THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics

MATH2050C Mathematical Analysis I

Tutorial 5 (February 24)

Monotone Convergence Theorem. A monotone sequence of real numbers is convergent if and only if it is bounded. Furthermore,

- (a) If (x_n) is a bounded increasing sequence, then $\lim (x_n) = \sup \{x_n : n \in \mathbb{N}\}.$
- (b) If (y_n) is a bounded decreasing sequence, then $\lim(y_n) = \inf\{y_n : n \in \mathbb{N}\}.$

Example 1. Let $Z = (z_n)$ be the sequence of real numbers defined by

$$z_1 := 1, \quad z_{n+1} := \sqrt{2z_n} \quad \text{ for } n \in \mathbb{N}.$$

Show that $\lim(z_n) = 2$.

Example 2 (Euler number e). Let $e_n := (1 + 1/n)^n$ for $n \in \mathbb{N}$. Show that the sequence $E = (e_n)$ is bounded and increasing, hence convergent. The limit of this sequence is called the Euler number, and it is denoted by e.

Example 3. Establish the convergence and find the limits of the following sequences.

- (a) $((1+1/n)^{n+1})$
- (b) $\left(\left(1+\frac{1}{n+1}\right)^n\right)$
- (c) $((1-1/n)^n)$

Classwork

- 1. Let $y_1 := \sqrt{p}$, where p > 0, and $y_{n+1} := \sqrt{p + y_n}$ for $n \in \mathbb{N}$. Show that (y_n) converges and find the limit. (Hint: $1 + 2\sqrt{p}$ is one upper bound.)
- 2. Let $b_n = 1 + \frac{1}{1!} + \cdots + \frac{1}{n!}$ for $n \in \mathbb{N}$. Show that (b_n) is convergent. Furthermore, show that

$$\lim(b_n) = \lim(e_n) = e.$$