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4.1-7

Let f(x) := x3, x ∈ R. We want to make the difference less than a preassigned
ε > 0 by taking x sufficiently close to c. To do so, we note that∣∣x3 − c3∣∣ =

∣∣x2 + xc+ c2
∣∣ · |x− c| .

Moreover, if |x− c| < 1, then |x| < |c|+ 1 so that∣∣x2 + xc+ c2
∣∣ ≤ |x|2 + |cx|+ |c|2 < (|c|+ 1)2 + |c| (|c|+ 1) + |c|2 = 3 |c|2 + 3 |c|+ 1.

Therefore, if|x− c| < 1, we have∣∣x3 − c3∣∣ < (3 |c|2 + 3 |c|+ 1) · |x− c| .

Consequently, if we choose

δ(ε) := min{1, ε

3 |c|2 + 3 |c|+ 1
},

then if 0 < |x− c| < δ(ε) , it will follow that∣∣x3 − c3∣∣ < (3 |c|2 + 3 |c|+ 1) · δ(ε) < ε.

Since we have a way of choosing δ(ε) > 0 for an arbitrary choice of ε > 0, we
infer that limx→c f(x) = limx→c x

3 = c3,∀c ∈ R.

4.1-10(b)

Let g(x) := x+5
2x+3 , x ∈ R \ {− 3

2}. Then a little algebraic manipulation gives us

|g(x)− 4| =
∣∣∣∣x+ 5− 8x− 12

2x+ 3

∣∣∣∣ = 7

∣∣∣∣ x+ 1

2x+ 3

∣∣∣∣ .
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To get a bound on the coefficient 7
|2x+3| , we restrict x by the condition − 5

4 <

x < − 3
4 . For x in this interval, we have 1

2 < 2x+ 3 < 3
2 and 1

|2x+3| < 2 so that

|g(x)− 4| < 14 |x+ 1| .

Now for given ε > 0, we choose

δ(ε) = min{1

4
,
ε

14
}.

Then if 0 < |x+ 1| < δ(ε), we have |g(x)− 4| < ε. Since ε > 0 is arbitrary, the
assertion is proved.

4.1-12(c)

Denote f(x) := x + sgn(x), x ∈ R, an = 1
n , n ∈ N and bn = − 1

n , n ∈ N.
Note that an, bn 6= 0,∀n ∈ N and that (an) and (bn) are convergent sequences
with common limit 0. Suppose that limx→0 f(x) = L exist, which implies that
L = lim(f(an)) = lim(f(bn)) by Theorem 4.1.8(b) and Theorem 4.1.5. But
f(an) = 1 + 1

n and f(bn) = −1 − 1
n for any n ∈ N. Thus lim f(an) = 1 while

lim f(bn) = −1, a contradiction.

4.1-12(d)

Denote g(x) := sin 1
x2 , x ∈ R\{0}, an = 1√

2nπ
, n ∈ N and bn = 1√

(2n+ 1
2 )π

, n ∈ N.

Note that an, bn 6= 0,∀n ∈ N and that (an) and (bn) are convergent sequences
with common limit 0. Suppose that limx→0 g(x) = L exist, which implies that
L = lim(g(an)) = lim(g(bn)) by Theorem 4.1.8(b) and Theorem 4.1.5. But
g(an) = sin 2nπ = 0 and g(bn) = sin(2n + 1

2 )π = 1 for any n ∈ N. Thus
lim g(an) = 0 while lim g(bn) = 1, a contradiction.

4.1-15

(a) Given ε > 0, set δ(ε) = ε. If |x| < δ, then either |f(x)− 0| = |x| < ε if x is
rational or |f(x)− 0| = 0 < ε if x is irrational. Thus f has limit L = 0 at
x = 0.

(b) In order to show the divergence, we show that for any c 6= 0 there exist two
sequences (an) and (bn) converging to c while lim f(an) 6= lim f(bn). Denote
In = (c, 1

n + c),∀n ∈ N. By The Density Theorem 2.4.8, for each n ∈ N,
there exists RATIONAL number an ∈ In. Since c < an <

1
n + c, lim an = c

by The Squeeze Theorem. Note that f(an) = an and lim f(an) = c. On the
other hand, by The Corollary (of Density Theorem) 2.4.9, for each n ∈ N,
there exists IRRATIONAL number bn ∈ In. Similarly we have lim bn = c.
Note that f(bn) = 0 and lim f(bn) = 0. Since c 6= 0, lim f(an) 6= lim f(bn),
a contradiction.
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