MATH 5061 Riemannian Geometry

Solution to Problem Set 1

Problem 1

We use [(z,t)] to denote the equivalent class of the quotient space M.
(a) We show that M can be covered by two charts {(U;, ¢;) }icq1,2)-
Choose U; be the quotient of (0,1) X R, ¢1 : Uy — (0,1) x R defined by
¢1([z,t]) = (z,t). Clearly it is well-defined and it is a homeomorphism.
Choose Us be the quotient of ((0.5,1]U[0,0.5)) x R, ¢ : Uz — (0.5,1.5) x R
defined by
(z,t), x> 0.5

d2([z,1]) == {(m—i— 1,-t), 2<0.5

This is well defined since for any ¢ € R, we have ¢2([(0,t)]) = (1,—t) =
@2([(1, —t)]), which says the value of ¢5 does not rely on the representative. It’s
easy to see it is a homeomorphism by the property of quotient space.

So we find two charts covering M.

Moreover, the transaction map ¢ o0¢7 ' : ((0,0.5)U(0.5,1)) xR — ((0.5,1)U
(1,1.5)) x R has the form

. (z,1), x>05
d2001 (z,8) = {(m +1,-t), <05
by the definition of ¢;. So it is a C°* map and its inverse is still a C'* map.
Hence, the charts {(U;, #i) }ie{1,2y define a differentiable structure on M.
(b) Let’s assume M is orientable. So there is an atlas A = {(U;, ¢;) }ier such
that all transition maps are orientation-preserving.
Now, we will insert (Uy, ¢1), (Us, ¢2) into the atlas A to get a contradiction.
First, let’s consider a function f : ¢;*(U;) — R defined by

1, ifgi(p) € U; and det(d(¢; o ¢1)) > 0 for some i € T
o) = 0, if ¢2(p) € U; and det(d(; o ¢1)) < 0 for some i € T
It is well-defined since if ¢ (p) € U; at the same time, then det(d(djod; 1)) >0
and det(d(¢; 0 ¢1)) > 0(< 0) = det(d(¢; o ¢1)) > 0(< 0).
Note that f is indeed continuous, since for each ¢:(p) € Ui, we can find
small neighborhood V of p with ¢(V) C U; and the function det(d(¢; o ¢1)) is
also continuous and not vanish everywhere.

Since f can only take two values, we know f is indeed a constant since
71 (U1) = (0,1) x R is connected. If f always takes 1, then by the definition



of f, we know (Ui, ¢1) is compatible with A with the orientation on it. That is
we can take A = AU {(U1,¢1)} and A is an atlas that all transition maps are
orientation-preserving.

If f always takes —1, we can reverse the orientation of ¢;, i.e. by choosing
o1([z,t]) = (x,—t), or reverse the orientation of M to make sure f is greater
than 0. For notation simplicity, we just reverse the orientation of M on this
case.

Note that by the same trick, we can also add (Us, ¢2) into our orientation
chart A or add (Us, ¢,) into A where ¢,([x,t]) := ¢o([x, —t]), which reverses
the orientation of ¢s.

This shows det(d(¢20¢; ) should be always positive or negative on ¢ * (U1 N
Us).

But we know the exact form of ¢o o ¢1—17 which imply

1, 2>05

-1
det(d(g2 0 617)) {—1, z < 0.5
This is a contradiction with the above fact.
Hence, M is non-orientable.
(c) We show that RP?\a disk is homeomorphic to Mbius band.

Note that RP? can be viewed as the quotient space of sphere S? by identify
the antipodal point, i.e. p ~ —p.

So when we remove a disk on RP?, it will become the quotient space of
sphere removing two opposed disk. For example, we can just think N := RIP’Q\a
disk as the quotient space of M := {(x1, 72, 23) € S?, —% <r3< %}

Note that the set My := {(x1,z2,23) € SQ,—% < x3 < %,xl < 0} already
covers N under quotient map. So we can view N as the quotient space by
identify the point (0, z2,x3) ~ (0, —x2, —x3) on My, this exact the construction
of Mobius band. (The only left thing is to construct a homeomorphism between
M and [0,1] x R)

The following is a picture in the construction.
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Figure 1: The pictures of M7, M5 and identification on boundary

Since M is non-orientable, RP? is non-orientable, too since the orientation
can be pass to the submanifold by restricting the atlas on submanifold.

Problem 2

We will use [21, 25] to denote the equivalent class in CP'.



Construct the map f : S? — CP! by

r1+ix
f(x17x2,5173) — [ 117—3632.7 1]7 &3 7é 1
[1a 111;;:2]7 T3 7& -1

We need to verify f is well-defined when x3 # 1,—1. Indeed, we have (Note
1 + 129 7’5 0)

e e e

1—z T 4 iz x2 4 22 14z
3 1 2 3

which shows f is well-defined.
Now let’s show f is a diffeomorphism.
Let (U1, ¢1), (Us, ¢2) be the two charts on S? defined as

Uy = S2\{(0,0, 1)} (1, 2, 75) = (— o, 22

U = 82\{(070’ —1)},¢)2(1'1,(E2,5E3) = (

171‘3717563
T Z2

1+ x5 i + .233)
Let (Vi, 1), (Va, v2) be the two charts on CP' defined by

Vi = Cpl\{[lﬂo]}’@l([zl’zﬂ) B %
Vy = CP'\{[0, 1]}, 2 ([21, 22]) = %

So for p € Uy, f has the form under the chart (Uy,¢1) and (Vi,p1) as
following
p1o0fo ¢1_1(u17u2) = Uy + tus
which is a smooth function.
For p € Us, we have

w20 fopa(ur,us) =ur — ius

which is also smooth.
Hence f is a diffeomorphism.

Problem 3
Recall the SO(n) is defined as following
SO(n) ={B € R"*": BB = I,, and det(B) = 1}

So for any fixed A € SO(n), we know near A, we can write M as M = f~1(0)
with f : R"*" — R™*" f(B) = BT B. We can drop the condition of det(B) = 1
since in the sufficient small neighborhood U C R™*™ of A with det(B) > 0 for
all B € U. The condition BT B = I,, will force det(B) = 1.

Hence we have Ty M = ker(dfa). We need to calculate df 4 : Ta(R"*™) —
Ty, (R™™™). Actually we can identify T4 (R™*") with R™*™ for short notation.
Hence for any P € R™"*", we have

A(P) = iy T L= I)

t—0

=A"P+PTA




Note df4 is a surjective to the symmetric metrics, so dim ker(dfs) = n? —

(n+1)n _ n(n—1)
2 2 .

Hence SO(n) has dimension @ and the tangent space of SO(n) at A is

the space {P € R"*" : ATP + PTA = 0}.

Problem 4
Let A = {(U;, ;) }icr be an atlas of M™. Then we let

A= {(TU;, ;) : i € I} with ¢;(p,v) = (¢(p), db,(v)) € $(U;) x R™
The transition maps between (T'U;, qgi), (TU;, (ZSJ) is

Cij(w,w) = (¢5 0 ¢; ' (2),d(8; 0 ¢ )a(w))

Note that d(¢; o ¢ 1), is linear, so the Jacobian matrix is just itself. Hence

_ [d(¢5097 () 0
dfbij(l’,w) = ( 0 ) d (ij © sz_l(x))

Hence det(d(®;;)) = [d(¢; o ¢; ' (2))] %> 0since d(¢;o¢; () non-degenerate.
This means all the transition maps are orientation-preserving. Hence T'M is
orientable.

Problem 5

(a) First, let’s suppose w : E — B is trivial. Then there is a diffeomorphism
h:E — B xR" with h|,-1(;) is an isomorphism when restriction on the fiber
7~ 1(x) for x € B.

Let {e1,- -+ , e, } be the canonical basis in R™ and we choose n maps {s; }1<i<n
by si(b) = h=1(b,e;). Now we will show each s; will be a sections.

Clearly s; : B — FE is smooth since h is a diffeomorphism. Note that
since hl,-1() is an isomorphism between 77'(b) and {b} x R™, which means
h= (b} xrn (b,€;) € m~1(b) and hence 7 o s;(b) = b, which shows s; is indeed a
section.

Moreover, we know that {s;(b)}1<i<n forms a linearly independent set of
7-1(b) since h is an isomorphism on 7 1(b).

Secondly, let’s assume there is n linearly independent sections {s;}1<i<n.
Let’s define the map h: E — B x R" by the following method.

For each p € B, let b = 7(p). Since {s;(b) }1<i<n forms a linearly independent
set of 771(b), we can find unique (ai,as, - ,a,) € R" with p = Y7, a;5,(b).
Then we define h(p) := (7(p), (a1,az2,- - ,ay,)) € B x R™. Note that the inverse
of h is also well-defined and has form h=1(b, (a1, -+ ,a,)) = > i a;s;(b) as the
linear space. So we know that h|,-1(,) : 7~ (b) = {b} x R™ is an isomorphism.

Now let’s verify h is a diffeomorphism. Let (U;, ¢;) be a local trivializa-
tion of E near w(p). Le. ¢; : 7 1(U;) — U; x R" is a diffeomorphism with
m(p) € B and the restriction on each fiber is an isomorphism. Now since s;
is a (smooth) section of 7 : E — B, which means ¢; os; : U; — U; x R”
smooth. So the map ¢; o h™! : U; x R® — U; x R” is smooth with re-
spect to the first variable. But ¢; o h~! is linear(isomorphism) with respect



to the second variable, ¢; o h~! is indeed smooth. Moreover, we can write
dioh=L(b, (a1, - ,a,)) = (b, > j—1 ajm2 0 ¢; 0 5j(b)) where 75 is the projection
from U; x R — R™. So we can find the differential of ¢; o h~! is always non-
degenerate. This shows both h and h~! are locally diffeomorphism and hence
h is indeed a diffeomorphism.

(b) Let B be the quotient space [0, 1] where we identify the 0 and 1. We can
easily find B is diffeomorphic to S'. Let Vi = (0,1) C B, V» = the quotient of
(0.5,1] U [0,0.5). Let ¢1([z]) = =, w2([z]) = « for > 0.5 and @a([z]) =z + 1
for z < 0.5. So B can be covered by two charts (V1,¢1), (Va, ¢2).

With the notations in Problem 1, we can actually see that (Uy, ¢1), (Us, ¢2)
give us a way to locally trivialize the space M over the base space B. Moreover,
the transition map restricted on each fiber is an isomorphism. So the above will
give the structure of vector bundle of 7 : M — S* where 7([z,t]) = [z].

Now let’s show 7 : M — S' is non-trivial. If on the contrary, 7 : M — S*
is a trivial vector bundle, then by above, we can find a section s : S — M
such that s(b) # 0 on the fiber 771(b). (This is because M is a rank 1 vector
bundle.)

So in the local chart (V1, ¢1) and local trivialization (Uy, ¢1), s can be written
as ¢1 050 o7 (x) = (x,51(x)), where s;(z) decided by s which is non-zero
everywhere for z € (0,1). WOLG, we assume si(z) > 0 for € (0,1). If
we work on the chart (V2, ¢2) and local trivialization (Us, ¢2), we can also get
pa0s0p5 H(x) = (1, 52(x)) for some s : (0.5,1.5) — R which nonzero everywhere
and hence it does not change sign.

Recall the transition map ¢ 0 ¢7 ' (x,t), we know for z > 0.5, so(z) = s1(z)
and s3(z) > 0 for 0.5 < z < 1. For z < 0.5, we have sy(z + 1) = —s1(z) and
sa(x) < 0for 1 <z < 1.5. This is a contradiction with the above fact that sa(z)
does not change sign.

Hence 7 : M — S! is a non-trivial vector bundle.



