MATH 5061 Riemannian Geometry

Solution to Problem Set 4

Problem 1

We use the normal coordinate to compute the second Bianchi Identity. Choose $p \in M$ with the normal coordinate e_1, \dots, e_n at p. So we have $\nabla_{e_i} e_j = 0$ at p for any $1 \le i, j \le n$ and hence $[e_i, e_j] = 0$ at p.

So at p, the coderivative of Riemann curvature tensor can be written as

$$\begin{split} (\nabla_{e_i} R)(e_j, e_k, e_l, e_m) &= \frac{\partial}{\partial x_i} R(e_j, e_k, e_l, e_m) \\ &= -\left\langle \nabla_{e_i} \nabla_{e_j} \nabla_{e_k} e_l, e_m \right\rangle + \left\langle \nabla_{e_i} \nabla_{e_k} \nabla_{e_j} e_{\lambda} e_m \right\rangle \end{split}$$

So

$$\begin{split} &(\nabla_{e_i}R)(e_j,e_k,e_l,e_m) + (\nabla_{e_j}R)(e_k,e_i,e_l,e_m) + (\nabla_{e_k}R)(e_i,e_j,e_l,e_m) \\ &= -\left[\left\langle \nabla_{e_i}\nabla_{e_j}\nabla_{e_k}e_l,e_m\right\rangle \right] + \left\langle \nabla_{e_i}\nabla_{e_k}\nabla_{e_j}e_l,e_m\right\rangle \\ &- \left\langle \left\langle \nabla_{e_j}\nabla_{e_k}\nabla_{e_i}e_l,e_m\right\rangle + \left\langle \left\langle \nabla_{e_j}\nabla_{e_i}\nabla_{e_k}e_l,e_m\right\rangle \right] \\ &- \left\langle \left\langle \nabla_{e_k}\nabla_{e_i}\nabla_{e_j}e_l,e_m\right\rangle + \left\langle \left\langle \nabla_{e_k}\nabla_{e_j}\nabla_{e_i}e_l,e_m\right\rangle \right] \\ &= R(e_i,e_j,\nabla_{e_k}e_l,e_m) + R(e_j,e_k,\nabla_{e_i}e_l,e_m) + R(e_k,e_i,\nabla_{e_j}e_l,e_m) \\ &= 0 \quad (\nabla_{e_i}e_j = 0 \text{ for } 1 \leq i,j \leq n \text{ and } R \text{ is a tensor.}) \end{split}$$

Since the coderivative of R is still a tensor, then by the linearity of R, we have

$$(\nabla_X R)(Y, Z, W, T) + (\nabla_Y R)(Z, X, W, T) + (\nabla_Z R)(X, Y, W, T) = 0$$

Problem 2

Recall the corollary in the lecture. It says sectional curvature $K(\sigma) \equiv c$ for all $\sigma \in T_pM$ if and only if $R(X,Y,Z,W) = c(\langle X,Z \rangle \langle Y,W \rangle - \langle Y,Z \rangle \langle X,W \rangle)$. So we have

$$R_{p}(X, Y, Z, W) = f(p) \left(\langle X, Z \rangle \langle Y, W \rangle - \langle Y, Z \rangle \langle X, W \rangle \right)$$

Again, we can work at normal coordinate. Let e_1, \dots, e_n to be the normal coordinate at p. Use the properties $\frac{\partial}{\partial x^i} \langle e_j, e_k \rangle = 0$ at p for any $1 \leq i, j, k \leq n$,

we have

$$(\nabla_{e_i} R)(e_j, e_k, e_l, e_m) = \frac{\partial}{\partial x^i} \left(f(p) \left(\langle e_j, e_l \rangle \langle e_k, e_m \rangle - \langle e_j, e_m \rangle \langle e_k, e_l \rangle \right) \right)$$
$$= \frac{\partial f}{\partial x^i}(p) \left(\delta_{jl} \delta_{km} - \delta_{jm} \delta_{kl} \right)$$

Now since $n \ge 3$, for any i, we can choose j, k such that i, j, k are all different with each other. Choose l = j, m = k and use second Bianchi Identity, we have

$$0 = \frac{\partial f}{\partial x^{i}}(1 - 0) + \frac{\partial f}{\partial x^{j}}(0 - 0) + \frac{\partial f}{\partial x^{k}}(0 - 0) = \frac{\partial f}{\partial x^{i}}$$

So $\nabla f = 0$ at p. Since p is arbitrary, we know f is a constant function.

Problem 3

(a) Let (x_1, \dots, x_n) to be a local coordinate with $e_i = \frac{\partial}{\partial x_i}$. We write $R(e_i, e_j, e_k, e_l) = R_{ijkl}$ and $Ric(e_i, e_j) = Ric_{ij}$ for short. So our condition says $Ric_{ij} = \lambda g_{ij}$. The second Bianchi identity can be written as

$$\nabla_{e_i} R_{jklm} + \nabla_{e_i} R_{kilm} + \nabla_{e_k} R_{ijlm} = 0$$

We multiply g^{jl} , g^{km} to the both side of the above identity and take sum over j, l, k, m, and using coderivative of metric is 0, we have

$$0 = g^{jl}g^{km}\nabla_{e_{i}}R_{jklm} + g^{jl}g^{km}\nabla_{e_{j}}R_{kilm} + g^{jl}g^{km}\nabla_{e_{k}}R_{ijlm}$$

$$= \nabla_{e_{i}}\left(g^{jl}g^{km}R_{jklm}\right) + \nabla_{e_{j}}\left(g^{jl}g^{km}R_{kilm}\right) + \nabla_{e_{k}}\left(g^{jl}g^{km}R_{ijlm}\right)$$

$$= \nabla_{e_{i}}\left(g^{jl}\operatorname{Ric}_{jl}\right) + \nabla_{e_{j}}\left(-g^{jl}\operatorname{Ric}_{il}\right) + \nabla_{e_{k}}\left(-g^{km}\operatorname{Ric}_{im}\right) \quad \text{(Definition of Ric)}$$

$$= \nabla_{e_{i}}\left(g^{jl}g_{jl}\lambda\right) - \nabla_{e_{j}}\left(g^{jl}g_{il}\lambda\right) - \nabla_{e_{k}}\left(g^{km}g_{im}\lambda\right) \quad \text{(Ric}_{ij} = \lambda g_{ij})$$

$$= \nabla_{e_{i}}(n\lambda) - \nabla_{e_{j}}(\delta_{i}^{j}\lambda) - \nabla_{e_{k}}(\delta_{i}^{k}\lambda) = (n-2)\frac{\partial}{\partial r}\lambda$$

where we've used Einstein summation convention.

Hence $\nabla \lambda \equiv 0$ on M. So λ is a constant function since M is connected.

(b) Let e_1, e_2 be any orthogonal vectors at p. So the section curvature at the plane spanned by e_1, e_2 is R_{1212} . Let's choose e_3 to form a orthonormal basis of T_pM with e_1, e_2 and extend them to a local frame. Note that

$$\begin{aligned} & \operatorname{Ric}_{11} + \operatorname{Ric}_{22} - \operatorname{Ric}_{33} \\ &= R_{1212} + R_{1313} + R_{2121} + R_{2323} - R_{3131} - R_{3232} \\ &= 2R_{1212} = K(e_1, e_2) \end{aligned}$$

Note that $\operatorname{Ric}_{ii} = \lambda \langle e_i, e_i \rangle = \lambda$, we have $K(e_1, e_2) = \lambda$ for any point p and any $e_1, e_2 \in T_pM$, with e_1, e_2 the normal orthogonal vectors at p.

So M has constant sectional curvature.

Problem 4

Given $p \in \Sigma$, choose a orthonormal basis $\{e_1, \dots, e_{n-1}\}$ of $T_p\Sigma$ at p. So the vectors $\{e_1, \dots, e_{n-1}, N\}$ will form a orthonormal basis of T_pM . The mean

curvature H of Σ with respect to N is defined as

$$H = \sum_{i=1}^{n-1} \langle \nabla_{e_i} e_i, N \rangle$$

where we've extend $\{e_i\}$ to any local frame of Σ and $\nabla_X Y$ denote the coderivative on M. Since $\langle e_i, N \rangle \equiv 0$ on Σ , we have

$$H = \sum_{i=1}^{n-1} e_i \left\langle e_i, N \right\rangle - \sum_{i=1}^{n-1} \left\langle e_i, \nabla_{e_i} N \right\rangle = - \sum_{i=1}^{n-1} \left\langle e_i, \nabla_{e_i} N \right\rangle$$

Note that $\langle N, N \rangle = 1$ all the time. So

$$0 = N \langle N, N \rangle = 2 \langle N, \nabla_N N \rangle$$

Hence

$$H = -\sum_{i=1}^{n-1} \langle \nabla_{e_i} e_i, N \rangle - \langle \nabla_N N, N \rangle = -\operatorname{div} N = \operatorname{div} \frac{\nabla f}{|\nabla f|}.$$

(There might be a sign difference based on how to define the mean curvature and how to choose the normal.)

Problem 5

(a) We note the following identity

$$F_*(\frac{\partial}{\partial u}) = \frac{\partial F}{\partial u} = (-\sin u, \cos u, 0, 0),$$

$$F_*(\frac{\partial}{\partial v}) = \frac{\partial F}{\partial v} = (0, 0, -\sin v, \cos v)$$

So

$$\left\langle F_*(\frac{\partial}{\partial u}), F_*(\frac{\partial}{\partial u}) \right\rangle_{\mathbb{R}^4} = 1 = \left\langle \frac{\partial}{\partial u}, \frac{\partial}{\partial u} \right\rangle_{\mathbb{R}^2}$$
$$\left\langle F_*(\frac{\partial}{\partial u}), F_*(\frac{\partial}{\partial v}) \right\rangle_{\mathbb{R}^4} = 0 = \left\langle \frac{\partial}{\partial u}, \frac{\partial}{\partial v} \right\rangle_{\mathbb{R}^2}$$
$$\left\langle F_*(\frac{\partial}{\partial v}), F_*(\frac{\partial}{\partial v}) \right\rangle_{\mathbb{R}^4} = 1 = \left\langle \frac{\partial}{\partial v}, \frac{\partial}{\partial v} \right\rangle_{\mathbb{R}^2}$$

Hence F is an isometric immersion. (b) Note that $|F|^2 = \cos^2 u + \sin^2 u + \cos^2 v + \sin^2 v = 2$. So image of F lies

Let N be a unit normal vector field along $F(\mathbb{R}^2)$ in \mathbb{S}^3 . We use $\overline{\nabla}_X Y$ to denote the coderivative on \mathbb{R}^4 and $\nabla_X Y$ denote the coderivative on \mathbb{S}^3 .

So the mean curvature can be calculate by following

$$\begin{split} H &= \left\langle \nabla_{\frac{\partial}{\partial u}} \frac{\partial}{\partial u}, N \right\rangle + \left\langle \nabla_{\frac{\partial}{\partial v}} \frac{\partial}{\partial v}, N \right\rangle \\ &= \left\langle \overline{\nabla}_{\frac{\partial}{\partial u}} \frac{\partial}{\partial u}, N \right\rangle + \left\langle \overline{\nabla}_{\frac{\partial}{\partial v}} \frac{\partial}{\partial v}, N \right\rangle \quad (\text{ since } N \in T\mathbb{S}^3) \\ &= \left\langle \frac{\partial^2 F}{\partial u^2}, N \right\rangle + \left\langle \frac{\partial^2 F}{\partial v^2}, N \right\rangle \\ &= \left\langle (-\cos u, -\sin u, 0, 0) + (0, 0, -\cos v, -\sin v), N \right\rangle = -\left\langle F(u, v), N \right\rangle \\ &= 0 \quad (\text{ since } N \bot F \in \mathbb{R}^4) \end{split}$$

So Σ is a minimal immersion into \mathbb{S}^3 .