Solution to Assignment 9

Ex 11. (p. 164) u is clearly continnous on {(z.t) : t > 0} since u is
infinitely differentiable there. It remains to show wu 18 continuous on the
r-axis, {(z,t) 1 t = 0}.

Note that we know already that (from good kernel argument)
u(z,t) — f(z) as t — 0, uniformly in .
Also, f(x) = u(z,0) is continuous in x. From
w(z,t) — u(re,0) = (ulx, t) — u(z,0)) + (u(z,0) — ul(xe, 0)),

it is easy to see u(x,t) is continuous at the r-axis.

To see it vanishes at infinity, we note the following two estimates:

[u(z, )] <
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and
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Here, f is rapidly decreasing, so |f(z —y)| < C/(1 + |z]*) on |y| < |z|/2:
and H,(y) < Ct~ 2=/t if |y| > |z|/2. To obtain it vanishes at infinity as
|z| +t — oo, we note that if |z| < t, then t — oco. We have

'
lu(z,t)| < — — 0.
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On the other hand, if |z| > t, then |2| — o0, we have
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15(a). (p.165) Let f(x) = g(x)e > where g is the function in Exercise 2. Then

we have
o) =ate+a) = ()

By the Poisson summation Formula,

1= Y o= ¥ Fo- ¥ (Gpaar?)
Hence,
i 1 s
L= (n+a)  (sinma)?

15(b). Since the equality is 1-periodic, it’s sufficient to prove for the case 0 < o < 1.
If ov #£ 1, we have

fa ,TE T
f — dr— [(—m)cotmz]i = — A
1 (sinmz)? z tan e

If we let hig(x) = Z:f;_ . mﬁ; then |hy(z)| < I:E]%;]g which is an integrable function.
By the Lebesgue Dominated Convergence Theorem,

, > « g2 T
lim hi(z)dr = — dr=——.
koo 1 (sin w2 tan Ta

On the other hand.

: - N - 1
o [ e = 3 [t Y g

So we have

n+a tanTo

n=—>o0
If « = L1 we can see easily that ZN 1= 1. Hence, ¥ 1 0=
2 - ‘ -N ntz o N+§L ! n=—o0 ndo -
lim,, . ——. The formula continues to hold.
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Ex 19. (p. 166) (a) Applying the Poisson summation formula to f(x) m

o0

at x = 0 gives
o0
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(b) By the Taylor series of 1, one has for 0 <t < 1, n # 0

ottty «_ﬁy
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Note that this series converges uniformly for ¢t < 1, and therefore
o
2 m+1 2m—1
2m)t .
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(For t > 1, the series in RHS does not converge since 1 < ¢(2m) < ((2) and
(—1)™*F1¢(2m)t*™ ! does not converge to 0 as m tends to infinity. )

Moreover,
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(c) By (a) and (b), one has
2 — 2
m+1 2m—1
+ T = 2m) 1 —e2mt
Let z = —2xt, then the above equation can be written in z as follows

z z 2 a1 2C(2m)
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is unique, then it follows the given fact that

Since the Taylor series of —*5
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