THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2050C Mathematical Analysis I Tutorial 8 (March 24)

Continuous Functions

Definition. Let $A \subseteq \mathbb{R}$, let $f : A \to \mathbb{R}$ and let $c \in A$.

- We say that f is **continuous at** c if, given any $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x \in A$ satisfying $|x - c| < \delta$, then $|f(x) - f(c)| < \delta$.
- Let $B \subseteq A$. We say that f is **continuous on** B if f is continuous at every point of B.
- Remarks. (1) We do not assume that c is a cluster point of A ($c \in A^c$).

Case 1: If $c \in A$ is a cluster point of A, then f is continuous at $c \iff \lim_{x \to c} f = f(c)$.

Case 2: If $c \in A$ is not a cluster point of A, then f is automatically continuous at c.

- (2) "f is continuous on B" and " $f|_B$ is continuous" are different.
- **Example 1.** (a) The function $g(x) := \sin(1/x)$ for $x \neq 0$ does not have a limit at $x = 0$. Thus there is no value that we can assign at $x = 0$ to obtain a continuous extension of g at $x=0$.
- (b) Let $f(x) \coloneqq x \sin(1/x)$ for $x \neq 0$. If we define $F: \mathbb{R} \to \mathbb{R}$ by

$$
F(x) := \begin{cases} 0 & \text{for } x = 0, \\ x \sin(1/x) & \text{for } x \neq 0, \end{cases}
$$

then F is continuous at $x = 0$.

Example 2. Show that the sine function is continuous on R.

Suppose $A \subseteq \mathbb{R}$, $f : A \to \mathbb{R}$ and $c \in A$.

Sequential Criterion for Continuity. f is continuous at c if and only if for every sequence (x_n) in A that converges to c, the sequence $(f(x_n))$ converges to $f(c)$.

Discontinuity Criterion. f is discontinuous at c if and only if there is a sequence (x_n) in A that converges to c but the sequence $(f(x_n))$ does not converge to $f(c)$.

Example 3. Determine the points of continuity of the function $f(x) := [1/x], x \neq 0$. Here $\lceil \cdot \rceil$ is the greatest integer function defined by

$$
[x] := \sup\{n \in \mathbb{Z} : n \le x\}.
$$

Solution. First we show that f is discontinuous at each $1/m$, $m \in \mathbb{Z}\backslash\{0\}$. Let $x_n =$ $\left(m-\frac{1}{2n}\right)$ $\frac{1}{2n}$]⁻¹ for $n \ge 1$. Then $\lim(x_n) = 1/m$. However, $f(x_n) = [m - \frac{1}{2n}]$ $\frac{1}{2n}] = m - 1$, so that

$$
\lim f(x_n) = m - 1 \neq m = f(1/m).
$$

By discontinuity criterion, f is discontinuous at $1/m$.

Next we show that f is continuous at each $c \in \mathbb{R} \setminus (\{0\} \cup \{1/m : m \in \mathbb{Z} \setminus \{0\}\})$. Observe that, $\delta := \min\{1/c - [1/c], [1/c] + 1 - 1/c\}/2$ satisfies

$$
\left|\frac{1}{x} - \frac{1}{c}\right| < \delta \implies \left[\frac{1}{x}\right] = \left[\frac{1}{c}\right].
$$

Let $\varepsilon > 0$ be given. Take $\delta' \coloneqq \min\{|c|/2, \delta|c|^2/2\}$. If $x \in \mathbb{R}\setminus\{0\}$ and $|x-c| < \delta'$, then $|x| > |c|/2,$

$$
\left|\frac{1}{x} - \frac{1}{c}\right| = \frac{|x - c|}{|x||c|} < \frac{2}{|c|^2} |x - c| < \frac{2\delta'}{|c|^2} \le \delta,
$$

and so that

$$
|f(x) - f(c)| = \left| \left[\frac{1}{x} \right] - \left[\frac{1}{c} \right] \right| = 0 < \varepsilon.
$$

Hence f is continuous at c .

Classwork

- 1. Determine the points of continuity of the function $g(x) := x[x]$.
- 2. Give an example for each of the following:
	- (a) $f : \mathbb{R} \to \mathbb{R}$ is continuous everywhere except at one point.
	- (b) $f : \mathbb{R} \to \mathbb{R}$ is discontinuous everywhere.
	- (c) $f : \mathbb{R} \to \mathbb{R}$ is continuous exactly at one point.
	- (d) $f : \mathbb{R} \to \mathbb{R}$ is continuous on $\mathbb{R} \backslash \mathbb{Q}$ but distcontinuous on \mathbb{Q} .