
MATH 5061 Riemannian Geometry

Solution to Problem Set 3

Problem 1
Firstly, note that antipodal map A(p) = −p will give an isometry on Rn+1.
That is, let g be the metric on Rn+1, then

(A∗g)p(
∂

∂xi
,
∂

∂xj
) = g−p(dAp(

∂

∂xi
), dAp(

∂

∂xj
))

= g−p(− ∂

∂xi
,− ∂

∂xj
) = δij

= g−p(
∂

∂xi
,
∂

∂xj
)

So A∗g = g. Hence A∗(g|Sn) = g|Sn , A will induce an isometry on Sn.
Now we have the nature definition of metric g̃ on RPn defined by

g̃q(v, w) = gp|Sn(v0, w0)

where q ∈ RPn, p ∈ π−1(q), v0 ∈ dπ−1p (v), w0 ∈ dπ−1p (w). Note that v0, w0 is
uniquely determined by v, w since dπp is a isomorphism. We need to verity g̃ is
well-defined.

If p′ is another p such that π(p′) = q, then p′ = −p = A(p). Hence
gp|Sn(v0, w0) = gA(p)|Sn(dAp(v0), dAp(w0)). Note that dπA(p) ◦ dAp = πp by
π ◦A = π, so p′ will give the same definition with p.

By the construction above, we can find π is indeed a local isometry since
locally they are diffeomorphism and their metric is related by π.

Problem 2
Let F := {F : Sn → Sn|F is an isometry }. Then we know O(n+ 1) ⊂ F since
the orthogonal transformation will keep the metric of Rn+1 and hence keep the
metric on Sn.

We will show that O(n+ 1) = F .
Let ϕ ∈ F be an isometry of Sn. Then we construct a new map ψ :

Rn+1\{0} → Rn+1\{0} in the following ways

ψ(x) = |x|ϕ(
x

|x|
), x ∈ Rn+1\{0}.

One can verify this is a diffeomorphism. Moreover, we can calculate the
differential map at x with direction v as following, (e.g. calculating d

dt |t=0ψ(c(t))
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with c(0) = x, c′(0) = v)

dψx(v) = ϕ

(
x

|x|

)
d
dt
|t=0 |x+ tv|+ |x| d

dt
|t=0ϕ

(
x+ tv

|x+ tv|

)
=
〈x, v〉
|x|2

ϕ

(
x

|x|

)
+ |x| dϕ x

|x|

(
v

|x|
− 〈x, v〉x
|x|3

)

where 〈·, ·〉 is the inner product on Rn+1 (Or the standard metric on Euclidean
space)

Use the fact ϕ is an isometry, i.e. 〈dφp(v), dφp(w)〉 = 〈v, w〉, and then fact
ϕ( x
|x| )⊥ Im

(
dφ x

|x|

)
,
∣∣∣ϕ( x
|x| )
∣∣∣ = 1, we find

〈dψx(v), dψx(w)〉 =
〈x, v〉 〈x,w〉
|x|4

+ |x|2
〈
v

|x|
− 〈x, v〉x
|x|3

,
w

|x|
− 〈x,w〉x
|x|3

〉
= 〈v, w〉 .

So we get ψ : Rn+1\{0} → Rn+1\{0} is an isometry. Now we can use the
properties of Euclidean space to show ψ is indeed a linear map.

Since ψ is an isometry, it keeps the distance of different points. That is,
if p, q ∈ Rn+1\{0}, such that the line segment pq doesn’t contain 0, then
|ψ(p)− ψ(q)| = |p− q|. If the line segment pq contains 0, since ψ is contin-
uous, we still have the same result since we can choose qi → q such that pqi
does not contain 0 and take limit in |ψ(p)− ψ(qi)| = |p− qi|.

Again, by the definition of ψ, we know ψ keeps the length of points. That is

|ψ(p)| = |p|
∣∣∣∣ϕ(

p

|p|
)

∣∣∣∣ = |p| .

Hence ψ keeps the inner product by the following

〈ψ(p), ψ(q)〉 =
1

2

(
|ψ(p)|2 + |ψ(q)|2 − |ψ(p)− ψ(q)|2

)
=

1

2

(
|p|2 + |q|2 − |p− q|2

)
= 〈p, q〉

for any p, q ∈ Rn+1\{0}.
So for any a, b ∈ R, p, q, r ∈ Rn+1\{0}, we have

〈ψ(ap+ bq)− aψ(p)− bψ(q), ψ(r)〉 = 〈ap+ bq, r〉 − a 〈p, r〉 − b 〈q, r〉 = 0

Note that ψ(r) can take any vectors in Sn, by choose ψ(r) = e1, · · · , en+1 to be
the basis of Rn+1, we actually know

ψ(ap+ bq) = aψ(p) + bψ(q).

Hence if we define ψ(0) = 0, we actually get ψ : Rn+1 → Rn+1 is a linear
map. It is an orthogonal map since ψ also keeps the length of any line segments
of Rn+1.

So as a restriction of ψ, the map ϕ is an orthogonal transformation on Sn.
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Problem 3
(a). Let write a new curve c̃(s) = c(t+ t0 − s) from c(t) to c(t0) for s ∈ [t0, t].
So we can define the new map P̃ = Pc̃,t,t0 : Tc(t)M → Tc(t0)M .

Note P, P̃ are all homomorphism since for constant a, b, we always have
∇X(aY + bZ) = a∇XY + b∇XZ.

Let’s show P̃ ◦ P = IdTc(t0)M . This is because, for any V (c(t)), the parallel
transportation of V ∈ Tc(t0)M along c, we consider the vector fields V (c(s)) =
V (c̃(t+ t0 − s)), we have

∇c̃′(s)V = ∇−c′(s)V = 0

Hence V (c̃(t + t0 − s)) is a parallel transport from V (c(t)) along c̃. Hence
P̃ (V (c(t))) = V (c(t0)). That’s P̃ ◦ P (V (c(t0))) = V (c(t0)).

Similarly, we know P ◦ P̃ = IdTc(t)
M . Hence P is an isomorphism.

For the linear isometry, Let V,W be two vectors fields that are all paralleled
along c. Since the metric is compatible with connection, we have

d
dt
g(V (s),W (s)) = g(∇c′(s)V (s),W (s)) + g(V (s),∇c′(s)W (0))

= g(0,W (s)) + g(V (s), 0)) = 0

Integrate s from t0 to t, we have g(V (t),W (t)) = g(V (t0),W (t0)).
If M is orientable, we consider the Ps = Pc,t0,s for any s ∈ [t0, t]. Let’s

choose an orientable basis e1, · · · en ∈ Tc(t0)M and let ei(s) = Ps(ei), the parallel
transport of ei along c.

Let’s consider the function f(s) : [t0, t] → {−1, 1} where f(s) = 1 if and
only if Ps is orientation-preserving.

Clearly f(s) is continuous since in any oriented local coordinate chart x1, · · · , xn,
we write ei =

∑n
j=1 aij

∂
∂xj

, then orientation of ei(s) is determined by the sign
of det(aij(s)), which is continuous with respect to s.

Since f(t0) = 1, we get f(s) = 1 for all s ∈ [t0, t]. So P is orientation
preserving.
(b).

As before, we choose e1, · · · , en as the basis of Tc(t0)M , and let ei(c(t)) be
the parallel transformation along c(t) from the vectors ei. Since ei(c(t)) is the
basis of Tc(t)M by the isomorphism of P , we can write Y (c(t)) = ai(t)ei(c(t)).
Hence

∇XY (p) =

n∑
i=1

∇c′(0)(ai(t)ei(c(t)))|t=t0 =

n∑
i=1

c′(0)(ai(t))ei(p) + ai(0)∇c′(0)ei(p)

=

n∑
i=0

a′i(0)ei(p)

Here c′(0)(ai(t)) means the vector c′(0) acting on the function ai(t).

3



On the other hand, use the fact that P−1c,t0,t is a linear map, we have

d
dt

∣∣∣∣
t=t0

P−1c,t0,t(Y (c(t))) =
d
dt

∣∣∣∣
t=t0

n∑
i=1

ai(t)P
−1
c,t0,t(ei(c(t)))

=
d
dt

∣∣∣∣
t=t0

n∑
i=1

ai(t)ei(c(t0))

=

n∑
i=0

a′i(0)ei(p)

Hence (∇XY )(p) = d
dt

∣∣
t=t0

P−1c,t0,t(Y (c(t))).

Problem 4
(a). Let work at the local coordinate (x1, · · · , xn) near p. Then TM has the
local coordinate (x1, · · · , xn, y1, · · · , yn) near (p, v) defined by

(p, v) = ((p1, · · · , pn), (v1
∂

∂x1
, · · · , vn

∂

∂xn
))→ (p1, · · · , pn, v1, · · · , vn)

So for α(t), if v(t) = v1(t) ∂
∂x1

+ · · ·+ vn(t) ∂
∂xn

, p(t) = (p1(t), · · · pn(t)), then
α(t) can be represented by (p1, · · · , pn, v1, · · · , vn). Hence α′(t) = p′1(t) ∂

∂x1
+

· · ·+ p′n(t) ∂
∂xn

+ v′1(t) ∂
∂y1

+ · · ·+ v′n(t) ∂
∂yn

. So we know that p′i(0) and v′i(0) are
uniquely determined by V .

Note that π has the form (x1, · · · , xn, y1, · · · , yn)→ (x1, · · · , xn) under our
local coordinates, so dπ(α′(0)) = p′1(0) ∂

∂x1
+ · · · p′n(0) ∂

∂xn
. Hence dπ(V ) =

dπ(α′(0)) will be determined by V , which does not rely on the choice of curve
(p(t), v(t)).

For the second part, we have

Dv

dt
(0) = ∇p′(0)v(t) =

n∑
i=1

v′i(0)
∂

∂xi
+ vi(0)∇p′(0)

∂

∂xi

Since v′i(0) is uniquely determined by V , vi(0) is uniquely determined by v,
p′(0) = π(V ) is uniquely determined by V , we know Dv

dt (0) does not rely on the
choice of curves.

Hence all of the terms in the definition of 〈V,W 〉(p,v) doesn’t rely on the
choice of curves and hence it indeed give us a Riemannian metric on TM .

Moreover, we have the description of inner product on TM as following.
If V = (p̃, ṽ) = (p̃1, · · · , p̃n, ṽ1, · · · , ṽn),W = (q̃, w̃) = (q̃1, · · · , q̃n, w̃1, · · · , w̃n)
∈ T(p,v)TM , we have

〈V,W 〉p,v = 〈p̃, q̃〉p +

〈
ṽ +

n∑
i,j,k=1

vip̃jΓ
k
ij

∂

∂xk
, w̃ +

n∑
i,j,k=1

wiq̃jΓ
k
ij

∂

∂xk

〉
p

where ṽ means the canonical projection when viewed it as a vector
∑n

i=1 ṽi
∂

∂xi

in TM .
(b). A vector (p, v) = (p1, · · · , pn, v1, · · · , vn) is in the fiber π−1(p) if the
projection dπ(p, v) = 0. This means the vectors in the fiber π−1(p) is spanned
by all the vector having form (0, v) for v ∈ TpM .
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Hence c(t) is horizontal⇐⇒ 〈(p(t), v(t)), (0, w(s))〉(p(t0),v(t0)) for each w(s) ∈
Tp(t0)M , a curve of vectors in Tp(t0)M and each t0 ⇐⇒

〈
Dv
dt ,

Dw
ds

〉
= 0 at t0.

Note that for any w0 ∈ Tp(t0)M , we can choose some special curve w(s) such
that Dw

ds = w0. Hence the above equivalent to the fact that Dv
dt (t0) = 0 for any

t0, which equivalent to the fact v(t) is a parallel vector field along p(t).
(c). Locally, the geodesic fields at (p1, · · · , pn, v1, · · · , vn) is defined by

V = (p̃, ṽ) :=

n∑
i=1

vi
∂

∂xi
+

n∑
k=1

n∑
i,j=1

−Γk
ijvivj

∂

∂yk

In the local description in (a), for any W = (0, w̃) ∈ T(p,v)TM , we have

〈V,W 〉(p,v) =

〈
n∑

k=1

ṽk +

n∑
i,j=1

vip̃jΓ
k
ij

 ∂

∂xk
, w̃

〉

=

〈
n∑

k=1

 n∑
i,j=1

−Γk
ijvivj +

n∑
i,j=1

vivjΓ
k
ij

 , w̃

〉
= 0

Hence V is a horizontal vector field.
(d). Let c(t) = (p(t), v(t)) be any curves in TM . So we know c(t) is the
trajectories of the geodesic field if and only if p′(t) = v(t) and Dv

dt = 0, this will
equivalent to the fact p(t) is a geodesic in M .

So we only need to show any geodesic p(t) : I → M of M can be lifted to
TM such that c(t) := (p(t), p′(t)) is a geodesic on TM . Let’s suppose I = [0, T ]
for convenience.

Let c̃(t), t ∈ [0, ε′] be a shortest geodesic joining c(0), c(ε) in TM for some
small ε. Let c̃(t) = (p̃(t), ṽ(t)), then p̃ is a curve from p(0) to p(ε).

Let L be the length of p(t), t ∈ [0, ε], L̃, the length of p̃(t), t ∈ [0, ε′]. So
for ε small enough, we know L̃ ≥ L, since geodesics are locally minimizing the
length. Now let’s calculate the length of c, c̃.

Note that

ˆ ε

0

|c′(t)| dt =

ˆ ε

0

√
|p′|2 +

∣∣∣∣Dp′dt
∣∣∣∣2dt =

ˆ ε

0

|p′|2 dt = L

ˆ ε′

0

|c̃′(t)| dt =

ˆ ε′

0

√
|p̃′|2 +

∣∣∣∣Dvdt
∣∣∣∣2dt ≥ ˆ ε′

0

|p̃′| dt = L̃ ≥ L

But since we’ve assumed c̃ are the shortest geodesic joining two points, we
have

´ ε′
0
|c̃′| dt ≤

´ ε
0
|c′| dt. Hence all of inequalities above are indeed equalities.

So c, c̃ are indeed the same curves. This shows c is also the geodesic in TM .
Hence, we finished our proof.
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