GOAL: Explore more applications of Fubini's Thm and evaluate some multiple integrals

We start with some simple examples.

Example 1: Evaluate
$$\int_{R} f dV$$
 where $f: R = [0,1] \times [1,2] \rightarrow iR$ $f(x,y) := 1 + x^{2} + xy$

Solution: First, we note that & is cts on R, hence integrable. Thus, Fubini's Theorem applies.

$$\int_{R} f dV = \int_{0}^{1} \int_{1+x^{2}+xy}^{2} dy dx$$

$$= \int_{0}^{1} \left[y + x^{2}y + \frac{1}{2} x y^{2} \right]_{y=1}^{y=2} dx$$

$$= \int_{0}^{1} 1 + x^{2} + \frac{3}{2} x dx$$

$$= \left[x + \frac{1}{3}x^{3} + \frac{3}{4}x^{2} \right]_{x=0}^{x=1} = \frac{25}{12}$$

Alternatively, we can also do the iterated integral in the reversed order.

$$\int_{R} f \, dv = \int_{1}^{2} \int_{0}^{1} 1 + x^{2} + xy \, dx \, dy$$

$$= \int_{1}^{2} \left[x + \frac{1}{3}x^{3} + \frac{1}{2}x^{2}y \right]_{x=0}^{x=1} \, dy$$

$$= \int_{1}^{2} \frac{4}{3} + \frac{1}{2}y \, dy$$

$$= \left[\frac{4}{3}y + \frac{1}{4}y^{2} \right]_{y=1}^{y=2} = \frac{25}{12}$$

Sometimes it is easier to compute the iterated integrals in a particular order.

Example 2: Evaluate
$$\int_{R} f dV$$
 where $f: R = [0,2] \times [-1,1] \rightarrow iR$ $f(x,y) := xye^{x+y^2}$

Solution: First, we note that & is cts on R, hence integrable. Thus, Fubini's Theorem applies.

$$\int_{R} f dv = \int_{0}^{2} \int_{-1}^{1} x y e^{x+y^{2}} dy dx$$

$$= \int_{0}^{2} x e^{x} \left(\int_{-1}^{1} y e^{y^{2}} dy \right) dx = 0$$

$$= 0 : odd function of y$$

Doing it in a different order.

$$\begin{cases}
f dv = \int_{-1}^{1} \int_{0}^{2} x y e^{x+y^{2}} dx dy \\
= \int_{-1}^{1} y e^{y^{2}} \left(\int_{0}^{2} x e^{x} dx \right) dy \\
= \int_{-1}^{1} y e^{y^{2}} \left[x e^{x} - e^{x} \right]_{x=0}^{x=2} dy \\
= (e^{2} + 1) \int_{-1}^{1} y e^{y^{2}} dy = 0$$

We can also use Fubini's Theorem to evaluate integrals on a non-rectangular bdd $\Omega \subseteq \mathbb{R}^n$.

Example 3: Find the volume of the region lying over the triangle

$$\Omega = \left\{ (x,y) \in [0,1] \times [0,1] \mid x \geq y \right\}$$

and below the graph of $f:\Omega \to \mathbb{R}$ defined by

$$f(x,y) = xy.$$

Note: Volume of the region = $\int_{\Omega} f dV$

Solution: Since f is cts on Ω and $\partial\Omega$ has measure zero. f is integrable on Ω and

the extension \overline{f} is integrable on R. We can apply Fubini's Theorem to evaluate $\int_{R} \overline{f} dv$.

$$\int f dV = \int f dV = \int_{0}^{1} \int_{0}^{1} f(x,y) dy dx$$

$$= \int_{0}^{1} \int_{0}^{x} xy \, dy \, dx$$

$$= \int_{0}^{1} \left[\frac{1}{2} xy' \right]_{y=0}^{y=x} dx$$

$$= \int_{0}^{1} \frac{1}{2} x^{3} \, dx$$

 $= \left[\frac{1}{8} \times 4\right]_{x=2}^{x=1} = \frac{1}{8}$

Example 4: Let Ω be the region in the 1st octant bdd below by the paraboloid $\overline{z} = x^2 + y^2$ and above by the plane $\overline{z} = 4$. Evaluate the integral

Solution: Step 1: Visualize the region

Since f(x,y,z) := x is cts on Ω and $\partial\Omega$ has measure zero. f is integrable on Ω .

Step 2: Setup the iterated integral and evaluate.

Choose the rectangle $R = [0,1] \times [0,1] \times [0,4]$ which enclose the region Ω .

$$\int_{\Omega} f dv = \int_{R} \bar{f} dv$$

$$= \int_{0}^{2} \int_{0}^{4-x^{2}} \int_{x^{2}+u^{2}}^{4} x dz dy dx$$

$$= \int_{0}^{2} \int_{0}^{14-x^{2}} x (4-x^{2}-y^{2}) dy dx$$

$$= \int_{0}^{2} x \left[(4-x^{2})y - \frac{1}{3}y^{3} \right]_{y=0}^{y=14-x^{2}} dx$$

$$= \int_{0}^{2} \frac{2}{3} x (4-x^{2})^{3/2} dx$$

$$= \left[-\frac{2}{15} (4-x^{2})^{5/2} \right]_{x=0}^{x=2} = \frac{64}{15}$$

Let's see one example in n dimension.

Example 5: Find the volume of $\Omega = \left\{ (x_1, ..., x_n) : 0 \le x_n \le x_{n-1} \le ... \le x_i \le 1 \right\}$

Solution:

$$= \int_{1}^{9} \int_{X^{1}}^{9} \dots \int_{X^{N-2}}^{9} \frac{5}{1} x^{N-5} dx^{N-5} \dots dx^{5} dx^{1} = \frac{N!}{1}$$

$$= \int_{1}^{9} \int_{X^{1}}^{9} \dots \int_{X^{N-2}}^{9} x^{N-1} dx^{N-1} \dots dx^{5} dx^{1}$$

$$= \int_{1}^{9} \int_{X^{1}}^{9} \dots \int_{X^{N-2}}^{9} x^{N-1} dx^{N-1} \dots dx^{5} dx^{1} = \frac{N!}{1}$$

$$= \int_{1}^{9} \int_{X^{1}}^{9} \dots \int_{X^{N-2}}^{9} x^{N-1} dx^{N-1} \dots dx^{5} dx^{1}$$

$$= \int_{1}^{9} \int_{X^{1}}^{9} \dots \int_{X^{N-2}}^{9} x^{N-1} dx^{N-1} \dots dx^{5} dx^{1}$$

Sometimes we can turn Fubini's theorem around to help us evaluate certain iterated integrals.

Example 6: Evaluate the iterated integral

$$\int_0^1 \int_y^1 \frac{\sin x}{x} \, dx \, dy$$

Solution: Note that $\int \frac{\sin x}{x} dx$ cannot be integrated in dosed form. We want to flip the order of integration to see if it helps.

Step 1: Identify the region

Step 2: Define the function

$$f(x,y) = \begin{cases} \frac{\sin x}{x} & \text{if } x = 0 \\ 1 & \text{if } x = 0 \end{cases}$$

is then a cts function on Ω .

Note: Of has measure zero.

Step 3: Apply Fubini's Theorem.

$$\int_{0}^{1} \int_{y}^{1} \frac{\sin x}{x} dx dy = \int_{\Omega}^{1} f(x,y) dy dx$$

$$= \int_{0}^{1} \int_{0}^{x} f(x,y) dy dx$$

$$= \int_{0}^{1} \frac{\sin x}{x} \cdot x dx = 1 - \cos 1$$

Finally, we look at an example where both iterated integrals exist But f is Not integrable.

Example 7: Consider $f: R = [0,1] \times [0,1] \rightarrow \mathbb{R}$ defined by

fined by
$$f(x,y) = \begin{cases} 1, & \text{if } x = \frac{m}{2}, y = \frac{n}{4} & \text{for some} \\ m,n,q \in \mathbb{N}, & \text{q prime} \end{cases}$$

Claim: f is NOT integrable on R

Pf of Claim: Since both Q and the set

are dense in [0.1]. We have L(f,P)=0 and U(f,P)=1 for ANY partition P of R. Hence, f is NOT integrable.

Next, we compute the iterated integrals.

• when
$$x \neq \frac{m}{q}$$
.
$$\int_0^1 f(x,y) dy = 0$$

· when
$$x = \frac{m}{q}$$
, also $\int_0^1 f(x, y) dy = 0$

since $f(\frac{m}{q}, y) = 0$ except for finitely many y

Therefore,
$$\int_{0}^{1} \int_{0}^{1} f(x, y) dy dx = 0$$

Similarly, we also have $\int_0^1 \int_0^1 f(x,y) dy dx = 0$

So, both iterated integrals exist and are equal to zero BuT f is NOT integrable.