
TA’s solution∗ to 3093 assignment 2
Ch2, Ex4. (4 marks)

(a) Note that f(θ) =

 θ(π + θ) if θ ∈ [−π, 0]

θ(π − θ) if θ ∈ [0, π].

(b) We have f̂(0) = 0. For n ̸= 0, we calculate the Fourier coefficients as follows:

f̂(n) =
1

2π

∫ π

−π

f(θ)e−inθdθ

=
1

2π

∫ π

−π

f(θ)(−i sinnθ)dθ (∵ f(θ) cosnθ is odd in [−π, π])

=
−i

π

∫ π

0

θ(π − θ) sinnθ dθ. (∵ f(θ) sinnθ is even in [−π, π])

Using integration by parts and cosnπ = (−1)n, we have∫ π

0

θ sinnθ dθ =
−1

n

[
π(−1)n −

∫ π

0

cosnθ dθ

]
=

−π(−1)n

n
,

∫ π

0

θ2 sinnθ dθ =
−1

n

[
π2(−1)n − 2

∫ π

0

θ cosnθ dθ

]
=

−π2(−1)n

n
+

2

n2

[
−
∫ π

0

sinnθ dθ

]
=

−π2(−1)n

n
+

2

n3
[(−1)n − 1].

As a result

f̂(n) =
−i

π
· −2

n3
[(−1)n − 1] =

 0 if n is even
−4i

πn3
if n is odd.

∗This solution is adapted from the work by former TAs.
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This shows the Fourier series of f is given by∑
n∈Z
n odd

−4i

πn3
einθ =

∑
n∈Z
n odd

−4i

πn3
i sinnθ =

∑
n≥1
n odd

8

πn3
sinnθ.

Since
∑∣∣∣f̂(n)∣∣∣ ≤ C

∑
1
n3 < ∞ for some constant C > 0, the Fourier series is equal to f †.

Another approach for the integration:
We have

1

2π

∫ π

−π

f(θ)e−inθdθ =
1

2π

∫ π

0

θ(π − θ)e−inθ dθ +
1

2π

∫ 0

−π

θ(π + θ)e−inθ dθ

=
1

2π

∫ π

0

θ(π − θ)e−inθ dθ +
1

2π

∫ π

0

(t− π)(π + (t− π))e−in(t−π) dt

=
[1− einπ]

2π

∫ π

0

θ(π − θ)e−inθ dθ

=
[1− einπ]

2π

∫ π/2

−π/2

(
π

2
− v)(

π

2
+ v)e−in(π

2
−v) dv

=
−i sin nπ

2

π

∫ π/2

−π/2

(
π2

4
− v2)einv dv.

By thinking of integration by parts, an anti-derivative of the integrand above is of the form
(Av2 +Bv + C)einv for some A,B,C ∈ R. Hence the above is

=
−i sin nπ

2

π

[
(Av2 +Bv + C)einv

]v=π/2

v=−π/2

=
−i sin nπ

2

π

[
(A

π2

4
+ C)2i sin

nπ

2
+B

π

2
2 cos

nπ

2

]
=

−i sin nπ
2

π

[
(A

π2

4
+ C)2i sin

nπ

2

]
(∵ 2 sin

nπ

2
cos

nπ

2
= sinnπ = 0)

=
2 sin2 nπ

2

π

[
A
π2

4
+ C

]
.

By the definition of anti-derivative, we have

in(Av2 +Bv + C)einv + (2Av +B)einv = (
π2

4
− v2)einv,

so by comparing the coefficients 
inA = −1,

inB + 2A = 0,

inC +B =
π2

4
,

whence
A =

−1

in
, inC + (

−2

n2
) =

π2

4
⇒ C =

π2

4in
+

2

in3
,

and therefore
[
A
π2

4
+ C

]
=

2

in3
. The result follows.

†It is textbook Ch2 Corollary 2.3
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Ex6. (4 marks)

(a)

(b) If n = 0, then f̂(0) = 1
π

∫ π

0
θdθ = π

2
. Else if n ̸= 0, then using f is even we have

f̂(n) =
1

2π

∫ π

−π

f(θ)e−inθdθ =
1

2π

∫ π

−π

|θ| cosnθdθ

=
1

π

∫ π

0

θ cosnθ dθ =
1

nπ

(
−
∫ π

0

sinnθ dθ

)
=

(−1)n − 1

n2π
.

(c) By the result of part b,∑
n∈Z

f̂(n)einθ =
π

2
+

∑
n∈Z
n odd

−2

n2π
einθ =

π

2
+

∑
n≥1
n odd

−4

n2π
cosnθ.
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Ex10. (2 marks)
Since f is 2π-periodic, f (i) is 2π-periodic too for any 1 ≤ i ≤ k.‡ Consequently, f (i)(−π)einπ =
f (i)(π)e−inπ. Therefore, by successive integration by parts (for n ̸= 0),

f̂(n) =
1

2π

∫ π

−π

f(θ)e−inθdθ

=
1

in

1

2π

∫ π

−π

f ′(θ)e−inθdθ

=
1

(in)2
1

2π

∫ π

−π

f ′′(θ)e−inθdθ

= · · ·

=
1

(in)k
1

2π

∫ π

−π

f (k)(θ)e−inθdθ

As f ∈ Ck, so by the definition of Ck we have f (k) is continuous on T. This means there exists
M > 0 such that

∣∣f (k)(θ)
∣∣ < M for all θ. Hence∣∣∣f̂(n)∣∣∣ ≤ 1

|n|k
1

2π

∫ π

−π

∣∣f (k)(θ)
∣∣ dθ ≤ M

|n|k
.

‡For example, f ′(x+ 2π) = limh→0
f(x+ 2π + h)− f(x+ 2π)

h
= limh→0

f(x+ h)− f(x)

h
= f ′(x).
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