Solution to Homework &

Sec. 6.2

17.

18.

Note that (T'(x),y) = 0 for any y € V, so we have T'(z) = 0. But z is
arbitrary, so T = Tj.

Suppose 8 = {v1,v2,...,0,} is a basis for V and
<T(vi)7vj> =0

for 1 <14,j < n. Note that z and y can be expressed as linear combinations
of v;s. By the linearity of 7" and the inner product (-, -), one can easily
show that

(T'(x),y) =0
for all x,y € V. Hence, by the above argument, we have T' = Tj.
We show that Wt ¢ W, and Wt > W,
For any h € W, we decompose h into f and g in this way.

(h(t) + h(=1))

Obviously, h = f + g and one can check that f is an even function, while
g is an odd function. By assumption, we have (h, f) = 0 as f € W, which
means

0=(f+g,f)=(f. )+ {g. ) =If]’

because (g, f) = f_ll f(®)g(t)dt = 0 as f(t)g(t) is an even function. Hence,
we have h = f +g=g € W, and Wt C W,,.
On the other hand, for any k € W,, we have

(K, f) :[1k(t)f(t)dt:0

for any f € W, as k(t)f(t) is an even function. Hence, we have k € W
and W o W,,.



Sec. 6.3

2. (b) Let 8 = {v1,v2} be the standard basis for C2. Obviously, 3 is an
orthonormal basis. Then we have

3. (b) Let z = <z1> € C2. Consider (z,T*(x)), we have the following.
2

(2,T%(2)) = (T(2), )

() (3ra)

= (5 — i)Zl + (—1 + 3i)22

—1—-3
(¢) Similarly, let g(t) = at + b € Pi(R).

(9. T°(f)) = (T'(9), f)
= (a+3(at+b),4—2t)

= / (—6at* + (10a — 6b)t + 4(a + 3b)) dt
-1

= 4a + 24b

Hence, we see that T*(z) = ( ot >

By letting T*(f) = ct + d.
! 2
(9, T*(f)) = /_1(at +b)(ct + d)dt = 3¢ + 2bd
We see that ¢ = 6 and d = 12. Hence, T*(f) = 6t + 12.
6. Obviously, we have
U =T+T")'=T"+T")=T+T"=U,
and
Uy =TT =(T*)'T*=TT" = Us,.
8. Note that T is invertible, so T~ ! exists.
(T Y =TT =I"=1
(T~ T* -

VT =TT Y)Y =1"=1
Hence, T is invertible and (7*)~*

— (T_l)*



9.

10.

Suppose W is finite-dimensional subspace of V and V. = W @ W+. For
any x,y € V, we have £ = x1 + z2 and y = y; + yo2, where x1,y; € W and
T,y € WL, So we have (z1,12) = 0 = (22,y1). We want to show that
T(x) =T*"(z) forallz € V.
(T"(x),y) = (x, T(y))
= (z1 +x2,91)
= (z1,91)

Similarly, we have the following.
(T(x),y) = (1,51 + y2)
= (w1,51)
= (T"(x),y)
Since the above holds for any y € V and « is arbitrary, we see that T' = T™*.

Note that from Exercise 20 in Sec. 6.1, we have the following.

1 1 _
(,9) = 7l +yl® = 7 le—yl” fF=R

4

(@, y) = iZZk Hx—I—ikyHQ ifF=C
k=1

Now if | T'(z)|| = ||z|| for all z € V. For F = R, we have the following.

(T(@), T)) = 7 IT@) + T - 7 1T@) ~ ()]

1 1
= L ITG+ 9l - T =y

1 2 1 2
= Lyl — eyl
= (z,y)

Similarly, for F = C, we have the following.

4
(T(@), T)) = 3 31* |T(@) + #7()
k=1

2
I

1o~ )
=1 2|+ i)
k=1

4

LS [l ity
k=1
,Y)

If (T'(x), T(y)) = (z,y), we simply take y = = and the result follows.

T4
=(z



13.

15.

(a)

Obviously, if z € N(T'), we have
T*T(x) =T"(0) =0.
So x € N(T*T). Conversely, if x € N(T*T), we have
IT(@)||* = (T(2),T(x)) = (@, T*T(x)) = (x,0) = 0.

So T(x) =0 and x € N(T). Note that T*T is also a linear operator
on V and V is of finite dimension. By the dimension of rank and
nullity, we see that rank(7*T") = rank(T).

First, we show that rank(A*) = rank(A). Note that rank(A') =
rank(A) as the dimension of column space equals that of row space.

Also, we have rank(A) = rank(A) as {vy,ve,...,v,} are linearly in-
dependent if and only if {77, 73,...,7,} are linearly independent.

Sobmi=Y awi= Y aw;, with a; = b
As A* = Af, we have rank(A*) = rank(A). Then we have
rank([T]3) = rank([T]g).
But [T%]s = [T}, so we have
vank((T"]) = rank((T]s).

In other words, rank(7*) = rank(T).
Using (a), we have rank(TT*) = rank(7™*) by considering 7™ instead
of T'. By the above argument, we have

rank(7T'T*) = rank(T™) = rank(7T).
From (a) and (b), we have the following.
rank(La(La)*) =rank((La)*La) =rank(L4)

Using the fact that La« = (La)* and LaLg = Lap, we have the
result.
rank(La4+) = rank(La+4) = rank(Ly4)

rank(AA") = rank(A*A) = rank(A)

Note for a fixed y € W, we may regard (T'(z),y), as a linear trans-
formation from V' to F. Then there is a unique z € V such that

<T($), y>2 = <I7 Z>1



for all x € V. We may define T*(y) = 2. As z € V exists and is
unique for any given y € W, we see that T* : W — V is well-defined.
Hence, we now have

(T(x),y)y = (=, T"(y))

for any x € V and y € W. If there is a transformation U : W — V
satisfying the same condition, we have

(,U(y), = (T(x), )y = (=, T"(y)),

for any x € V and y € W, which means U = T*.
To check the linearity of T, we have the following.

Since x is arbitrary, we have T*(y + cz) = T*(y) + ¢T*(z).

Let 8 = {v1,v9,...,0,} and v = {wy,wa,...,w,,} be orthonormal
bases for V and W respectively. Consider T'(v;) and T*(w;), we have
the following.

T(v;) =Y aijwi, T (w;) =Y bijv;
1=1 =1

Note that [T} = (ai;) and [T*]2 = (bs;) Now that (z,T*(y)), =
(T'(z),y), we have the following.
E = <Uj’T*(wi)>1 = <T(Uj)7wi>2 = Q5
Hence, we see that [T%]5 = ([173)*
Again we have
rank([77]5) = rank(([T]3)") = rank([T]3).

Hence, we have rank(7T™*) = rank(T).

Using the fact that (a,b) = (b, a) and the property of adjoint.
(T"(x),y); = (, T*(2)), = (T(y), )y = (2, T(y)),

Obviously, if T'(z) = 0, we have T*T'(x) = T*(0) = 0.
Conversely, if T*T'(x) = 0, consider

IT(@)||* = (T(2), T(x)), = (2, T"T(z)), = 0

and, hence, we have T'(z) = 0.



