THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics

MATH2050C Mathematical Analysis I

Tutorial 10 (April 14)

Definition. Let $A \subseteq \mathbb{R}$ and let $f: A \to \mathbb{R}$. If there exists a constant K > 0 such that

$$|f(x) - f(u)| \le K|x - u| \qquad \text{for all } x, u \in A, \tag{*}$$

then f is said to be a **Lipschitz function** (or to satisfy a **Lipschitz condition**) on A.

Remarks. When A is an interval I, the condition (*) means that the slopes of all line segments joining two points on the graph of y = f(x) over I are bounded by some number K.

Theorem. If $f: A \to \mathbb{R}$ is a Lipschitz function, then f is uniformly continuous on A.

Example 1. Show that

- (a) $f(x) := x^2$ is a Lipschitz function on [0, b], b > 0, but does not satisfy a Lipschitz condition on $[0, \infty)$.
- (b) $g(x) := \sqrt{x}$ is uniformly continuous on [0, 2] but not a Lipschitz function on [0, 2].
- (c) $g(x) := \sqrt{x}$ is a Lipschitz function on $[a, \infty)$, a > 0.
- (d) $g(x) := \sqrt{x}$ is uniformly continuous on $[0, \infty)$.

Intermediate Value Theorem. Let I be an interval and let $f: I \to \mathbb{R}$ be continuous on I. If $a, b \in I$ and if $k \in \mathbb{R}$ satisfies f(a) < k < f(b), then there exists $c \in I$ between a and b such that f(c) = k.

Preservation of Interval Theorem. Let I be an interval and let $f: I \to \mathbb{R}$ be continuous on I. Then the set f(I) is an interval.

Classwork

- 1. Show that if f and g are Lipschitz functions on [a, b], then the product fg is also a Lipschitz function on [a, b]. Is it true if [a, b] is replaced by (a, b)?
- 2. Show that the polynomial $p(x) := x^4 + 7x^3 9$ has at least two real roots.