.

Proof. (i) By the basic identity,

$$H(T^{-k}\xi|T^{-k}\eta) = H(T^{-k}\xi \vee T^{-k}\eta) - H(T^{-k}\eta)$$

= $H(\xi \vee \eta) - H(\eta) = H(\xi|\eta).$

(ii) Notice that

$$\begin{split} H(\xi \vee T^{-1}\xi \vee \dots \vee T^{-(n-1)}\xi) & \leq H(\eta \vee T^{-1}\eta \vee \dots \vee T^{-(n-1)}\eta) \\ & + H(\xi \vee T^{-1}\xi \vee \dots \vee T^{-(n-1)}\xi | \eta \vee T^{-1}\eta \vee \dots \vee T^{-(n-1)}\eta) \\ & \leq H(\eta \vee T^{-1}\eta \vee \dots \vee T^{-(n-1)}\eta) + \sum_{i=0}^{n-1} H(T^{-i}\xi | \eta \vee T^{-1}\eta \vee \dots \vee T^{-(n-1)}\eta) \\ & \leq H(\eta \vee T^{-1}\eta \vee \dots \vee T^{-(n-1)}\eta) + \sum_{i=0}^{n-1} H(T^{-i}\xi | T^{-i}\eta) \\ & = H(\eta \vee T^{-1}\eta \vee \dots \vee T^{-(n-1)}\eta) + nH(\xi | \eta). \end{split}$$

Hence

$$\frac{1}{n}H(\xi \vee T^{-1}\xi \vee \cdots \vee T^{-(n-1)}\xi) \leq \frac{1}{n}H(\eta \vee T^{-1}\eta \vee \cdots \vee T^{-(n-1)}\eta) + H(\xi|\eta),$$

letting
$$n \to \infty$$
, we obtain (ii).
(iii) Set $\eta = \xi \vee T^{-1} \xi \vee \cdots \vee T^{-(n-1)} \xi$, then

$$h(T,\eta) = \lim_{m \to \infty} \frac{1}{m} H\left(\bigvee_{i=0}^{m-1} T^{-i} \eta\right)$$

$$= \lim_{m \to \infty} \frac{1}{m} H\left(\bigvee_{i=0}^{m+n-2} T^{-i} \xi\right)$$

$$= \lim_{m \to \infty} \frac{1}{m+n-1} H\left(\bigvee_{i=0}^{m+n-2} T^{-i} \xi\right) = h(T,\xi).$$

Proposition 4.2. $h(T^n) = nh(T)$ for n > 0.

Proof. Let ξ be a finite partition, set $\eta = \xi \vee T^{-1}\xi \vee \cdots \vee T^{-(n-1)}\xi$. Then

$$nh(T,\xi) = \lim_{m \to \infty} \frac{n}{mn} H(\xi \vee T^{-1}\xi \vee \dots \vee T^{-(mn-1)}\xi)$$
$$= \lim_{m \to \infty} \frac{1}{m} H(\eta \vee T^{-n}\eta \vee \dots \vee T^{-n(m-1)}\eta)$$
$$= h(T^n, \eta) \le h(T^n),$$

taking supremum over ξ , we have $nh(T) \leq h(T^n)$. On the other hand, since $\xi \leq \eta$,

$$h(T^n, \xi) \le h(T^n, \eta) = nh(T, \xi) \le nh(T),$$

taking supremum over ξ , we have $h(T^n) \leq nh(T)$.

Theorem 4.10. Let (X, \mathcal{B}, μ, T) be a MPS. Moreover, X is a compact metric space and \mathcal{B} is the Borel σ -algebra over X. If $\{\xi_n\}_{n=1}^{\infty}$ is a sequence of Borel partitions of X with $diam(\xi_n) := \max_{A \in \xi_n} diam(A) \to 0$ as $n \to \infty$, then

$$h(T) = \lim_{n \to \infty} h(T, \xi_n).$$

To prove this theorem, we need establish the following lemmas.

Lemma 4.11. Under the condition of Theorem 4.10, let $\mathscr{C} = \{C_1, \dots, C_k\}$ be a finite partition of X, then we can find partitions $\{E_1^n, \dots, E_k^n\}$ with each E_i^n being a union of some elements in ξ_n such that for $i = 1, \dots, k$,

$$\mu(C_i \triangle E_i^n) \to 0$$
, as $n \to \infty$.

Proof. Let $\epsilon > 0$, pick compact sets K_1, \dots, K_k such that $K_i \subset C_i$ and $\mu(C_i \setminus K_i) < \epsilon$. Let $\delta = \inf_{i \neq j} d(K_i, K_j) > 0$. Consider ξ_n with diam $(\xi_n) < \frac{\delta}{2}$. Since each element of ξ_n can intersect with at most one K_i , we can divide the elements of ξ_n into groups whose union are E_1^n, \dots, E_k^n , so that $B \subset E_i^n$ if $B \cap K_i \neq \emptyset$ for $B \in \xi_n$, for those $B \in \xi_n$ that do not intersect with any K_i , put it into any E_i^n as you like. Then $K_i \subset E_i^n$ for $i = 1, 2, \dots, k$. Moreover, since if $x \in E_i^n \setminus C_i$, then $x \notin K_i$ and $x \notin K_j$ for $x \notin K_i$ hence $x \notin K_i$ and for all $x \notin K_i$ for $x \notin K_i$ and for all $x \notin K_i$ for $x \notin K_i$

$$\mu(C_i \triangle E_i^n) = \mu(C_i \setminus E_i^n) + \mu(E_i^n \setminus C_i)$$

$$\leq \mu(C_i \setminus K_i) + \mu(X \setminus \bigcup_{j=1}^k K_j)$$

$$\leq (k+1)\epsilon.$$

Hence for $i = 1, \dots, k$,

$$\overline{\lim_{n \to \infty}} \, \mu(C_i \, \triangle \, E_i^n) \le (k+1)\epsilon,$$

since $\epsilon > 0$ is arbitrary, we complete the proof.

Lemma 4.12. Under the assumption of Theorem 4.10. Let $\mathscr{C} = \{C_1, \dots, C_k\}$ be a finite partition. Then

$$\lim_{n \to \infty} H(\mathscr{C}|\xi_n) = 0.$$

Proof. Using the above lemma we find partitions $\gamma_n = \{E_1^n, \dots, E_k^n\}$ with each E_i^n being a union of elements in ξ_n , so that

$$\mu(C_i \triangle E_i^n) \to 0 \text{ as } n \to \infty.$$

Since $\gamma_n \leq \xi_n$, we have $H(\mathscr{C}|\xi_n) \leq H(\mathscr{C}|\gamma_n)$. By continuity of ϕ , we have

$$H(\mathscr{C}|\gamma_n) = \sum_{i,j} \mu(E_i^n) \phi\left(\frac{m(C_i \cap E_i^n)}{m(E_i^n)}\right) \to \sum_{i,j} \mu(C_i) \phi\left(\frac{m(C_i \cap C_j)}{m(C_i)}\right) = 0,$$

as $n \to \infty$. This completes the proof.

Now we can prove Theorem 4.10.

Proof of Theorem 4.10. Let \mathscr{C} be a finite partition of X. Then

$$h(T, \mathscr{C}) \le h(T, \xi_n) + H(\mathscr{C}|\xi_n) \text{ for } n > 0,$$

letting $n \to \infty$, by the above lemma we have

$$h(T, \mathscr{C}) \le \underline{\lim}_{n \to \infty} h(T, \xi_n),$$

taking supremum over \mathscr{C} , $h(T) \leq \underline{\lim}_{n \to \infty} h(T, \xi_n)$. Since trivially we have $\overline{\lim}_{n \to \infty} h(T, \xi_n) \leq h(T)$, the limit exists and equals h(T).

Theorem 4.13. Let (X, \mathcal{B}, μ, T) be a MPS over a compact metric space. Let ξ be a finite partition of X. If $diam(\bigvee_{i=0}^{n-1} T^{-i}\xi) \to 0$ as $n \to \infty$, then $h(T) = h(T, \xi)$.

Proof. By Theorem 4.10, we have

$$h(T) = \lim_{n \to \infty} h(T, \bigvee_{i=0}^{n-1} T^{-i}\xi) = \lim_{n \to \infty} h(T, \xi) = h(T, \xi).$$

Now we consider some examples.

Example 1. (Rotation on the circle). Let μ be the Haar measure on \mathbb{R}/\mathbb{Z} , $Tx := x + \alpha \pmod{1}$. Then h(T) = 0.

37

Proof. Case 1. Let $\alpha = \frac{p}{q} \in \mathbb{Q}$, then $T^q = \text{identity}$. Hence for any finite partition ξ ,

$$\bigvee_{i=0}^{n-1} T^{-i}\xi = \bigvee_{i=0}^{q-1} T^{-i}\xi, \text{ for } n \ge q.$$

Hence

$$h(T,\xi) = \lim_{n \to \infty} \frac{1}{n} H\Big(\bigvee_{i=0}^{n-1} T^{-i} \xi\Big) = \lim_{n \to \infty} \frac{1}{n} H\Big(\bigvee_{i=0}^{q-1} T^{-i} \xi\Big) = 0,$$

for any finite partition ξ , hence h(T) = 0.

Case 2. Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Let ξ_n be the partition $\{ [\frac{j}{n}, \frac{j+1}{n}) : j = 0, 1, \dots, n-1 \}$ of [0,1). Since $\operatorname{diam}(\xi_n) \to 0$, by Theorem 4.10 $h(T) = \lim_{n \to \infty} h(T, \xi_n)$. We claim $h(T, \xi_n) = 0$ for all n. To see this, notice that $\sharp (\bigvee_{i=0}^{m-1} T^{-i} \xi_n) \leq mn$, hence $H(\bigvee_{i=0}^{m-1} T^{-i} \xi_n) \leq \log mn$, then

$$h(T,\xi_n) = \lim_{m \to \infty} \frac{1}{m} H\left(\bigvee_{i=0}^{m-1} T^{-i} \xi_n\right) = 0.$$

h(T) = 0 follows.

Example 2. (Doubling map on the circle). Let μ be the Haar measure on \mathbb{R}/\mathbb{Z} , $Tx := 2x \pmod{1}$. Then $h(T) = \log 2$.

Proof. Let $\xi = \{[0, \frac{1}{2}), [\frac{1}{2}, 1)\}$, then $\xi \vee T^{-1}\xi \vee \cdots \vee T^{-(n-1)}\xi = \{[\frac{j}{2^n}, \frac{j+1}{2^n}) : j = 0, 1, \cdots, 2^n - 1\}$. Since diam $(\xi \vee T^{-1}\xi \vee \cdots \vee T^{-(n-1)}\xi) \to 0$ as $n \to \infty$, by Theorem 4.13 $h(T) = h(T, \xi) = \log 2$.