THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2050C Mathematical Analysis I Tutorial 1 (January 15)

The following were discussed in the tutorial this week:

1 Negation and Quantifiers

Example 1. Negate the following statements.

(a) n is a prime number between 1 and 10.

- (b) If n^2 is divisible by 4, then n is divisible by 2.
- (c) For any real number $x, x^2 \ge 0$.
- (d) For any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $1/N < \varepsilon$.

2 Order Properties of \mathbb{R}

The Order Properties of \mathbb{R} . *There is a nonempty subset* \mathbb{P} *of* \mathbb{R} *, called the set of positive real numbers, that satisfies the following properties:*

- (I) $a, b \in \mathbb{P} \implies a + b \in \mathbb{P}$,
- (II) $a, b \in \mathbb{P} \implies ab \in \mathbb{P}$,
- (III) If $a \in \mathbb{R}$, then exactly one of the following holds:

 $a \in \mathbb{P}, \quad a = 0, \quad -a \in \mathbb{P}.$

Write a > 0 if $a \in \mathbb{P}$; and write a > b if $a - b \in \mathbb{P}$.

Example 2. Let $a \in \mathbb{R}$. Show that if a > 0, then 1/a > 0.

Example 3. Let $a, b \in \mathbb{R}$. Show that if ab > 0, then either

- (i) a > 0 and b > 0, or
- (ii) a < 0 and b < 0.

3 Solving Simple Inequalities

Example 4. Determine the set $B := \{x \in \mathbb{R} : \frac{2x+1}{x+2} < x\}.$

Classwork

- 1. Negate the following statements.
 - (a) For any subset S of N, if $S \neq \emptyset$, then there exists $m \in S$ such that $m \leq n$ for all $n \in S$.
 - (b) There exists an $\varepsilon > 0$ such that for any natural number N, $|x_n x_m| \ge \varepsilon$ for some $n, m \ge N$.
 - (c) For any integer $n \ge 3$, there are no three integers a, b, c that satisfy $a^n + b^n = c^n$.
 - **Solution.** (a) There exists a subset S of N such that $S \neq \emptyset$ and for any $m \in S$ there exists $n \in S$ such that m > n.
 - (b) For any $\varepsilon > 0$, there exists a natural number N such that $|x_n x_m| < \varepsilon$ for all $n, m \ge N$.
 - (c) There exists an integer $n \ge 3$ such that $a^n + b^n = c^n$ for some integers a, b, c.
- 2. Let $a, b \in \mathbb{R}$. Show that if 0 < a < b, then 0 < 1/b < 1/a.

Solution. Note that b = (b-a) + a and (b-a), a > 0, we have b > 0. By Example 2, we have 1/b > 0 and

$$a > 0, b > 0 \implies ab > 0 \implies 1/(ab) > 0.$$

Hence $1/a - 1/b = (b - a) \cdot 1/(ab) > 0$. Therefore 1/a > 1/b > 0.

3. Determine the set $C := \left\{ x \in \mathbb{R} : \frac{4x-3}{x^2-1} \le 1 \right\}.$

Solution. Note that

$$\begin{aligned} x \in C \iff 1 - \frac{4x - 3}{x^2 - 1} &\ge 0 \iff \frac{x^2 - 4x + 2}{x^2 - 1} \ge 0\\ \iff f(x) := \frac{(x - (2 - \sqrt{2}))(x - (2 + \sqrt{2}))}{(x + 1)(x - 1)} \ge 0. \end{aligned}$$

The sign of f(x) is given by

$$+$$
 - + - +
-1 2- $\sqrt{2}$ 1 2+ $\sqrt{2}$

Hence $C = \{x \in \mathbb{R} : x < -1\} \cup \{x \in \mathbb{R} : 2 - \sqrt{2} \le x < 1\} \cup \{x \in \mathbb{R} : x \ge 2 + \sqrt{2}\}.$