THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics

MATH2050C Mathematical Analysis I

Tutorial 2 (January 27)

1 The Completeness Property of \mathbb{R}

The Completeness Property of \mathbb{R} . Every nonempty set of real numbers that has an upper bound also has a supremum in \mathbb{R} .

Example 1. (a) Let S be a nonempty subset of \mathbb{R} that is bounded above, and let a be any real number in \mathbb{R} . Define the set $a + S := \{a + s : s \in S\}$. Show that

$$\sup(a+S) = a + \sup S.$$

(b) Let A and B be nonempty subsets of \mathbb{R} that satisfy the property:

$$a < b$$
 for all $a \in A$ and $b \in B$.

Show that $\sup A \leq \inf B$.

Example 2. Suppose that f and g are real-valued functions with common domain $D \subseteq \mathbb{R}$. Assume that f and g are bounded (that is, f(D) and g(D) are bounded subsets of \mathbb{R}).

- (a) If $f(x) \le g(x)$ for all $x \in D$, show that $\sup f(D) \le \sup g(D)$.
- (b) If $f(x) \leq g(x)$ for all $x \in D$, is it true that $\sup f(D) \leq \inf g(D)$?
- (c) If $f(x) \leq g(y)$ for all $x, y \in D$, show that $\sup f(D) \leq \inf g(D)$.

Solution. (c) Given $y \in D$, we have $f(x) \leq g(y)$ for all $x \in D$. So g(y) is an upper bound for f(D). Hence $\sup f(D) \leq g(y)$. Since the last inequality holds for all $y \in D$, we see that $\sup f(D)$ is a lower bound for g(D). Therefore, we conclude that $\sup f(D) \leq \inf g(D)$.

Classwork

1. Let S be a nonempty bounded subset of \mathbb{R} . Show that if b < 0,

$$\inf(bS) = b \sup S.$$

2. Let A and B be bounded nonempty subsets of \mathbb{R} , and let $A+B:=\{a+b:a\in A,b\in B\}$. Prove that

$$\sup(A+B) = \sup A + \sup B$$
 and $\inf(A+B) = \inf A + \inf B$.