MATH 5061 Riemannian Geometry

Solution to Problem Set 5

Problem 1

(a). Let Bs(p) be a small ball centered at p such that for any s1,s2 € Bs(p),
there is a unique geodesic « jointing si, se such that p(s1,s2) = Length of ~.
We call this ball as the totally normal ball at p. Let Ss(p) be the boundary of
Bs(p). Note that Ss(p) is a compact set, we can find some s € Ss(p) such that
p(s,q) attains a minimum on Ss(p). So we can find a minimizing geodesic ()
with v(0) = p,v(d) = s and ||7/(0)|| = 1. By the definition of exponential map,
we have exp,,(dv) = s where v = +/(0) € T,M. Let | = p(p,q), we are going to
show exp, (lv) = ¢. Since exp,,(tv) defined for all £ € R, we actually can extend
the definition of ~(t) for ¢t € R by ~(t) = exp,(tv).
We consider the following equation.

p(y(t),q) =11 (1)

Let A= {t € (0,1]: (??) holds for t}. Clearly A # 0 since § € A (Triangle
inequality = p(s,q) > 1—9. If p(s,q) =1y > -9, then any piecewise smooth
curve jointing p,q will > Iy + § since they will pass through Ss(p).)

Note that A is closed in (0,!] by the continuous of distance. So let’s show
if to € A and tg # [, then we can find 6’ > 0 such that tg + ¢ € A. Still we
choose a totally normal ball Bs: (y(to)) such that p,q ¢ Bs/(7(t9)). So we know
8 < p(y(to),q) =1—ty = to+0¢ <. Again, we can find some s’ € Ss/(7(to))
such that p(s,¢) attains a minimum on Sy (v(tp)). We claim s’ = v(to + ¢').
If not, we note p(s’,y(to — 0")) < p(s',v(to)) + p(y(to),v(to — ') = 20’ by the
definition of totally normal ball. Hence p(s’,p) < to + ¢’. Again by triangle
inequality, p(q,s’) > 1 — p(a’,p) > 1 —to — 0’. Since any curves jointing ~(tg), q
will pass through S/ (v(to)), we actually know p(g,v(to)) > p(z’, q)+0" > I —to,
a contradiction with ¢y € A. So we should have &’ = v(¢y + ¢’). Still by triangle
inequality p(v(to + 9'),p) > 1 —to — &’ but p(y(to +6'),p) > 1 —to — ¢’ cannot
hold by the same reason. Hence p(y(to +9¢'),q) =1 —tg — 0 = to+ 9 € A.

The above steps show sup A € A by the closeness and moreover sup A = [.
Hence | € A and () = gq. The ~ is the geodesic jointing p, ¢ realized the
distance p(p, q).

To prove (M, p) is complete, note for any Cauchy sequence (p;), we know
p(pi,p) is bounded by Triangle inequality. Suppose p(p;,p) < M for all i, we
know p; in the image of Bjs(p) under the map exp,. Note By/(p) is compact,

so does the set exp,(Bas(p)). Hence we can find a convergent subsequence of
(pi) and indeed the whole sequence will have the same limit since it is Cauchy.



(b). Let’s suppose exp,, is not defined on the whole T;,M. That means there
is a geodesic y(t) with (0) = p is not defined for some t. WLOG, we assume
[[7/(0)]] = 1. By the existence of geodesic, we know there is a largest open
interval (—sg, s1) such that ~(¢) is well-defined. Let ¢; € (—sg,s1) such that
t; — s1. Note p(y(t;),v(t;)) < |ti —t;|, v(t;) is Cauchy and we can find ¢ € M
such that vy(t;) — g.

Now let Bjs(g) be a totally normal ball at g. We can find N large such that
Di € Bg(q) and |t; — s1] < g for all 4 > N. Note that any two points in Bs(p)
can be joined by a minimizing geodesic, we know the exponential map exp,,
defined for all ||v|| < %. Let’s consider two points p;,p; with N < i < j and
they’re joined by a minimizing geodesic (), t € [t;, ¢;]. But note exp, (t7/(t;))
exists for t € [~2, 2], we know (t) is well-defined when ¢ € [t;,t; + 22]. Note
t; + g > 81, so it contradicts with the choice of . Hence exp,, is defined on the
whole T, M.

Problem 2

Suppose y(t) defined on [0,T] with ||7/(0)|| = 1. Let F(s) : (—e,&) — M be
the geodesic starting from ~(0) with initial velocity V' (0). So we consider the
variation of v defined by

f(t,5) = exps ) (tW (s))

where W (s) be the vector field along 4 with W (0) = +/(0) and 2 (0) = Z¥(0).
Clearly f(t,0) = exp. (o) (t7'(0)) = 7(t), so f is indeed a variation of .
Note that the variation of geodesic will give the Jacobi field. That is, if we

define V (t) = %(t, 0), the vector field along «y, then note %%{ = 0, we have
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which shows V is indeed a Jacobi field.
Note that V(0) = V(0) = 2£(0,0) and
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Hence V =V along v by the uniqueness of the ODE solutions.
So V arises as the variation of the geodesic.

(0) = V)V (0)

Problem 3
(a).

" — " Suppose X is a Killing vector field. Then

d .
a\t:owtg =Lxg=0

where ¢; generated by X by the definition of Lie derivative of tensor. Hence

&It:tosotg = &hiowto °Y;g = ¥ @\t:ocptg =i (Lxg) =0



by the properties of flow. So p;g = g.
" <= " Suppose p;g = g for all ¢, then

d . d
Lxg= a|t:0<ﬂt9 = &h:og =0

(b). Let ¢; be the flow generated by X. So ¢; will be the isometries of M.
Hence for any geodesic v(s), the variation of v defined by ~:(s) = pi(v(s)) is
geodesic for every ¢t € R. Hence the vector field V = % = %gﬁt = X along
~(s) is a Jacobi field.
(c). Let A ={p e M : X,VyX vanished at p for all Y(p) € T,M}. Clearly
A # () is closed. We show A is open, too. For any p € M, we choose a small
ball B;s(p) that for every point in ¢, there is a unique minimizing geodesic v, 4
in Bs(p) jointing p,q. Note that X is a Jacobi field along +, , that X, Vo 0
vanish at p. But by the uniqueness of Jacobi field when given V(0), V.0V (0),
we know X should be the zero vector field. Hence X will be zero in the whole
ball Bs(p). So Bs(p) C A.

Since M is connect and A is open and closed at the same time, we know
A=M.

Problem 4

Consider the projective space RP"™ when n is odd. It is a quotient of S™ under
antipodal map . Since ¢ is orientation preserving when n is odd, we know RP"
is orientable and moreover RP™ has positive sectional curvature by the properties
of covering map. Hence Synge theorem does not hold in odd dimensions.



