THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2050C Mathematical Analysis I Tutorial 4 (February 15)

The following were discussed in the tutorial this week:

1 Sequences and their limits

Definition 1.1. A sequence $X = (x_n)$ in \mathbb{R} is said to be converge to $x \in \mathbb{R}$, or x is said to be a limit of (x_n) , if for every $\varepsilon > 0$ there exists a natural number $K(\varepsilon)$ such that for all $n \ge K(\varepsilon)$, the terms x_n satisfy $|x_n - x| < \varepsilon$.

- **1.1 Procedure.** 1. Let $\varepsilon > 0$ be given. (ε is arbitrary, but cannot be changed once fixed.)
 - 2. Find a useful estimate for $|x_n x|$.
 - 3. Find $K(\varepsilon) \in \mathbb{N}$ such that the estimate in 2 is less than ε .
 - 4. Complete the proof.

Example 1.1. Use the definition of the limit of a sequence to establish the following limit. $\lim \left(\frac{n^2 - n}{2n^2 + 3}\right) = \frac{1}{2}$

2 Limit Theorems

2.1 Squeeze Theorem. Suppose $X = (x_n)$, $Y = (y_n)$ and $Z = (z_n)$ are sequences of real numbers such that

 $x_n \leq y_n \leq z_n \quad \text{for all } n \in \mathbb{N},$

and that $\lim(x_n) = \lim(z_n)$. Then $Y = (y_n)$ is convergent and

$$\lim(x_n) = \lim(y_n) = \lim(z_n).$$

Example 2.1. Use the Squeeze Theorem to determine the limits of the following.

(a) $((n!)^{1/n^2})$ (b) $(3^n/n!))$

3 Classwork

1. Use the definition of the limit of a sequence to establish the following limit:

$$\lim\left(\frac{5n^2 + 2n + 1}{3n^2 + n + 2}\right) = \frac{5}{3}.$$

2. Use the Squeeze Theorem to determine the following limit:

$$\lim\left(\sqrt[n]{3^n+|2\sin(n^n)|^n}\right).$$