Ch5, Ex15. (5 marks)

(a) Applying the Poisson summation formula to  $\widehat{g}$ , and noting that  $\widehat{\widehat{g}}(x) = g(-x)$ , we have

$$\sum_{n=-\infty}^{\infty} \left( \frac{\sin \pi(\alpha+n)}{\pi(\alpha+n)} \right)^2 = \sum_{n=-\infty}^{\infty} \widehat{g}(\alpha+n) = \sum_{n=-\infty}^{\infty} g(-n)e^{2\pi i n\alpha} = 1.$$

The result follows.

## Alternative

15(a). (p.165) Let  $f(x) = g(x)e^{-2\pi ix\alpha}$ , where g is the function in Exercise 2. Then we have

$$\widehat{f}(\xi) = \widehat{g}(\xi + \alpha) = \left(\frac{\sin \pi(\xi + \alpha)}{\pi(\xi + \alpha)}\right)^2.$$

By the Poisson summation Formula.

$$1 = \sum_{n = -\infty}^{\infty} f(n) = \sum_{n = -\infty}^{\infty} \widehat{f}(n) = \sum_{n = -\infty}^{\infty} \left( \frac{\sin(n\pi + \alpha\pi)}{\pi(n + \alpha)} \right)^{2}.$$

Hence,

$$\sum_{n=-\infty}^{\infty} \frac{1}{(n+\alpha)^2} = \frac{\pi^2}{(\sin \pi \alpha)^2}.$$

(b)

15(b). Since the equality is 1-periodic, it's sufficient to prove for the case  $0 < \alpha < 1$ . If  $\alpha \neq \frac{1}{2}$ , we have

$$\int_{\frac{1}{2}}^{\alpha} \frac{\pi^2}{(\sin \pi x)^2} dx = [(-\pi)\cot \pi x]_{\frac{1}{2}}^{\alpha} = -\frac{\pi}{\tan \pi \alpha}.$$

If we let  $h_k(x) = \sum_{n=-k}^k \frac{1}{(n+x)^2}$ , then  $|h_k(x)| \leq \frac{\pi^2}{(\sin \pi x)^2}$  which is an integrable function. By the Lebesgue Dominated Convergence Theorem,

$$\lim_{k \to \infty} \int_{\frac{1}{2}}^{\alpha} h_k(x) dx = \int_{\frac{1}{2}}^{\alpha} \frac{\pi^2}{(\sin \pi x)^2} dx = -\frac{\pi}{\tan \pi \alpha}.$$

On the other hand,

$$\lim_{k \to \infty} \int_{\frac{1}{2}}^{\alpha} h_k(x) dx = \sum_{n = -\infty}^{\infty} \int_{\frac{1}{2}}^{\alpha} \frac{1}{(n+x)^2} dx = -\sum_{n = -\infty}^{\infty} \frac{1}{n+\alpha}.$$

So we have

$$\sum_{n=-\infty}^{\infty} \frac{1}{n+\alpha} = \frac{\pi}{\tan \pi \alpha}.$$

If  $\alpha = \frac{1}{2}$ , we can see easily that  $\sum_{-N}^{N} \frac{1}{n+\frac{1}{2}} = \frac{1}{N+\frac{1}{2}}$ . Hence,  $\sum_{n=-\infty}^{\infty} \frac{1}{n+\alpha} = 0 = \lim_{\alpha \to 1/2} \frac{\pi}{\tan \pi \alpha}$ . The formula continues to hold.

<sup>\*</sup>This solution is adapted from the work by former TAs.

We make two remarks. Firstly, the function  $f(x) = \frac{\pi^2}{(\sin \pi x)^2}$  is not integrable on [0, 1], because when  $x \approx 0$ , we have

$$\frac{1}{(\sin \pi x)^2} \approx \frac{1}{(\pi x)^2}$$

and

$$\int_0^1 \frac{1}{x^2} = \infty.$$

Secondly, besides the dominated convergence theorem, we can also use the monotone convergence theorem. Alternatively, given a fixed  $\alpha \in (0,1)$ , by Weierstrass M-Test,  $\sum \frac{1}{(n+x)^2}$  is uniformly convergent for x between  $\alpha$  and 1/2, whence justifying  $\int \sum = \sum \int$ .

## Ex19. (5 marks)

- (a) The result follows plainly from the Poisson summation formula  $\sum f(n) = \sum \hat{f}(n)$ .
- (b) By the geometric series formula, for  $t \in (0,1)$  we have

$$\frac{t}{t^2+n^2} = \frac{t}{n^2} \frac{1}{1+\left(\frac{t}{n}\right)^2} = \frac{t}{n^2} \sum_{\ell=0}^{\infty} \left(-\frac{t^2}{n^2}\right)^{\ell} = \sum_{m=1}^{\infty} (-1)^{m+1} \frac{1}{n^{2m}} t^{2m-1}.$$

Noting that for  $t \in (0,1)$ , we have

$$\begin{split} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \left| (-1)^{m+1} \frac{1}{n^{2m}} t^{2m-1} \right| &= \frac{1}{t} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \left( \frac{t^2}{n^2} \right)^m = \frac{1}{t} \sum_{n=1}^{\infty} \frac{t^2/n^2}{1 - t^2/n^2} \\ &= t \sum_{n=1}^{\infty} \frac{1}{n^2 - t^2} < \infty, \end{split}$$

whence we can interchange the order of summation (a proof of this result is given at the end). Consequently,

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} (-1)^{m+1} \frac{1}{n^{2m}} t^{2m-1} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} (-1)^{m+1} \frac{1}{n^{2m}} t^{2m-1} = \sum_{m=1}^{\infty} (-1)^{m+1} \zeta(2m) t^{2m-1},$$

whence

$$\frac{1}{\pi} \sum_{n=-\infty}^{\infty} \frac{t}{t^2 + n^2} = \frac{1}{\pi t} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{t}{t^2 + n^2} = \frac{1}{\pi t} + \frac{2}{\pi} \sum_{m=1}^{\infty} (-1)^{m+1} \zeta(2m) t^{2m-1}.$$

On the other hand,

$$\sum_{n=-\infty}^{\infty} e^{-2\pi t|n|} = 2\sum_{n=0}^{\infty} e^{-2\pi tn} - 1 = \frac{2}{1 - e^{-2\pi t}} - 1.$$

(c) We have

$$\frac{2}{1 - e^{-2\pi t}} - 1 = \frac{1}{\pi t} + \frac{2}{\pi} \sum_{m=1}^{\infty} (-1)^{m+1} \zeta(2m) t^{2m-1}$$

$$\Rightarrow \frac{-2\pi t}{e^{-2\pi t} - 1} - \pi t = 1 + 2 \sum_{m=1}^{\infty} (-1)^{m+1} \zeta(2m) t^{2m}$$

$$\Rightarrow 1 + \pi t + \sum_{m=1}^{\infty} \frac{B_{2m}}{(2m)!} (-2\pi t)^{2m} - \pi t = 1 + 2 \sum_{m=1}^{\infty} (-1)^{m+1} \zeta(2m) t^{2m}.$$

Comparing the coefficients of t on both sides, we get

$$2\zeta(2m) = (-1)^{m+1} \frac{(2\pi)^{2m}}{(2m)!} B_{2m}.$$

About the change of order of summation in part (b)

Suppose  $\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} |a_{n,m}| := A < \infty$ . Here we want to show

(1) 
$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{n,m} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{n,m}.$$

Let  $\sigma_n := \sum_{m=1}^{\infty} a_{n,m}$  and  $S_n := \sum_{m=1}^{\infty} |a_{n,m}|$ . Now  $\sum_n S_n = A < \infty$ , implying  $S_n < \infty$  for each n. As absolute convergence implies convergence, we see that each  $\sigma_n$  is the limit of a convergent series. Also,  $\sum_n \sigma_n$  is absolutely convergent because  $\sum_n |\sigma_n| \le \sum_n S_n < \infty$ . Therefore  $\sum_n \sigma_n$  is convergent, showing that the L.H.S. of (1) is meaningful.

On the other hand, since  $\sum_{m=1}^{M}\sum_{n=1}^{\infty}|a_{n,m}|=\sum_{n=1}^{\infty}\sum_{m=1}^{M}|a_{n,m}|\leq A$ , letting  $M\uparrow\infty$  we also have  $\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}|a_{n,m}|\leq A<\infty$ . Therefore by symmetry the R.H.S. of (1) is meaningful too.

Fix an  $\varepsilon > 0$ . By  $\sum_{n} S_n < \infty$ , there exists N s.t.

$$\sum_{n=N+1}^{\infty} S_n < \varepsilon.$$

For this N, since  $S_n < \infty$  for all  $1 \le n \le N$ , there exists M s.t. for all  $1 \le n \le N$ , we have

$$\sum_{m=M+1}^{\infty} |a_{n,m}| < \frac{\varepsilon}{N}.$$

Consequently,

$$\left| \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{n,m} - \sum_{n=1}^{N} \sum_{m=1}^{M} a_{n,m} \right| \le \left| \sum_{n=1}^{\infty} \sigma_n - \sum_{n=1}^{N} \sigma_n \right| + \left| \sum_{n=1}^{N} \sigma_n - \sum_{n=1}^{N} \sum_{m=1}^{M} a_{n,m} \right|$$

$$= \left| \sum_{n=N+1}^{\infty} \sigma_n \right| + \left| \sum_{n=1}^{N} \left( \sum_{m=1}^{\infty} a_{n,m} - \sum_{m=1}^{M} a_{n,m} \right) \right|$$

$$\le \sum_{n=N+1}^{\infty} S_n + \sum_{n=1}^{N} \left| \sum_{m=M+1}^{\infty} a_{n,m} \right| \le 2\varepsilon.$$

By using the same argument, there exist some N' > N and M' > M such that

$$\left| \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{n,m} - \sum_{m=1}^{M'} \sum_{n=1}^{N'} a_{n,m} \right| \le \varepsilon.$$

Since we can interchange the order of summation for finite sums, we have

$$\left| \sum_{m=1}^{M'} \sum_{n=1}^{N'} a_{n,m} - \sum_{n=1}^{N} \sum_{m=1}^{M} a_{n,m} \right| = \left| \sum_{n=1}^{N'} \sum_{m=1}^{M'} a_{n,m} - \sum_{n=1}^{N} \sum_{m=1}^{M} a_{n,m} \right|$$

$$\leq \left| \sum_{n=N+1}^{N'} \sum_{m=1}^{M'} a_{n,m} \right| + \left| \sum_{n=1}^{N} \sum_{m=1}^{M'} a_{n,m} - \sum_{n=1}^{N} \sum_{m=1}^{M} a_{n,m} \right|$$

$$\leq \sum_{n=N+1}^{N'} \sum_{m=1}^{M'} |a_{n,m}| + \sum_{n=1}^{N} \sum_{m=M+1}^{M'} |a_{n,m}|$$

$$\leq \sum_{n=N+1}^{\infty} S_n + \sum_{n=1}^{N} \frac{\varepsilon}{N} \leq 2\varepsilon.$$

This gives

$$\left| \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{n,m} - \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{n,m} \right|$$

$$\leq \left| \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{n,m} - \sum_{n=1}^{N} \sum_{m=1}^{M} a_{n,m} \right| + \left| \sum_{n=1}^{N} \sum_{m=1}^{M} a_{n,m} - \sum_{m=1}^{M'} \sum_{n=1}^{N'} a_{n,m} \right| + \left| \sum_{m=1}^{M'} \sum_{n=1}^{N'} a_{n,m} - \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{n,m} \right|$$

$$\leq 5\varepsilon.$$

The result follows.