THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2050C Mathematical Analysis I Tutorial 1 (January 18)

The following were discussed in the tutorial this week:

1 Negation

Example 1.1. Negate the following statements.

- (a) n is a prime number between 1 and 10.
- (b) If n^2 is divisible by 4, then n is divisible by 2.
- (c) For any real number $x, x^2 \ge 0$.
- (d) For any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $1/N < \varepsilon$.

2 Functions

Definition 2.1. Let A and B be sets. Then a function from A to B is a set f of ordered pairs in $A \times B$ such that for each $a \in A$ there exists a unique $b \in B$ with $(a,b) \in f$. A and B are called the domain and codomain of f, respectively. Denote the function f as $f : A \to B$ and write b = f(a) if and only if $(a,b) \in f$.

Definition 2.2. Let $f : A \to B$ be a function.

(a) Let $E \subseteq A$. Define the direct image of E under f, f(E), by

$$f(E) := \{ f(x) : x \in E \}.$$

(b) Let $H \subseteq B$. Define the inverse image of H under f, $f^{-1}(H)$, by

$$f^{-1}(H) := \{ x \in A : f(x) \in H \}.$$

Example 2.1. Let $f : A \to B$ be a function.

- (a) Show that if $E \subseteq A$, then $f^{-1}(f(E)) \supseteq E$. Give an example to show that equality need not hold.
- (b) Show that if $H \subseteq B$, then $f(f^{-1}(H)) \subseteq H$. Give an example to show that equality need not hold.

Definition 2.3. Let $f : A \to B$ be a function from A to B.

(a) f is said to be injective if

for all $x_1, x_2 \in A$, $f(x_1) = f(x_2) \implies x_1 = x_2$.

(b) f is said to be surjective if

for all $y \in B$, there exists $x \in A$ such that f(x) = y.

(c) f is said to be bijective if f is both injective and surjective. In this case f has an inverse function $f^{-1}: B \to A$ which satisfies

b = f(a) if and only if $a = f^{-1}(b)$.

Example 2.2. Show that the function f defined by $f(x) := x/\sqrt{x^2+1}$, $x \in \mathbb{R}$, is a bijection of \mathbb{R} onto $\{y: -1 < y < 1\}$.

3 Mathematical Induction

3.1 Well-Ordering Property of \mathbb{N} . Every nonempty subset of \mathbb{N} has a least element.

3.2 Principle of Mathematical Induction. Let S be a subset of \mathbb{N} that possesses the following two properties:

(1) $1 \in S$.

(2) For every $k \in \mathbb{N}$, if $k \in S$, then $k + 1 \in S$.

Then we have $S = \mathbb{N}$.

Example 3.1. Let $\{x_n\}$ be a sequence defined by $x_1 = 1$ and $x_{n+1} = \frac{1}{5}(3x_n + 4)$ for all $n \in \mathbb{N}$. Show that $x_n \leq x_{n+1} \leq 2$ for all $n \in \mathbb{N}$.

3.3 Principle of Strong Induction. Let S be a subset of \mathbb{N} that possesses the following two properties:

(1) $1 \in S$.

(2) For every $k \in \mathbb{N}$, if $\{1, 2, \dots, k\} \subseteq S$, then $k + 1 \in S$.

Then we have $S = \mathbb{N}$.

Remark. (3.1), (3.2) and (3.3) are all equivalent.

4 Finite and Infinite Sets

Definition 4.1. (a) The empty set \emptyset is said to have 0 elements.

- (b) If $n \in \mathbb{N}$, a set S is said to have n elements if there exists a bijection from the set $\mathbb{N}_n := \{1, 2, \dots, n\}$ onto S.
- (c) A set is said to be finite if it is either empty or it has n elements for some $n \in \mathbb{N}$.
- (d) A set is said to be infinite if it is not finite.
- **Definition 4.2.** (a) A set S is said to be denumerable (or countably infinite) if there exists a bijection of \mathbb{N} onto S.
- (b) A set S is said to be countable if it is either finite or denumerable.
- (c) A set S is said to be uncountable if it is not countable.

Example 4.1. Show that \mathbb{Z} is denumerable.

Theorem 4.1. $\mathbb{N} \times \mathbb{N}$ is denumerable.

Theorem 4.2. \mathbb{Q} is denumerable.

5 Inequalities and Absolute Value

Example 5.1. Determine the set $A := \{x \in \mathbb{R} : \frac{2x+1}{x+2} < 1\}.$

Definition 5.1. The absolute value of a real number a, denoted by |a|, is defined by

$$a := \begin{cases} a & \text{if } a > 0, \\ 0 & \text{if } a = 0, \\ -a & \text{if } a < 0. \end{cases}$$

Example 5.2. Determine the set $B := \{x \in \mathbb{R} : |x| + |x+1| < 2\}$.

6 Classwork

- 1. Negate the following statements.
 - (a) For any subset S of N, if $S \neq \emptyset$, then there exists $m \in S$ such that $m \leq n$ for all $n \in S$.
 - (b) There exists an $\varepsilon > 0$ such that for any natural number N, $|n m| \ge \varepsilon$ for some $n, m \ge N$.
 - (c) For any integer $n \ge 3$, there are no three integers a, b, c that satisfy $a^n + b^n = c^n$.
- 2. Show that the sum of a rational number and an irrational number is an irrational number.
- 3. Let $f: A \to B$ be a function.
 - (a) Show that if $E \subseteq A$, then $f^{-1}(f(E)) \supseteq E$. Give an example to show that equality need not hold. What if we further assume that f is injective?
 - (b) Show that if $H \subseteq B$, then $f(f^{-1}(H)) \subseteq H$. Give an example to show that equality need not hold. What if we further assume that f is surjective?
- 4. Let the number x_n be defined as follows: $x_1 := 1, x_2 := 2$, and $x_{n+2} := \frac{1}{2}(x_n + x_{n+1})$ for all $n \in \mathbb{N}$. Use the Principle of Strong Induction (1.2.5) to show that $1 \le x_n \le 2$ for all $n \in \mathbb{N}$.
- 5. Determine the set $A := \{x \in \mathbb{R} : |x 3| < |x| + 1\}.$