Solution to Assignment 2

4(a) (p.59)

F1GURE 1. f(0) = 0(m — 0), with odd extension

~

4(b). If n = 0, it is clear that f(0) = 0. If n # 0, we calculate the Fourier
coefficients as follows:
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where we have used f is an odd function and e? = cos @ + isin §. Using integration
by part, we have
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This shows the Fourier series of f is given by
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As Y |f(n) < C > n 3 < 00, for some constant C' > 0, the Fourier series is equal
to f (Corollary 2.3 of the book).
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6(a) (p. 60)
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FIGURE 2. f(0) = |0|

6(b). Ifn=0, f(0) = %fow 0df = . If n # 0, using [ is even
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6(c). Note that f(n)e™ + f(—n)e ™ =< I, if n = 0; we have,
0, if n is even.
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6(d). As Y |f(n)| < C'Y, 5 < oo, for some constant C' > 0, the Fourier series is
equal to f (Corollary 2.3 of the book).

Taking # = 0, we have

This implies that
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Finally,
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10 (p.61) As f € C* and f(27) = f(0), we have by successive integration by part
(for n #0),

fo == [ 5@ as

1 " / —inf
f)e""do
2min /ﬂf( Je

1 ™ |
®(0)e=do.
27 (in)k /Wf (0)e

Note that f € C* means f* is continuous on T. This means there exists M > 0
such that |f*)(x)| < M for all 2. Hence,
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where C' is some constant independent of n. This shows that f(n) = O().
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