THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2050C Mathematical Analysis I Tutorial 10 (April 22)

Boundedness Theorem. Let $I := [a, b]$ be a closed bounded interval and let $f : I \to \mathbb{R}$ be a continuous function on I. Then f is bounded on I.

Extreme Value Theorem. Let $I := [a, b]$ be a closed bounded interval and let $f : I \rightarrow$ R be a continuous function on I. Then f has an absolute maximum and an absolute minimum on I, that is, there exist $x_*, x^* \in I$ such that

$$
f(x_*) \le f(x) \le f(x^*) \qquad \text{for all } x \in I.
$$

Intermediate Value Theorem. Let $I := [a, b]$ be a closed bounded interval and let $f: I \to \mathbb{R}$ be a continuous function on I. If $f(a) < k < f(b)$ (or $f(b) < k < f(a)$), then there exists $c \in (a, b)$ such that $f(c) = k$.

Example 1. Show that the polynomial $p(x) := x^4 + 7x^3 - 9$ has at least two real roots.

Solution. Since p is continuous on [0, 2] and $p(0) = -9 < 0 < 63 = p(2)$, it follows from the Intermediate Value Theorem that $p(c_1) = 0$ for some $c_1 \in (0, 2)$.

Since p is continuous on $[-8, 0]$ and $p(-8) = 503 > 0 > -9 = p(0)$, it follows from the Intermediate Value Theorem that $p(c_2) = 0$ for some $c_2 \in (-8, 0)$.

As $c_1 \neq c_2$, p has at least two real roots.

Example 2. Let $f : [0,1] \to \mathbb{R}$ be a continuous function such that $f(0) = f(1)$. Prove that there exists a point c in $[0, \frac{1}{2}]$ $\frac{1}{2}$ such that $f(c) = f(c + \frac{1}{2})$ $(\frac{1}{2})$.

Solution. Let $g(x) := f(x) - f(x + \frac{1}{2})$ $\frac{1}{2}$). Then g is a continuous function on [0, 1] such that

$$
g(0) = f(0) - f(\frac{1}{2}) = f(1) - f(\frac{1}{2}) = -g(\frac{1}{2}).
$$

If $g(0) = 0$, then simply take $c = 0$. Otherwise, 0 is between $g(0)$ and $g(\frac{1}{2})$ $\frac{1}{2}$). Hence, by the Intermediate Value Theorem there exists $c \in (0, \frac{1}{2})$ $(\frac{1}{2})$ such that $g(c) = 0$, that is

$$
f(c) = f(c + \frac{1}{2}).
$$

Example 3. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is continuous on R and that $\lim_{x \to -\infty} f = 0$ and $\lim_{x\to\infty} f = 0$. Prove that f attains either a maximum or minimum on R.

Solution. Case 1: If $f \equiv 0$, then f attains both a maximum and a minimum at any point.

$$
\overline{}
$$

 \blacktriangleleft

Case 2: Suppose $f \neq 0$. Then there is $x_0 \in \mathbb{R}$ such that $f(x_0) \neq 0$. WLOG, assume $f(x_0) > 0$. We will show that f attains a maximum on R. Take $\varepsilon_0 = f(x_0)/2$. Since $\lim_{x \to -\infty} f = 0$ and $\lim_{x \to \infty} f = 0$, there is $K > 0$ such that

$$
|f(x)| < \varepsilon_0 \quad \text{whenever } |x| > K.
$$

Let $K' = \max\{K, |x_0|\}.$ Since f is continuous on $[-K', K']$, it follows from the Extreme Value Theorem that there exist $x_*, x^* \in [-K', K']$ such that

$$
f(x_*) \le f(x) \le f(x^*) \quad \text{ for all } x \in [-K', K'].
$$

Moreover, if $|x| > K'$, then

$$
f(x) < \varepsilon_0 < f(x_0) \le f(x^*).
$$

Combining the inequalities, we have $f(x) \leq f(x^*)$ for all $x \in \mathbb{R}$. Hence f attains a maximum on \mathbb{R} .

Classwork

- 1. Let $f: [0,1] \to [0,1]$ be a continuous function. Show that there exists some $x_0 \in [0,1]$ such that $f(x_0) = x_0$.
- 2. Suppose that $f : [0, \infty) \to \mathbb{R}$ is continuous on \mathbb{R} and that $\lim_{x \to \infty} f = 0$. Prove that f is bounded on R.