THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics

MATH2050C Mathematical Analysis I

Tutorial 4 (February 17)

1 Limit Theorems

Theorem 1. Let $X = (x_n)$, $Y = (y_n)$ and $Z = (z_n)$ be sequences of real numbers that converge to x, y and z, respectively.

- (a) Let $c \in \mathbb{R}$. Then the sequences $X+Y, X-Y, X\cdot Y$, and cX converge to x+y, x-y, xy, and cx, respectively.
- (b) Suppose further that $z_n \neq 0$ for all $n \in \mathbb{N}$, and $z \neq 0$. Then the sequence X/Z converges to x/z.

Example 1. Apply the above theorem to show the following limits.

(a)
$$\lim \left(\frac{2n+1}{n}\right) = 2$$
.

(b)
$$\lim \left(\frac{2n+1}{n+5}\right) = 2.$$

(c)
$$\lim \left(\frac{2n}{n^2+1}\right) = 0.$$

Theorem 2. Let the sequence $X = (x_n)$ converge to x. Then the sequence $(|x_n|)$ of absolute values converges to |x|. That is, if $x = \lim(x_n)$, then $|x| = \lim(|x_n|)$.

Theorem 3. Let $X = (x_n)$ be a sequence of real numbers that converges to x and suppose that $x_n \ge 0$. Then the sequence $(\sqrt{x_n})$ of positive square roots converges and $\lim(\sqrt{x_n}) = \sqrt{x}$.

Classwork

- 1. If a > 0 and b > 0, show that $\lim \left(\sqrt{(n+a)(n+b)} n \right) = (a+b)/2$.
- 2. Find the limit of the sequence (x_n) defined by

$$x_n = \frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}}$$
 for all $n \in \mathbb{N}$.

3. Let (x_n) be a sequence of real numbers. Define a new sequence (s_n) by

$$s_n = \frac{x_1 + x_2 + \dots + x_n}{n}$$
 for all $n \in \mathbb{N}$.

If $\lim(x_n) = 0$, show that $\lim(s_n) = 0$.