THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2050C Mathematical Analysis I Tutorial 2 (January 23)

The following were discussed in the tutorial this week:

1 Absolute Value and the Real Line

Example 1.1. Sketch the graph of the equation y = |x| - |x - 1|.

2 The Completeness Property of \mathbb{R}

Definition 2.1. Let S be a nonempty subset of \mathbb{R} .

- (a) Suppose S is bounded above. Then $u \in \mathbb{R}$ is said to be a **supremum** of S if
 - (i) u is an upper bound of S (that is, $s \leq u$ for all $s \in S$);
 - (ii) if v is any upper bound of S, then $u \leq v$.
 - Here (ii) is equivalent to

(ii)' if v < u, then there exists $s_v \in S$ such that $v < s_v$.

- (b) Suppose S is bounded below. Then $w \in \mathbb{R}$ is said to be an **infimum** of S if
 - (i) w is a lower bound of S (that is, $w \leq s$ for all $s \in S$);
 - (ii) if v is any lower bound of S, then $v \leq w$.
 - Here (ii) is equivalent to

(ii)" if w < v, then there exists $s_v \in S$ such that $s_v < v$.

Remark. 1. Supremum and infimum may not be elements of S.

2. u and w above are unique and we write $\sup S = u$, $\inf S = w$.

Example 2.1. Let $S_1 := \{x \in \mathbb{R} : x \ge 0\}$. Show that the set S_1 has lower bounds, but no upper bounds. Show that $\inf S_1 = 0$.

Example 2.2. Find the infimum and supremum, if they exist, of the set $A := \{x \in \mathbb{R} : 1/x < x\}$. Justify your answers.

3 Classwork

Let $A := \{x \in \mathbb{R} : |x+2| + |x-1| > 5\} \cap \{x \in \mathbb{R} : x \le 0\}.$

- (a) What are the elements of the set A?
- (b) Determine whether A is bounded above or bounded below.
- (c) Find $\sup A$ and $\inf A$, if they exist.