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LECTURE 1

AN INTRODUCTION TO THE COURSE

LECTURE OUTLINE

• The Role of Convexity in Optimization

• Duality Theory

• Algorithms and Duality

• Course Organization

2



HISTORY AND PREHISTORY

• Prehistory: Early 1900s - 1949.

− Caratheodory, Minkowski, Steinitz, Farkas.

− Properties of convex sets and functions.

• Fenchel - Rockafellar era: 1949 - mid 1980s.

− Duality theory.

− Minimax/game theory (von Neumann).

− (Sub)differentiability, optimality conditions,
sensitivity.

• Modern era - Paradigm shift: Mid 1980s - present.

− Nonsmooth analysis (a theoretical/esoteric
direction).

− Algorithms (a practical/high impact direc-
tion).

− A change in the assumptions underlying the
field.
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OPTIMIZATION PROBLEMS

• Generic form:

minimize f(x)

subject to x ⌘ C

Cost function f : �n → �, constraint set C, e.g.,

C = X ⌫
⇤
x | h1(x) = 0
⇤

, . . . , hm(x) = 0

⌫ x | g1(x) ⌥ 0, . . . , gr(x) ⌥ 0

⌅

• Continuous vs discrete problem distinction

⌅

• Convex programming problems are those for
which f and C are convex

− They are continuous problems

− They are nice, and have beautiful and intu-
itive structure

• However, convexity permeates all of optimiza-
tion, including discrete problems

• Principal vehicle for continuous-discrete con-
nection is duality:

− The dual problem of a discrete problem is
continuous/convex

− The dual problem provides important infor-
mation for the solution of the discrete primal
(e.g., lower bounds, etc)

◆
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WHY IS CONVEXITY SO SPECIAL?

• A convex function has no local minima that are
not global

• A nonconvex function can be “convexified” while
maintaining the optimality of its global minima

• A convex set has a nonempty relative interior

• A convex set is connected and has feasible di-
rections at any point

• The existence of a global minimum of a convex
function over a convex set is conveniently charac-
terized in terms of directions of recession

• A polyhedral convex set is characterized in
terms of a finite set of extreme points and extreme
directions

• A real-valued convex function is continuous and
has nice differentiability properties

• Closed convex cones are self-dual with respect
to polarity

• Convex, lower semicontinuous functions are self-
dual with respect to conjugacy
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DUALITY

• Two different views of the same object.

• Example: Dual description of signals.

Time domain Frequency domain

• Dual description of closed convex sets

A union of points An intersection of halfspaces
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DUAL DESCRIPTION OF CONVEX FUNCTIONS

• Define a closed convex function by its epigraph.

• Describe the epigraph by hyperplanes.

• Associate hyperplanes with crossing points (the
conjugate function).

x

Slope = y

0

(y, 1)

f(x)

inf
x⇤⌅n

{f(x)  x⇥y} = f(y)

Primal Description Dual Description

Values f(x) Crossing points f∗(y)
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FENCHEL PRIMAL AND DUAL PROBLEMS

x x

f1(x)

f2(x)

Slope yf
1 (y)

f
2 (y)

f
1 (y) + f

2 (y)

Primal Problem Description Dual Problem Description
Vertical Distances Crossing Point Dierentials

• Primal problem:

min
x

⇤
f1(x) + f2(x)

⌅

• Dual problem:

max
y

⇤
− f1

⇤(y)− f2
⇤(−y)

where f

⌅

1
⇤ and f2

⇤ are the conjugates
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FENCHEL DUALITY

x x

f1(x)

f2(x)

f
1 (y)

f
2 (y)

f
1 (y) + f

2 (y)

Slope y

Slope y

min
x

�
f1(x) + f2(x)

⇥
= max

y

�
 f

1 (y)  f
2 (y)

⇥

• Under favorable conditions (convexity):

− The optimal primal and dual values are equal

− The optimal primal and dual solutions are
related
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A MORE ABSTRACT VIEW OF DUALITY

• Despite its elegance, the Fenchel framework is
somewhat indirect.

• From duality of set descriptions, to

− duality of functional descriptions, to

− duality of problem descriptions.

• A more direct approach:

− Start with a set, then

− Define two simple prototype problems dual
to each other.

• Avoid functional descriptions (a simpler, less
constrained framework).
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MIN COMMON/MAX CROSSING DUALITY
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• All of duality theory and all of (convex/concave)
minimax theory can be developed/explained in
terms of this one figure.

• The machinery of convex analysis is needed to
flesh out this figure, and to rule out the excep-
tional/pathological behavior shown in (c).
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ABSTRACT/GENERAL DUALITY ANALYSIS

Minimax Duality Constrained Optimization
Duality

Min-Common/Max-Crossing
Theorems

Theorems of the
Alternative etc( MinMax = MaxMin )

Abstract Geometric Framework

Special choices
of M

(Set M)
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EXCEPTIONAL BEHAVIOR

• If convex structure is so favorable, what is the
source of exceptional/pathological behavior?

• Answer: Some common operations on convex
sets do not preserve some basic properties.

• Example: A linearly transformed closed con-
vex set need not be closed (contrary to compact
and polyhedral sets).

− Also the vector sum of two closed convex sets
need not be closed.

x1

x2

C1 =
�
(x1, x2) | x1 > 0, x2 > 0, x1x2  1

⇥

C2 =
�
(x1, x2) | x1 = 0

⇥

• This is a major reason for the analytical di⌅cul-
ties in convex analysis and pathological behavior
in convex optimization (and the favorable charac-
ter of polyhedral sets). 13



MODERN VIEW OF CONVEX OPTIMIZATION

• Traditional view: Pre 1990s

− LPs are solved by simplex method

− NLPs are solved by gradient/Newton meth-
ods

− Convex programs are special cases of NLPs

LP CONVEX NLP

Duality Gradient/NewtonSimplex

• Modern view: Post 1990s

− LPs are often solved by nonsimplex/convex
methods

− Convex problems are often solved by the same
methods as LPs

− “Key distinction is not Linear-Nonlinear but
Convex-Nonconvex” (Rockafellar)

LP CONVEX NLP

Simplex
Gradient/NewtonDuality

Cutting plane
Interior point
Subgradient
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THE RISE OF THE ALGORITHMIC ERA

• Convex programs and LPs connect around

− Duality

− Large-scale piecewise linear problems

• Synergy of:

− Duality

− Algorithms

− Applications

• New problem paradigms with rich applications

• Duality-based decomposition

− Large-scale resource allocation

− Lagrangian relaxation, discrete optimization

− Stochastic programming

• Conic programming

− Robust optimization

− Semidefinite programming

• Machine learning

− Support vector machines

− l1 regularization/Robust regression/Compressed
sensing

15



METHODOLOGICAL TRENDS

• New methods, renewed interest in old methods.

− Interior point methods

− Subgradient/incremental methods

− Polyhedral approximation/cutting plane meth-
ods

− Regularization/proximal methods

− Incremental methods

• Renewed emphasis on complexity analysis

− Nesterov, Nemirovski, and others ...

− “Optimal algorithms” (e.g., extrapolated gra-
dient methods)

• Emphasis on interesting (often duality-related)
large-scale special structures
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COURSE OUTLINE

• We will follow closely the textbook

− Bertsekas, “Convex Optimization Theory,”
Athena Scientific, 2009, including the on-line
Chapter 6 and supplementary material at
http://www.athenasc.com/convexduality.html

• Additional book references:

− Rockafellar, “Convex Analysis,” 1970.

− Boyd and Vanderbergue, “Convex Optimiza-
tion,” Cambridge U. Press, 2004. (On-line at
http://www.stanford.edu/~boyd/cvxbook/) 

− Bertsekas, Nedic, and Ozdaglar, “Convex Anal-
ysis and Optimization,” Ath. Scientific, 2003.

• Topics (the text’s design is modular, and the
following sequence involves no loss of continuity):

− Basic Convexity Concepts: Sect. 1.1-1.4.

− Convexity and Optimization: Ch. 3.

− Hyperplanes & Conjugacy: Sect. 1.5, 1.6.

− Polyhedral Convexity: Ch. 2.

− Geometric Duality Framework: Ch. 4.

− Duality Theory: Sect. 5.1-5.3.

− Subgradients: Sect. 5.4.

Algorithms: Ch. 6.−
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WHAT TO EXPECT FROM THIS COURSE

• Requirements: Homework (25%), midterm (25%),
and a term paper (50%)

• We aim:

− To develop insight and deep understanding
of a fundamental optimization topic

− To treat with mathematical rigor an impor-
tant branch of methodological research, and
to provide an account of the state of the art
in the field

− To get an understanding of the merits, limi-
tations, and characteristics of the rich set of
available algorithms

• Mathematical level:

− Prerequisites are linear algebra (preferably
abstract) and real analysis (a course in each)

− Proofs will matter ... but the rich geometry
of the subject helps guide the mathematics

• Applications:

− They are many and pervasive ... but don’t
expect much in this course. The book by
Boyd and Vandenberghe describes a lot of
practical convex optimization models

− You can do your term paper on an applica-
tion area
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A NOTE ON THESE SLIDES

• These slides are a teaching aid, not a text

• Don’t expect a rigorous mathematical develop-
ment

• The statements of theorems are fairly precise,
but the proofs are not

• Many proofs have been omitted or greatly ab-
breviated

• Figures are meant to convey and enhance un-
derstanding of ideas, not to express them precisely

• The omitted proofs and a fuller discussion can
be found in the “Convex Optimization Theory”
textbook and its supplementary material
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LECTURE 2

LECTURE OUTLINE

• Convex sets and functions

• Epigraphs

• Closed convex functions

• Recognizing convex functions

Reading: Section 1.1
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SOME MATH CONVENTIONS

• All of our work is done in �n: space of n-tuples
x = (x1, . . . , xn)

• All vectors are assumed column vectors

• “�” denotes transpose, so we use x� to denote a
row vector

• x�y is the inner product
�n

i=1 xiyi of vectors x
and y

• �x� =
⌧

x�x is the (Euclidean) norm of x. We
use this norm almost exclusively

• See the textbook for an overview of the linear
algebra and real analysis background that we will
use. Particularly the following:

− Definition of sup and inf of a set of real num-
bers

− Convergence of sequences (definitions of lim inf,
lim sup of a sequence of real numbers, and
definition of lim of a sequence of vectors)

− Open, closed, and compact sets and their
properties

− Definition and properties of differentiation
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CONVEX SETS

x + (1 − )y, 0 ⇥  ⇥ 1

yx x

y

x

y

x

y

• A subset C of �n is called convex if

αx + (1− α)y ⌘ C,  x, y ⌘ C,  α ⌘ [0, 1]

• Operations that preserve convexity

− Intersection, scalar multiplication, vector sum,
closure, interior, linear transformations

• Special convex sets:

− Polyhedral sets: Nonempty sets of the form

{x | a�jx ⌥ bj , j = 1, . . . , r}

(always convex, closed, not always bounded)

− Cones: Sets C such that ⌃x ⌘ C for all
⌃ > 0 and x ⌘ C (not always convex or
closed)
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CONVEX FUNCTIONS

! "#$%&'&#(&)&! %"#*%

$ *

+

"#! $&'&#(&)&! %*%

! $&'&#(&)&! %*

"#$%

"#*%

x + (1  )y

C

x y

f(x)

f(y)

f(x) + (1  )f(y)

f
�
x + (1  )y

⇥

• Let C be a convex subset of �n. A function
f : C ◆→ � is called convex if for all α ⌘ [0, 1]

f
�
αx+(1−α)y

⇥
⌥ αf(x)+(1−α)f(y),  x, y ⌘ C

If the inequality is strict whenever a ⌘ (0, 1) and
x = y, then f is called strictly convex over C.

• If f is a convex function, then all its level sets
{x ⌘ C | f(x) ⌥ ⇤} and {x ⌘ C | f(x) < ⇤},
where ⇤ is a scalar, are convex.

✓
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EXTENDED REAL-VALUED FUNCTIONS

!"#$

#
%&'()#*!+',-.&'

!"#$

#
/&',&'()#*!+',-.&'

01.23415 01.23415f(x) f(x)

xx

Epigraph Epigraph

Convex function Nonconvex function

dom(f) dom(f)

• The epigraph of a function f : X ◆→ [−⇣,⇣] is
the subset of �n+1 given by

epi(f) =
⇤
(x,w) | x ⌘ X, w ⌘ �, f(x) ⌥ w

s

⌅

• The effective domain of f is the et

dom(f) =
⇤
x ⌘ X | f(x) < ⇣

• We say that f is convex if epi(f) is

⌅

a convex
set. If f(x) ⌘ � for all x ⌘ X and X is convex,
the definition “coincides” with the earlier one.

• We say that f is closed if epi(f) is a closed set.

• We say that f is lower semicontinuous at a
vector x ⌘ X if f(x) ⌥ lim infk f(x⌃ k) for every
sequence xk X with xk x.{ } ⌦ →
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CLOSEDNESS AND SEMICONTINUITY I

• Proposition: For a function f : �n → [−⇣,⇣],
the following are equivalent:

(i) V⇥ = {x | f(x) ⌥ ⇤} is closed for all ⇤ ⌘ �.

(ii) f is lower semicontinuous at all x ⌘ �n.

(iii) f is closed.

◆

f(x)

x�
x | f(x) 

⇥



epi(f)

• (ii) ✏ (iii): Let (xk, wk) ⌦ epi(f) with
(xk, wk) → (x, w). Then f(xk) ⌥ wk, and

f(x) ⌥ lim inf f(xk)
k⌃ 

⌥ w so (x, w) ⌘ epi(f)

• (iii) ✏ (i): Let {xk} ⌦ V⇥ and xk → x. Then
(xk, ⇤) ⌘ epi(f) and (xk, ⇤) → (x, ⇤), so (x, ⇤) ⌘
epi(f), and x ⌘ V⇥ .

• (i)✏ (ii): If xk → x and f(x) > ⇤ > lim infk f(x⌃ k)
consider subsequence {xk}K → x with f(xk) ⌥ ⇤
- contradicts closedness of V⇥ .

⇤ ⌅
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CLOSEDNESS AND SEMICONTINUITY II

• Lower semicontinuity of a function is a “domain-
specific” property, but closeness is not:

− If we change the domain of the function with-
out changing its epigraph, its lower semicon-
tinuity properties may be affected.

− Example: Define f : (0, 1) → [−⇣,⇣] and
f̂ : [0, 1] → [−⇣,⇣] by

f(x) = 0,  x ⌘ (0, 1),

f̂(x) =
�

0 if x ⌘ (0, 1),
⇣ if x = 0 or x = 1.

Then f and f̂ have the same epigraph, and
both are not closed. But f is lower-semicon-
tinuous while f̂ is not.

• Note that:

− If f is lower semicontinuous at all x ⌘ dom(f),
it is not necessarily closed

− If f is closed, dom(f) is not necessarily closed

• Proposition: Let f : X ◆→ [−⇣,⇣] be a func-
tion. If dom(f) is closed and f is lower semicon-
tinuous at all x ⌘ dom(f), then f is closed.
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PROPER AND IMPROPER CONVEX FUNCTIONS

f(x) f(x)

x

dom(f) dom(f)
x

Closed Improper FunctionNot Closed Improper Function

epi(f) epi(f)

• We say that f is proper if f(x) < ⇣ for at least
one x ⌘ X and f(x) > −⇣ for all x ⌘ X, and we
will call f improper if it is not proper.

• Note that f is proper if and only if its epigraph
is nonempty and does not contain a “vertical line.”

• An improper closed convex function is very pe-
culiar: it takes an infinite value (⇣ or −⇣) at
every point.
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RECOGNIZING CONVEX FUNCTIONS

• Some important classes of elementary convex
functions: A⌅ne functions, positive semidefinite
quadratic functions, norm functions, etc.

• Proposition: (a) The function g : �n → (−⇣,⇣]
given by

g(x) = ⌃1f1(x) + · · · + ⌃mfm(x), ⌃i > 0

is convex (or closed) if f1, . . . , fm are convex (re-
spectively, closed).

(b) The function g : �n → (−⇣,⇣] given by

g(x) = f(Ax)

where A is an m⇤ n matrix is convex (or closed)
if f is convex (respectively, closed).

(c) Consider fi : �n → (−⇣,⇣], i ⌘ I, where I
is any index set. The function g : �n → (−⇣,⇣]
given by

g(x) = sup fi(x)
i⌦I

is convex (or closed) if the fi are convex (respec-
tively, closed).

◆

◆

◆
◆
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LECTURE 3

LECTURE OUTLINE

• Differentiable Convex Functions

• Convex and A⌅ne Hulls

• Caratheodory’s Theorem

Reading: Sections 1.1, 1.2
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DIFFERENTIABLE CONVEX FUNCTIONS

zx

f(z)

f(x) + ⇥f(x)(z − x)

• Let C ⌦ �n be a convex set and let f : �n → �
be differentiable over �n.

(a) The function f is convex over C iff

f(z) ≥ f(x) + (z− x)�∇f(x),  x, z ⌘ C

(b) If the inequality is strict whenever x = z,
then f is strictly convex over C.

◆

✓
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PROOF IDEAS

z

x

x

f(x) + (z − x)⇥f(x)

f(z)

f(z)

f(x) + (1 − )f(y)

f(x)

f(y)

z = x + (1 − )y
y

f(z) + (y − z)⇥f(z)

f(z) + (x − z)⇥f(z)

(a)

(b)

x + (z − x)

f(x) +
f
�
x + (z − x)

⇥
− f(x)
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OPTIMALITY CONDITION

• Let C be a nonempty convex subset of �n and
let f : �n → � be convex and differentiable over
an open set that contains C. Then a vector x⇤ ⌘ C
minimizes f over C if and only if

∇f(x⇤)�(x− x⇤) ≥ 0,  x ⌘ C.

Proof: If the condition holds, then

f(x) ≥ f(x⇤)+(x−x⇤)�∇f(x⇤) ≥ f(x⇤),  x ⌘ C,

so x⇤ minimizes f over C.
Converse: Assume the contrary, i.e., x⇤ min-

imizes f over C and ∇f(x⇤)�(x−x⇤) < 0 for some
x ⌘ C. By differentiation, we have

f
�
x⇤ + α(x− x⇤) )

lim

⇥
− f(x⇤

= ∇f(x⇤)�(x
α⌥0 α

−x⇤) < 0

so f
ciently
of x⇤

�
x⇤ + α(x − x⇤)

⇥
decreases strictly for su⌅-

small α > 0, contradicting the optimality
. Q.E.D.

◆
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PROJECTION THEOREM

• Let C be a nonempty closed convex set in �n.

(a) For every z ⌘ �n, there exists a unique min-
imum of

f(x) = �z − x�2

over all x ⌘ C (called the projection of z on
C).

(b) x⇤ is the projection of z if and only if

(x− x⇤)�(z − x⇤) ⌥ 0,  x ⌘ C

Proof: (a) f is strictly convex and has compact
level sets.

(b) This is just the necessary and su⌅cient opti-
mality condition

∇f(x⇤)�(x− x⇤) ≥ 0,  x ⌘ C.
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TWICE DIFFERENTIABLE CONVEX FNS

• Let C be a convex subset of �n and let f :
�n → � be twice continuously differentiable over
�n.

(a) If ∇2f(x) is positive semidefinite for all x ⌘
C, then f is convex over C.

(b) If ∇2f(x) is positive definite for all x ⌘ C,
then f is strictly convex over C.

(c) If C is open and f is convex over C, then
∇2f(x) is positive semidefinite for all x ⌘ C.

Proof: (a) By mean value theorem, for x, y ⌘ C

f(y) = f(x)+(y−x)⇧∇f(x)+ 1 (y−x)⇧∇2f
�
x+α(y−x)

⇥
(y x

2

− )

for some α ⌘ [0, 1]. Using the positive semidefi-
niteness of ∇2f , we obtain

f(y) ≥ f(x) + (y − x)�∇f(x),  x, y ⌘ C

From the preceding result, f is convex.

(b) Similar to (a), we have f(y) > f(x) + (y −
x)�∇f(x) for all x, y ⌘ C with x = y, and we use
the preceding result.

(c) By contradiction ... similar.

◆

✓
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CONVEX AND AFFINE HULLS

• Given a set X ⌦ �n:

• A convex combination� of elements of X is a
vector of the form m

� i=1 αixi, where xi ⌘ X, αi ≥
0, and m

i=1 αi = 1.

• The convex hull of X, denoted conv(X), is the
intersection of all convex sets containing X. (Can
be shown to be equal to the set of all convex com-
binations from X).

• The a⇥ne hull of X, denoted aff(X), is the in-
tersection of all a⌅ne sets containing X (an a⌅ne
set is a set of the form x + S, where S is a sub-
space).

• A nonnegative combination of elements of X is
a vector of the form m

i=1 αixi, where xi ⌘ X and
αi ≥ 0 for all i.

�

• The cone generated by X, denoted cone(X), is
the set of all nonnegative combinations from X:

− It is a convex cone containing the origin.

− It need not be closed!

− If X is a finite set, cone(X) is closed (non-
trivial to show!)
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CARATHEODORY’S THEOREM

xx
x

x1

x1

x2

x2

x3

x4

conv(X)

cone(X)

X

(a) (b)

x

0

• Let X be a nonempty subset of �n.

(a) Every x = 0 in cone(X) can be represented
as a positive combination of vectors x1, . . . , xm

from X that are linearly independent (so
m ⌥ n).

(b) Every x ⌘/ X that belongs to conv(X) can
be represented as a convex combination of
vectors x1, . . . , xm from X with m ⌥ n + 1.

✓
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PROOF OF CARATHEODORY’S THEOREM

(a) Let x be a nonzero vector in cone(X), and
let m be the smallest integer such that x has the
form

�m
i=1 αixi, where αi > 0 and xi ⌘ X for

all i = 1, . . . ,m. If the vectors xi were linearly
dependent, there would exist ⌃1, . . . ,⌃m, with

⌧m
⌃ixi = 0

i=1

and at least one of the ⌃i is positive. Consider
⌧m

(αi

i=1

− ⇤⌃i)xi,

where ⇤ is the largest ⇤ such that αi−⇤⌃i ≥ 0 for
all i. This combination provides a representation
of x as a positive combination of fewer than m vec-
tors of X – a contradiction. Therefore, x1, . . . , xm,
are linearly independent.

(b) Use “lifting” argument: apply part (a) to Y =
(x, 1) x X .
⇤

| ⌘
⌅

Y

x

X

0

1
(x, 1)

n
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AN APPLICATION OF CARATHEODORY

• The convex hull of a compact set is compact.

Proof: Let X be compact. We take a sequence
in conv(X) and show that it has a convergent sub-
sequence whose limit is in conv(X).

By Caratheo� dory, a sequence in conv(X) can

be expressed as
�n+1

αkxk
i=1 i i , where for all k and

, k ≥ 0, k ⌘ , and
�n+1

i αi xi X i=1 αk
i = 1. Since the

sequence

⇤
(αk

1 , . . . ,αk k k
n+1, x1 , . . . , xn+1)

is bounded, it has a limit point

⌅

⇤
(α1, . . . ,αn+1, x1, . . . , xn+1) ,

which must satisfy n+1
ii=1 α = 1, and

⌅

αi ≥ 0,
xi ⌘ X for all i.

The vector
�n

ii

�

+1
=1 α xi belongs to conv(X)

and is a limit point of
��n+1

i=1 αk
i xk

i

that

 
, showing

conv(X) is compact. Q.E.D.

• Note that the convex hull of a closed set need
not be closed!
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LECTURE 4

LECTURE OUTLINE

• Relative interior and closure

• Algebra of relative interiors and closures

• Continuity of convex functions

• Closures of functions

Reading: Section 1.3
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RELATIVE INTERIOR

• x is a relative interior point of C, if x is an
interior point of C relative to aff(C).

• ri(C) denotes the relative interior of C, i.e., the
set of all relative interior points of C.

• Line Segment Principle: If C is a convex set,
x ⌘ ri(C) and x ⌘ cl(C), then all points on the
line segment connecting x and x, except possibly
x, belong to ri(C).

x

C x = αx+(1α)x

x

S
S⇥

α⇥

• Proof of case where x ⌘ C: See the figure.

• Proof of case where x ⌘/ C: Take sequence
{xk} ⌦ C with xk → x. Argue as in the figure.
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ADDITIONAL MAJOR RESULTS

• Let C be a nonempty convex set.

(a) ri(C) is a nonempty convex set, and has the
same a⌅ne hull as C.

(b) Prolongation Lemma: x ⌘ ri(C) if and
only if every line segment in C having x
as one endpoint can be prolonged beyond x
without leaving C.

z2

C

X

z1

z1 and z2 are linearly
independent, belong to
C and span a(C)

0

Proof: ⌘ C m
early independent vectors z1, . . . , zm ⌘ C, where
m is the dimension of aff(C), and we let

X =

✏
⌧m

αizi

i=1

⇧⇧⇧
⌧m

αi < 1, αi > 0, i = 1, . . . ,m
i=1

⇣

(b) => is clear by the def. of rel. interior. Reverse:
take any x ri(C); use Line Segment Principle.

(a) Assume that 0 . We choose lin-

⌘
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OPTIMIZATION APPLICATION

• A concave function f : �n → � that attains its
minimum over a convex set X at an x⇤ ⌘ ri(X)
must be constant over X.

◆

X

x

x
x

a(X)

Proof: (By contradiction) Let x ⌘ X be such
that f(x) > f(x⇤). Prolong beyond x⇤ the line
segment x-to-x⇤ to a point x ⌘ X. By concavity
of f , we have for some α ⌘ (0, 1)

f(x⇤) ≥ αf(x) + (1− α)f(x),

and since f(x) > f(x⇤), we must have f(x⇤) >
f(x) - a contradiction. Q.E.D.

• Corollary: A nonconstant linear function can-
not attain a minimum at an interior point of a
convex set. 42



CALCULUS OF REL. INTERIORS: SUMMARY

• The ri(C) and cl(C) of a convex set C “differ
very little.”

− Any set “between” ri(C) and cl(C) has the
same relative interior and closure.

− The relative interior of a convex set is equal
to the relative interior of its closure.

− The closure of the relative interior of a con-
vex set is equal to its closure.

• Relative interior and closure commute with
Cartesian product and inverse image under a lin-
ear transformation.

• Relative interior commutes with image under a
linear transformation and vector sum, but closure
does not.

• Neither relative interior nor closure commute
with set intersection.
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CLOSURE VS RELATIVE INTERIOR

• Proposition:

(a) We have cl(C) = cl

(b) another

�
ri(C)

⇥
and ri(C) = ri

Let C be nonempty convex set. Then

�
cl(C)

⇥
.

the following three conditions are equivalent:

(i) C and C have the same rel. interior.

(ii) C and C have the same closure.

(iii) ri(C) ⌦ C ⌦ cl(C).

Proof: (a) Since ri(C) ⌦ C, we have cl ri(C) ⌦
cl(C). Conversely, let x ⌘ cl(C). Let x ⌘ ri(C).
By the Line Segment Principle, we have

� ⇥

αx + (1− α)x ⌘ ri(C),  α ⌘ (0, 1].

Thus, x is the limit of a sequence that lies in ri(C),
so x cl ri(C) .⌘

� ⇥

x

x
C

The proof of ri(C) = ri cl(C) is similar.
� ⇥
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LINEAR TRANSFORMATIONS

• Let C be a nonempty convex subset of �n and
let A be an m⇤ n matrix.

(a) We have A · ri(C) = ri(A · C).

(b) We have A · cl(C) ⌦ cl(A ·C). Furthermore,
if C is bounded, then A · cl(C) = cl(A · C).

Proof: (a) Intuition: Spheres within C are mapped
onto spheres within A · C (relative to the a⌅ne
hull).

(b) We have A·cl(C) ⌦ cl(A·C), since if a sequence
{xk} ⌦ C converges to some x ⌘ cl(C) then the
sequence {Axk}, which belongs to A ·C, converges
to Ax, implying that Ax ⌘ cl(A · C).

To show the converse, assuming that C is
bounded, choose any z ⌘ cl(A · C). Then, there
exists {xk} ⌦ C such that Axk → z. Since C is
bounded, {xk} has a subsequence that converges
to some x ⌘ cl(C), and we must have Ax = z. It
follows that z ⌘ A · cl(C). Q.E.D.

Note that in general, we may have

A · int(C) = int(A · C), A · cl(C) = cl(A · C)✓ ✓
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INTERSECTIONS AND VECTOR SUMS

• Let C1 and C2 be nonempty convex sets.

(a) We have

ri(C1 + C2) = ri(C1) + ri(C2),

cl(C1) + cl(C2) ⌦ cl(C1 + C2)

If one of C1 and C2 is bounded, then

cl(C1) + cl(C2) = cl(C1 + C2)

(b) We have

ri(C1)⌫ri(C2) ⌦ ri(C1⌫C2), cl(C1⌫C2) ⌦ cl(C1)⌫cl(C2)

If ri(C1) ⌫ ri(C2) = Ø, then

ri(C1⌫C2) = ri(C1)⌫ri(C2), cl(C1⌫C2) = cl(C1)⌫cl(C2)

Proof of (a): C1 + C2 is the result of the linear
transformation (x1, x2) ◆→ x1 + x2.

• Counterexample for (b):

C1 = {x | x ⌥ 0}, C2 = {x | x ≥ 0}

C1 = x x < 0 , C2 = x x > 0

✓

{ | } { | }
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CARTESIAN PRODUCT - GENERALIZATION

• Let C be convex set in �n+m. For x ⌘ �n, let

Cx = {y | (x, y) ⌘ C},

and let
D = {x | Cx = Ø}.

Then

ri(C) =
⇤
(x, y) | x ⌘ ri(D), y ⌘ ri(Cx)

⌅
.

Proof: Since D is projection of C on x-axis,

ri(D) =
⇤
x | there exists y ⌘ �m with (x, y) ⌘ ri(C)

⌅
,

so that

ri(C) = ∪x⌦ri(D)

⌥
Mx ⌫ ri(C)

�
,

where Mx =
⇤
(x, y) | y ⌘ �m

⌅
. For every x ⌘

ri(D), we have

Mx ⌫ ri(C) = ri(Mx ⌫ C) = (x, y) | y ⌘ ri(Cx) .

Combine the preceding two equations.

⇤

Q.E.D.

⌅

✓
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CONTINUITY OF CONVEX FUNCTIONS

• If f : �n → � is convex, then it is continuous.◆

0

xk

xk+1

yk

zk

e1 = (1, 1)

e2 = (1,1)e3 = (1,1)

e4 = (1, 1)

Proof: We will show that f is continuous at 0.
By convexity, f is bounded within the unit cube
by the max value of f over the corners of the cube.

Consider sequence xk → 0 and the sequences
yk = xk/�xk� , z k = −xk/�xk� . Then 

f(xk) ⌥
�
1− �xk� 

⇥
f(0) + �xk� f(y k)

xk 1
f(0)

� �⌥  
f(z ) +�xk� + 1 k f(x

 �xk� + 1 k)
 

Take limit as k →⇣. Since �xk� → 0, we have

lim sup
�x

k
�xk

�� f(yk) ⌥ 0, lim sup k  
f(z ) 

⌃ k⌃ �xk� + 1 k ⌥ 0
 

so f(xk) → f(0). Q.E.D.

Extension to continuity over ri(dom(f)).• 48



CLOSURES OF FUNCTIONS

• The closure of a function f : X
n

◆→ [−⇣,⇣] is
the function cl f : � → [−⇣,⇣] with

epi(cl f) = cl epi(f)

• The convex closure of f is

�

the function

⇥

cľ f with

epi(cľ f) = cl conv epi(f)

• Proposition: For any

�

f : X

�

◆→ [−⇣

⇥⇥

,⇣]

inf f(x) = inf (cl f)(x) = inf (cľ f)(x).
x⌦X x⌦�n x⌦�n

Also, any vector that attains the infimum of f over
X also attains the infimum of cl f and cľ f .

• Proposition: For any f : X ◆→ [−⇣,⇣]:

(a) cl f (or cľ f) is the greatest closed (or closed
convex, resp.) function majorized by f .

(b) If f is convex, then cl f is convex, and it is
proper if and only if f is proper. Also,

(cl f)(x) = f(x),  x ⌘ ri
�
dom(f)

⇥
,

and if x ⌘ ri dom(f) and y ⌘ dom(cl f),

(cl f)(y)

�

= lim f y

⇥

+ α(x
α 0

− y) .

◆

⌥

� ⇥
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LECTURE 5

LECTURE OUTLINE

• Recession cones and lineality space

• Directions of recession of convex functions

• Local and global minima

• Existence of optimal solutions

Reading: Section 1.4, 3.1, 3.2
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RECESSION CONE OF A CONVEX SET

• Given a nonempty convex set C, a vector d is
a direction of recession if starting at any x in C
and going indefinitely along d, we never cross the
relative boundary of C to points outside C:

x + αd C, x C, α 0⌘  ⌘  ≥

x

C

0

d

x + d

Recession Cone RC

• Recession cone of C (denoted by RC): The set
of all directions of recession.

• RC is a cone containing the origin.
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RECESSION CONE THEOREM

• Let C be a nonempty closed convex set.

(a) The recession cone RC is a closed convex
cone.

(b) A vector d belongs to RC if and only if there
exists some vector x ⌘ C such that x+αd ⌘
C for all α ≥ 0.

(c) RC contains a nonzero direction if and only
if C is unbounded.

(d) The recession cones of C and ri(C) are equal.

(e) If D is another closed convex set such that
C ⌫D = Ø, we have

RC✏D = RC ⌫RD

More generally, for any collection of closed
convex sets Ci, i ⌘ I, where I is an arbitrary
index set and ⌫i ICi is nonempty, we have⌦

R✏i2ICi = ⌫i⌦IRCi

✓
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PROOF OF PART (B)

x

C

z1 = x + d

z2

z3

x

x + d

x + d1

x + d2

x + d3

• Let d = 0 be such that there exists a vector
x ⌘ C with x + αd ⌘ C for all α ≥ 0. We fix
x ⌘ C and α > 0, and we show that x + αd ⌘ C.
By scaling d, it is enough to show that x + d ⌘ C.

For k = 1, 2, . . ., let

(z
zk = x + kd, dk = k − x)

�zk − x
�d��

We have

dk �zk − x� d x − x �zk x x x
= + ,

− � −
d zk x d zk x zk x

⌅ 1,
� � � − � � � � − � � − � �zk − x

⌅ 0,
�

so dk → d and x + dk → x + d. Use the convexity
and closedness of C to conclude that x + d ⌘ C.

✓
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LINEALITY SPACE

• The lineality space of a convex set C, denoted by
LC , is the subspace of vectors d such that d ⌘ RC

and −d ⌘ RC :

LC = RC ⌫ (−RC)

• If d ⌘ LC , the entire line defined by d is con-
tained in C, starting at any point of C.

• Decomposition of a Convex Set: Let C be a
nonempty convex subset of �n. Then,

C = LC + (C ⌫ L⊥C).

• Allows us to prove properties of C on C ⌫ L⊥C
and extend them to C.

• True also if LC is replaced by a subspace S ⌦
LC .

x

C

S

S

C  S

0
d

z
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DIRECTIONS OF RECESSION OF A FN

• We aim to characterize directions of monotonic
decrease of convex functions.

• Some basic geometric observations:

− The “horizontal directions” in the recession
cone of the epigraph of a convex function f
are directions along which the level sets are
unbounded.

− Along these directions the level sets x |
f(x) ⌥ ⇤ are

⇤
⌅

unbounded and f is mono-
tonically nondecreasing.

• These are the directions of recession of f .

!

epi(f)

Level Set V! = {x | f(x) " !}

“Slice” {(x,!) | f(x) " !}

Recession
Cone of f

0
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RECESSION CONE OF LEVEL SETS

• Proposition: Let f : �n → (−⇣,⇣] be a closed
proper⇤ convex function⌅ and consider the level sets
V⇥ = x | f(x) ⌥ ⇤ , where ⇤ is a scalar. Then:

(a) All the nonempty level sets V⇥ have the same
recession cone:

RV =
⇤
d | (d, 0) ⌘ Repi(f)

(b) If one nonempty level set V⇥ is compact,

⌅

then
all level sets are compact.

Proof: (a) Just translate to math the fact that

RV = the “horizontal” directions of recession of epi(f)

(b) Follows from (a).

◆
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DESCENT BEHAVIOR OF A CONVEX FN
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f(x)

f(x)

f(x)

f(x)

f(x)

f(x)

f(x + d)

f(x + d) f(x + d)

f(x + d)

f(x + d)f(x + d)

rf (d) = 0

rf (d) = 0 rf (d) = 0

rf (d) < 0

rf (d) > 0 rf (d) > 0

• y is a direction of recession in (a)-(d).

• This behavior is independent of the starting
point x, as long as x ⌘ dom(f).
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RECESSION CONE OF A CONVEX FUNCTION

• For a closed proper convex function f : �n →
(−⇣,⇣], the (common) recession cone of the nonempty
level sets V⇥ = x | f(x) ⌥ ⇤ , ⇤ ⌘ �, is the re-
cession cone of f , and is denoted by Rf .

◆
⇤ ⌅

0

Recession Cone Rf

Level Sets of f

• Terminology:

− d ⌘ Rf : a direction of recession of f .

− Lf = Rf ⌫ (−Rf ): the lineality space of f .

− d ⌘ Lf : a direction of constancy of f .

• Example: For the pos. semidefinite quadratic

f(x) = x�Qx + a�x + b,

the recession cone and constancy space are

Rf = d Qd = 0, a⇧d 0 , Lf = d Qd = 0, a⇧d = 0{ | ⌃ } { | }
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RECESSION FUNCTION

• Function rf : �n → (−⇣,⇣] whose epigraph
is Repi(f) is the recession function of f .

• Characterizes the recession cone:

Rf =
⇤
d | rf (d) ⌃ 0

⌅
, Lf =

⇤
d | rf (d) = rf (−d) = 0

since Rf = {(d, 0) ⌘ Repi(f) .

⌅

}
• Can be shown that

f(x + αd)− f(x) f(x + αd)
rf (d) = sup = lim

− f(x)

α αα>0

⌅⌃ α

• Thus rf (d) is the “asymptotic slope” of f in the
direction d. In fact,

rf (d) = lim
α⌃ 

∇f(x + αd)�d,  x, d ⌘ �n

if f is differentiable.

• Calculus of recession functions:

rf1+···+fm(d) = rf1(d) + · · · + rfm(d),

rsupi2I fi(d) = sup rfi(d)
i I

◆

⌦
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LOCAL AND GLOBAL MINIMA

• Consider minimizing f : �n → (−⇣,⇣] over a
set X ⌦ �n

• x is feasible if x ⌘ X ⌫ dom(f)

• x⇤ is a (global) minimum of f over X if x⇤ is
feasible and f(x⇤) = infx X f(x)⌦

• x⇤ is a local minimum of f over X if x⇤ is a
minimum of f over a set X ⌫ {x | �x− x⇤� ⌥ ⇧}
Proposition: If X is convex and f is convex,
then:

(a) A local minimum of f over X is also a global
minimum of f over X.

(b) If f is strictly convex, then there exists at
most one global minimum of f over X.

◆

f(x)

f(x) + (1  )f(x)

f
�
x + (1  )x

⇥

0 xx x
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EXISTENCE OF OPTIMAL SOLUTIONS

• The set of minima of a proper f : �n →
(−⇣,⇣] is the intersection of its nonempty level
sets.

• The set of minima of f is nonempty and com-
pact if the level sets of f are compact.

• (An Extension of the) Weierstrass’ Theo-
rem: The set of minima of f over X is nonempty
and compact if X is closed, f is lower semicontin-
uous over X, and one of the following conditions
holds:

(1) X is bounded.

(2) Some set
⇤
x ⌘ X | f(x) ⌥ ⇤

⌅
is nonempty

and bounded.

(3) For every sequence {xk} ⌦ X s. t. �xk� →
⇣, we have limk f(xk) =⇣. (Coercivity⌃ 
property).

Proof: In all cases the level sets of f ⌫X are
compact. Q.E.D.

◆
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EXISTENCE OF SOLUTIONS - CONVEX CASE

• Weierstrass’ Theorem specialized to con-
vex functions: Let X be a closed convex subset
of �n, and let f : �n → (−⇣,⇣] be closed con-
vex with X ⌫ dom(f) = Ø. The set of minima of
f over X is nonempty and compact if and only
if X and f have no common nonzero direction of
recession.

Proof: Let f⇤ = infx f⌦X (x) and note that f⇤ <
⇣ since X ⌫ dom(f) = Ø. Let {⇤k} be a scalar
sequence with ⇤k ↓ f⇤, and consider the sets

Vk =
⇤
x | f(x) ⌥ ⇤k

⌅
.

Then the set of minima of f over X is

X⇤ = ⌫ k=1(X ⌫ Vk).

The sets X ⌫ Vk are nonempty and have RX ⌫Rf

as their common recession cone, which is also the
recession cone of X⇤, when X⇤ = Ø. It follows
that X⇤ is nonempty and compact if and only if
RX ⌫Rf = {0}. Q.E.D.

◆
✓

✓

✓
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EXISTENCE OF SOLUTION, SUM OF FNS

• Let fi : �n → (−⇣,⇣], i = 1, . . . ,m, be closed
proper convex functions such that the function

f = f1 + · · · + fm

is proper. Assume that a single function fi sat-
isfies rfi(d) = ⇣ for all d = 0. Then the set of
minima of f is nonempty and compact.

• Proof:�We have rf (d) = ⇣ for all d = 0 since
rf (d) = m

i=1 rfi(d). Hence f has no nonzero di-
rections of recession. Q.E.D.

• True also for f = max{f1, . . . , fm}.
• Example of application: If one of the fi is
positive definite quadratic, the set of minima of
the sum f is nonempty and compact.

• Also f has a unique minimum because the pos-
itive definite quadratic is strictly convex, which
makes f strictly convex.

◆

✓

✓
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LECTURE 6

LECTURE OUTLINE

• Nonemptiness of closed set intersections

− Simple version

− More complex version

• Existence of optimal solutions

• Preservation of closure under linear transforma-
tion

• Hyperplanes
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ROLE OF CLOSED SET INTERSECTIONS I

• A fundamental question: Given a sequence
of nonempty closed sets {Ck} in �n with Ck+1 ⌦
Ck for all k, when is ⌫ k=0Ck nonempty?

• Set intersection theorems are significant in at
least three major contexts, which we will discuss
in what follows:

Does a function f : �n → (−⇣,⇣] attain a
minimum over a set X?

This is true if and only if

Intersection of nonempty x ⌘ X | f(x) ⌥ ⇤k

is nonempty.

⇤ ⌅

◆

Optimal
Solution

Level Sets of f

X
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ROLE OF CLOSED SET INTERSECTIONS II

If C is closed and A is a matrix, is A C
closed?

x

Nk

AC

C

y yk+1 yk

Ck

• If C1 and C2 are closed, is C1 + C2 closed?
− This is a special case.

− Write
C1 + C2 = A(C1 ⇤ C2),

where A(x1, x2) = x1 + x2.
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CLOSURE UNDER LINEAR TRANSFORMATION

• Let C be a nonempty closed convex, and let
A be a matrix with nullspace N(A). Then A C is
closed if RC ⌫N(A) = {0}.
Proof: Let {yk} ⌦ A C with yk → y. Define the
nested sequence Ck = C ⌫Nk, where

Nk = {x | Ax ⌘Wk}, Wk =
⇤
z | �z−y� ⌥ �yk−y�

We have RNk = N(A), so Ck is compact, and

⌅

{Ck} has nonempty intersection. Q.E.D.

x

Nk

AC

C

y yk+1 yk

Ck

• A special case: C1 + C2 is closed if C1, C2

are closed and one of the two is compact. [Write
C1+C2 = A(C1⇤C2), where A(x1, x2) = x1+x2.]

• Related theorem: AX is closed if X is poly-
hedral. To be shown later by a more refined method.
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ROLE OF CLOSED SET INTERSECTIONS III

• Let F : �n+m → (−⇣,⇣] be a closed proper
convex function, and consider

f(x) = inf F (x, z)
z⌦�m

• If F (x, z) is closed, is f(x) closed?
− Critical question in duality theory.

• 1st fact: If F is convex, then f is also convex.

• 2nd fact:

P
�
epi(F )

⇥
⌦ epi(f) ⌦ cl

⌥
P
�
epi(F )

⇥�
,

where P (·) denotes projection on the space of (x,w),
i.e., for any subset S of �n+m+1, P (S) = (x,w) |
(x, z, w) ⌘ S

⇤
⌅
.

• Thus, if F is closed and there is structure guar-
anteeing that the projection preserves closedness,
then f is closed.

• ... but convexity and closedness of F does not
guarantee closedness of f .

◆
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PARTIAL MINIMIZATION: VISUALIZATION

• Connection of preservation of closedness under
partial minimization and attainment of infimum
over z for fixed x.

x

z

w

x1

x2

O

F (x, z)

f(x) = inf
z

F (x, z)

epi(f)

x

z

w

x1

x2

O

F (x, z)

f(x) = inf
z

F (x, z)

epi(f)

• Counterexample: Let

� 
e− xz if x ≥ 0, zF (x, z) = ≥ 0,
⇣ otherwise.

• F convex and closed, but

0 if x > 0,
f(x) = inf F (x, z) =

z⌦�

✏
1 if x = 0,
⇣ if x < 0,

is not closed.
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PARTIAL MINIMIZATION THEOREM

• Let F : �n+m → (−⇣,⇣] be a closed proper
convex function, and consider f(x) = infz⌦�m F (x, z).

• Every set intersection theorem yields a closed-
ness result. The simplest case is the following:

• Preservation of Closedness Under Com-
pactness: If there exist x ⌘ �n, ⇤ ⌘ � such that
the set

⇤
z | F (x, z) ⌥ ⇤

is nonempty and compact, then f

⌅

is convex, closed,
and proper. Also, for each x ⌘ dom(f), the set of
minima of F (x, ) is nonempty and compact.

◆

·

x

z

w

x1

x2

O

F (x, z)

f(x) = inf
z

F (x, z)

epi(f)

x

z

w

x1

x2

O

F (x, z)

f(x) = inf
z

F (x, z)

epi(f)
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MORE REFINED ANALYSIS - A SUMMARY

• We noted that there is a common mathematical
root to three basic questions:

− Existence of of solutions of convex optimiza-
tion problems

− Preservation of closedness of convex sets un-
der a linear transformation

− Preservation of closedness of convex func-
tions under partial minimization

• The common root is the question of nonempti-
ness of intersection of a nested sequence of closed
sets

• The preceding development in this lecture re-
solved this question by assuming that all the sets
in the sequence are compact

• A more refined development makes instead var-
ious assumptions about the directions of recession
and the lineality space of the sets in the sequence

• Once the appropriately refined set intersection
theory is developed, sharper results relating to the
three questions can be obtained

• The remaining slides up to hyperplanes sum-
marize this development as an aid for self-study
using Sections 1.4.2, 1.4.3, and Sections 3.2, 3.3
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ASYMPTOTIC SEQUENCES

• Given nested sequence {Ck} of closed convex
sets, {xk} is an asymptotic sequence if

xk ⌘ Ck, xk = 0, k = 0, 1, . . .

x�xk� → ⇣ k d
, →�xk� �d�

where d is a nonzero common direction of recession
of the sets Ck.

• As a special case we define asymptotic sequence
of a closed convex set C (use Ck ⌃ C).

• Every unbounded {xk} with xk ⌘ Ck has an
asymptotic subsequence.

• {xk} is called retractive if for some k, we have

x d C , k k.

✓

k − ⌘ k  ≥

x0

x1
x2

x3

x4 x5

0
d

Asymptotic Direction

Asymptotic Sequence
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RETRACTIVE SEQUENCES

• A nested sequence {Ck} of closed convex sets
is retractive if all its asymptotic sequences are re-
tractive.

x0!"

!#

!$

!"

!#
!$

%&'()*+,&-+./*

"

%0'(123,*+,&-+./*

4

!"

!#

!$
!"

!$

53+*,6*-+.23
53+*,6*-+.23

"

4

4

!#
!7

C0

C0

C1

C1

C2

C2
x0

x1

x1
x2

x2

x3

(a) Retractive Set Sequence (b) Nonretractive Set Sequence

Intersection
k=0Ck Intersection

k=0Ck

d

d

0

0

• A closed halfspace (viewed as a sequence with
identical components) is retractive.

• Intersections and Cartesian products of retrac-
tive set sequences are retractive.

• A polyhedral set is retractive. Also the vec-
tor sum of a convex compact set and a retractive
convex set is retractive.

• Nonpolyhedral cones and level sets of quadratic
functions need not be retractive.
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SET INTERSECTION THEOREM I

Proposition: If {Ck} is retractive, then ⌫ k=0 Ck

is nonempty.

• Key proof ideas:

(a) The intersection ⌫ k=0 Ck is empty iff the se-
quence {xk} of minimum norm vectors of Ck

is unbounded (so a subsequence is asymp-
totic).

(b) An asymptotic sequence {xk} of minimum
norm vectors cannot be retractive, because
such a sequence eventually gets closer to 0
when shifted opposite to the asymptotic di-
rection.

x0

1
x2

x3

x4 x5

0
d

Asymptotic Direction

Asymptotic Sequence

x
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SET INTERSECTION THEOREM II

Proposition: Let {Ck} be a nested sequence of
nonempty closed convex sets, and X be a retrac-
tive set such that all the sets Ck = X ⌫ Ck are
nonempty. Assume that

RX ⌫R ⌦ L,

where

R = ⌫ k=0RCk , L = ⌫ k=0LCk

Then {Ck} is retractive and ⌫ k=0 Ck is nonempty.

• Special cases:

− X = �n, R = L (“cylindrical” sets Ck)

− RX⌫R = {0} (no nonzero common recession
direction of X and ⌫kCk)

Proof: The set of common directions of recession
of Ck is RX ⌫ R. For any asymptotic sequence
{xk} corresponding to d ⌘ RX ⌫R:

(1) xk − d ⌘ Ck (because d ⌘ L)

(2) xk − d ⌘ X (because X is retractive)

So Ck is retractive.{ }
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NEED TO ASSUME THAT X IS RETRACTIVE

CkCk+1

X

CkCk+1

X

Consider ⌫ k=0 Ck, with Ck = X ⌫ Ck

• The condition RX ⌫R ⌦ L holds

• In the figure on the left, X is polyhedral.

• In the figure on the right, X is nonpolyhedral
and nonretrative, and

⌫ k=0 Ck = Ø
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LINEAR AND QUADRATIC PROGRAMMING

• Theorem: Let

f(x) = x⇧Qx + c⇧x, X = {x | a⇧jx + bj ⇤ 0, j = 1, . . . , r}

where Q is symmetric positive semidefinite. If the
minimal value of f over X is finite, there exists a
minimum of f over X.

Proof: (Outline) Write

Set of Minima = ⌫ k=0

�
X⌫ {x | x�Qx+c�x ⌥ ⇤k}

with

⇥

⇤k ↓ f⇤ = inf f(x).
x⌦X

Verify the condition RX ⌫R ⌦ L of the preceding
set intersection theorem, where R and L are the
sets of common recession and lineality directions
of the sets

{x | x�Qx + c�x ⌥ ⇤k}

Q.E.D.
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CLOSURE UNDER LINEAR TRANSFORMATION

• Let C be a nonempty closed convex, and let A
be a matrix with nullspace N(A).

(a) A C is closed if RC ⌫N(A) ⌦ LC .

(b) A(X ⌫ C) is closed if X is a retractive set
and

RX ⌫RC ⌫N(A) ⌦ LC ,

Proof: (Outline) Let {yk} ⌦ A C with yk → y.
We prove ⌫ k=0Ck = Ø, where Ck = C ⌫Nk, and

Nk = {x | Ax ⌘Wk}, Wk = z | �z−y� ⌥ �yk−y�

✓
⇤ ⌅

x

Nk

AC

C

y yk+1 yk

Ck

• Special Case: AX is closed if X is polyhedral.
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NEED TO ASSUME THAT X IS RETRACTIVE

!"# $%

$

#

$

#

!"# $%

&"!% &"!%

C C

N(A) N(A)

X

X

A(X  C) A(X  C)

Consider closedness of A(X ⌫ C)

• In both examples the condition

RX ⌫RC ⌫N(A) ⌦ LC

is satisfied.

• However, in the example on the right, X is not
retractive, and the set A(X ⌫ C) is not closed.
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CLOSEDNESS OF VECTOR SUMS

• Let C1, . . . , Cm be nonempty closed convex sub-
sets of �n such that the equality d1 + · · ·+dm = 0
for some vectors di ⌘ RCi implies that di = 0 for
all i = 1, . . . ,m. Then C1 + · · · + Cm is a closed
set.

• Special Case: If C1 and −C2 are closed convex
sets, then C1 − C2 is closed if RC1 ⌫RC2 = {0}.
Proof: The Cartesian product C = C1⇤ · · ·⇤Cm

is closed convex, and its recession cone is RC =
RC1 ⇤ · · ·⇤RCm . Let A be defined by

A(x1, . . . , xm) = x1 + · · · + xm

Then
A C = C1 + · · · + Cm,

and

N(A) =
⇤
(d1, . . . , dm) | d1 + · · · + dm = 0

RC∩N(A) =

⌅

⇤
(d

1

, . . . , dm) | d
1

+· · ·+dm = 0, di ⌃ RCi
, ⌥ i

By the given condition, RC⌫N(A) = {0}, so A C

⌅

is closed. Q.E.D.
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HYPERPLANES

x

Negative Halfspace

Positive Halfspace
{x | ax ⇥ b}

{x | ax ≤ b}

Hyperplane
{x | ax = b} = {x | ax = ax}

a

• A hyperplane is a set of the form {x | a�x = b},
where a is nonzero vector in �n and b is a scalar.

• We say that two sets C1 and C2 are separated
by a hyperplane H = {x | a�x = b} if each lies in a
different closed halfspace associated with H, i.e.,

either a�x1 ⌥ b ⌥ a�x2,  x1 ⌘ C1,  x2 ⌘ C2,

or a�x2 ⌥ b ⌥ a�x1,  x1 ⌘ C1,  x2 ⌘ C2

• If x belongs to the closure of a set C, a hyper-
plane that separates C and the singleton set {x}
is said be supporting C at x.
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VISUALIZATION

• Separating and supporting hyperplanes:

a

(a)

C1 C2

x

a

(b)

C

• A separating {x | a�x = b} that is disjoint from
C1 and C2 is called strictly separating:

a�x1 < b < a�x2, x1 C1, x2 C2 ⌘  ⌘

(a)

C1 C2

x

a

(b)

C1

C2
x1

x2
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SUPPORTING HYPERPLANE THEOREM

• Let C be convex and let x be a vector that is
not an interior point of C. Then, there exists a
hyperplane that passes through x and contains C
in one of its closed halfspaces.

a

C

x

x0

x1

x2
x3

x̂0

x̂1

x̂2
x̂3

a0

a1

a2
a3

Proof: Take a sequence {xk} that does not be-
long to cl(C) and converges to x. Let x̂k be the
projection of xk on cl(C). We have for all x ⌘
cl(C)

a�kx ≥ a�kxk,  x ⌘ cl(C),  k = 0, 1, . . . ,

where ak = (x̂k − xk)/�x̂k − xk�. Let a be a limit
point of ak , and take limit as k . Q.E.D.{ } →⇣
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SEPARATING HYPERPLANE THEOREM

• Let C1 and C2 be two nonempty convex subsets
of �n. If C1 and C2 are disjoint, there exists a
hyperplane that separates them, i.e., there exists
a vector a = 0 such that

a�x1 ⌥ a�x2,  x1 ⌘ C1,  x2 ⌘ C2.

Proof: Consider the convex set

C1 − C2 = {x2 − x1 | x1 ⌘ C1, x2 ⌘ C2}

Since C1 and C2 are disjoint, the origin does not
belong to C1 − C2, so by the Supporting Hyper-
plane Theorem, there exists a vector a = 0 such
that

0 ⌥ a�x,  x ⌘ C1 − C2,

which is equivalent to the desired relation. Q.E.D.

✓

✓
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STRICT SEPARATION THEOREM

• Strict Separation Theorem: Let C1 and C2

be two disjoint nonempty convex sets. If C1 is
closed, and C2 is compact, there exists a hyper-
plane that strictly separates them.

(a)

C1 C2

x

a

(b)

C1

C2
x1

x2

Proof: (Outline) Consider the set C1−C2. Since
C1 is closed and C2 is compact, C1−C2 is closed.
Since C1 ⌫ C2 = Ø, 0 ⌘/ C1 − C2. Let x1 − x2

be the projection of 0 onto C1 − C2. The strictly
separating hyperplane is constructed as in (b).

• Note: Any conditions that guarantee closed-
ness of C1 − C2 guarantee existence of a strictly
separating hyperplane. However, there may exist
a strictly separating hyperplane without C1 − C2

being closed.
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LECTURE 7

LECTURE OUTLINE

• Review of hyperplane separation

• Nonvertical hyperplanes

• Convex conjugate functions

• Conjugacy theorem

• Examples

Reading: Section 1.5, 1.6
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ADDITIONAL THEOREMS

• Fundamental Characterization: The clo-
sure of the convex hull of a set C ⌦ �n is the
intersection of the closed halfspaces that contain
C. (Proof uses the strict separation theorem.)

• We say that a hyperplane properly separates C1

and C2 if it separates C1 and C2 and does not fully
contain both C1 and C2.

(a)

C1 C2

a

C1 C2

a

(b)

a

C1 C2

(c)

• Proper Separation Theorem: Let C1 and
C2 be two nonempty convex subsets of �n. There
exists a hyperplane that properly separates C1 and
C2 if and only if

ri(C1) ⌫ ri(C2) = Ø
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PROPER POLYHEDRAL SEPARATION

• Recall that two convex sets C and P such that

ri(C) ⌫ ri(P ) = Ø

can be properly separated, i.e., by a hyperplane
that does not contain both C and P .

• If P is polyhedral and the slightly stronger con-
dition

ri(C) ⌫ P = Ø

holds, then the properly separating hyperplane
can be chosen so that it does not contain the non-
polyhedral set C while it may contain P .

(a) (b)

a

P

C
Separating
Hyperplane

a

C

P

Separating
Hyperplane

On the left, the separating hyperplane can be cho-
sen so that it does not contain C. On the right
where P is not polyhedral, this is not possible.
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NONVERTICAL HYPERPLANES

• A hyperplane in �n+1 with normal (µ,⇥) is
nonvertical if ⇥ = 0.

• It intersects the (n+1)st axis at ξ = (µ/⇥)�u+w,
where (u, w) is any vector on the hyperplane.

✓

0 u

w

(µ, )

(u, w)
µ




u + w

Nonvertical
Hyperplane

Vertical
Hyperplane

(µ, 0)

•
graph of a function in its “upper” halfspace, pro-
vides lower bounds to the function values.

• The epigraph of a proper convex function does
not contain a vertical line, so it appears plausible
that it is contained in the “upper” halfspace of
some nonvertical hyperplane.

A nonvertical hyperplane that contains the epi-
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NONVERTICAL HYPERPLANE THEOREM

• Let C be a nonempty convex subset of �n+1

that contains no vertical lines. Then:

(a) C is contained in a closed halfspace of a non-
vertical hyperplane, i.e., there exist µ ⌘ �n,
⇥ ⌘ � with ⇥ = 0, and ⇤ ⌘ � such that
µ�u + ⇥w ≥ ⇤ for all (u,w) ⌘ C.

(b) If (u, w) ⌘/ cl(C), there exists a nonvertical
hyperplane strictly separating (u, w) and C.

Proof: Note that cl(C) contains no vert. line [since
C contains no vert. line, ri(C) contains no vert.
line, and ri(C) and cl(C) have the same recession
cone]. So we just consider the case: C closed.

(a) C is the intersection of the closed halfspaces
containing C. If all these corresponded to vertical
hyperplanes, C would contain a vertical line.

(b) There is a hyperplane strictly separating (u, w)
and C. If it is nonvertical, we are done, so assume
it is vertical. “Add” to this vertical hyperplane a
small ⇧-multiple of a nonvertical hyperplane con-
taining C in one of its halfspaces as per (a).

✓

90



CONJUGATE CONVEX FUNCTIONS

• Consider a function f and its epigraph

Nonvertical hyperplanes supporting epi(f)

◆→ Crossing points of vertical axis

f (y) = sup x�y (
x

− f x) , y ⌘ �n.
⌦�n

⇤ ⌅

x

Slope = y

0

(y, 1)

f(x)

inf
x⇥⇤n

{f(x)  x�y} = f(y)

• For any f : �n → [−⇣,⇣], its conjugate convex
function is defined by

f (y) = sup x�y f
x n

− (x) , y ⌘ �n

⌦�

◆

⇤ ⌅
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EXAMPLES

f (y) = sup
x⌦�n

⇤
x�y − f(x)

⌅
, y ⌘ �n

f(x) = (c/2)x2

f(x) = |x|

f(x) = αx  ⇥

x

x

x

y

y

y

⇥

α

−1 1

Slope = α

0

0

00

0

0

f⇥(y) =
⇧

⇥ if y = α
⇤ if y = α

f⇥(y) =
⇧

0 if |y| ⇥ 1
⇤ if |y| > 1

f⇥(y) = (1/2c)y2

− β

⌅
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CONJUGATE OF CONJUGATE

• From the definition

f (y) = sup x�y
x

− f(x) , y ⌘ �n,
⌦�n

⇤ ⌅

note that f is convex and closed .

• Reason: epi(f ) is the intersection of the epigraphs
of the linear functions of y

x�y − f(x)

as x ranges over �n.

• Consider the conjugate of the conjugate:

f  (x) = sup
y⌦�n

⇤
y�x− f (y)

⌅
, x ⌘ �n.

• f  is convex and closed.

• Important fact/Conjugacy theorem: If f
is closed proper convex, then f  = f .
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CONJUGACY THEOREM - VISUALIZATION

f (y) = sup
x⌦�n

⇤
x�y − f(x)

⌅
, y ⌘ �n

f  (x) = sup
⇤
y�x− f (y)

⌅
, x ⌘ �n

y⌦�n

• If f is closed convex proper, then f  = f .

x

Slope = y

0

f(x)
(y, 1)

inf
x⇥⇤n

{f(x)  x�y} = f(y)y�x  f(y)

f(x) = sup
y⇥⇤n

�
y�x  f(y)

⇥
H =

�
(x,w) | w  x�y = f(y)

⇥
Hyperplane
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CONJUGACY THEOREM

• Let f : �n → (−⇣,⇣] be a function, let cľ f be
its convex closure, let f be its convex conjugate,
and consider the conjugate of f ,

f  (x) = sup
⇤
y�x− f (y)

⌅
, x ⌘ �n

y⌦�n

(a) We have

f(x) ≥ f  (x),  x ⌘ �n

(b) If f is convex, then properness of any one
of f , f , and f  implies properness of the
other two.

(c) If f is closed proper and convex, then

f(x) = f  (x),  x ⌘ �n

(d) If cľ f(x) > −⇣ for all x ⌘ �n, then

cľ f(x) = f  (x),  x ⌘ �n

◆
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PROOF OF CONJUGACY THEOREM (A), (C)

• (a) For all x, y, we have f (y) ≥ y�x − f(x),
implying that f(x) ≥ supy{y�x−f (y)} = f  (x).

• (c) By contradiction. Assume there is (x, ⇤) ⌘
epi(f  ) with (x, ⇤) ⌘/ epi(f). There exists a non-
vertical hyperplane with normal (y,−1) that strictly
separates (x, ⇤) and epi(f). (The vertical compo-
nent of the normal vector is normalized to -1.)

x0

epi(f⇥⇥)

epi(f)

(y,−1)

(x, ⇤)

�
x, f(x)

⇥

�
x, f⇥⇥(x)

⇥x′y − f(x)

x′y − f⇥⇥(x)

• Consider two parallel hyperplanes, translated
to pass through x, f(x) and x, f  (x) . Their
vertical crossing points are x�y
f  

− f(x) and x�y −
(x), and lie st

�

rictly ab

⇥

ove and

�

below the

⇥

cross-
ing point of the strictly sep. hyperplane. Hence

x�y − f(x) > x�y − f  (x)
the fact f ≥ f  . Q.E.D.
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A COUNTEREXAMPLE

• A counterexample (with closed convex but im-
proper f) showing the need to assume properness
in order for f = f  :

f(x) =
�
⇣ if x > 0,
−⇣ if x ⌥ 0.

We have

f (y) =⇣,  y ⌘ �n,

f  (x) = −⇣,  x ⌘ �n.

But
cľ f = f,

so cľ f = f  .✓
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LECTURE 8

LECTURE OUTLINE

• Review of conjugate convex functions

• Min common/max crossing duality

• Weak duality

• Special cases

Reading: Sections 1.6, 4.1, 4.2

98



CONJUGACY THEOREM

f (y) = sup
⇤
x�y

x⌦�n

− f(x)
⌅
, y ⌘ �n

f  (x) = sup y
y⌦�n

⇤
�x− f (y)

⌅
, x ⌘ �n

If f is closed convex proper, then f  = f .•

x

Slope = y

0

f(x)
(y, 1)

inf
x⇥⇤n

{f(x)  x�y} = f(y)y�x  f(y)

f(x) = sup
y⇥⇤n

�
y�x  f(y)

⇥
H =

�
(x,w) | w  x�y = f(y)

⇥
Hyperplane
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A FEW EXAMPLES

• lp and lq norm conjugacy, where 1
p + 1

q = 1

1
n

1
f(x) =

p

⌧

i=1

|xi|p, f (y) =
q

⌧n

i=1

|yi|q

• Conjugate of a strictly convex quadratic

1
f(x) = x�Qx + a�x + b,

2

1
f (y) = (y − a)�Q−1(y − a)

2
− b.

• Conjugate of a function obtained by invertible
linear transformation/translation of a function p

f(x) = p A(x− c) + a�x + b,

f (y) = q

� ⇥

�
(A�)−1(y − a)

⇥
+ c�y + d,

where q is the conjugate of p and d = −(c�a + b).
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SUPPORT FUNCTIONS

• Conjugate of indicator function ⌅X of set X

↵X(y) = sup y�x
x⌦X

is called the support function of X.

• To determine ↵X(y) for a given vector y, we
project the set X on the line determined by y,
we find x̂, the extreme point of projection in the
direction y, and we scale by setting

↵X(y) = x̂ y� � · � �

0

y

X

X(y)/y

x̂

• epi(↵X) is a closed convex cone.

• The sets X, cl(X), conv(X), and cl
�
conv(X)

all have the same support function (by the conju-
gacy theorem).

⇥
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SUPPORT FN OF A CONE - POLAR CONE

• The conjugate of the indicator function ⌅C is
the support function, ↵C(y) = supx⌦C y�x.

• If C is a cone,

�
0 if

↵C(y) = y�x ⌥ 0,  x ⌘ C,
⇣ otherwise

i.e., ↵C is the indicator function ⌅C⇤ of the cone

C⇤ = {y | y�x ⌥ 0,  x ⌘ C}

This is called the polar cone of C.

• By the Conjugacy Theorem the polar cone of C⇤

is cl
�
conv(C)

⇥
. This is the Polar Cone Theorem.

• Special case: If C = cone
�
{a1, . . . , ar} , then

C⇤ = {x | aj
� x

⇥

⌥ 0, j = 1, . . . , r}

• Farkas’ Lemma: (C⇤)⇤ = C.

• True because C is a closed set [cone {a1, . . . , ar}
is the image of the positive orthant {α | α ≥ 0}
under the linear transformation that

�

maps α to

⇥

r
j=1 αjaj ], and the image of any polyhedral set

under a linear transformation is a closed set.

�
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EXTENDING DUALITY CONCEPTS

From dual descriptions of sets•

A union of points An intersection of halfspaces

• To dual descriptions of functions (applying
set duality to epigraphs)

x

Slope = y

0

(y, 1)

f(x)

inf
x⇥⇤n

{f(x)  x�y} = f(y)

• We now go to dual descriptions of problems,
by applying conjugacy constructions to a simple
generic geometric optimization problem
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MIN COMMON / MAX CROSSING PROBLEMS

• We introduce a pair of fundamental problems:

• Let M be a nonempty subset of �n+1

(a) Min Common Point Problem: Consider all
vectors that are common to M and the (n+
1)st axis. Find one whose (n + 1)st compo-
nent is minimum.

(b) Max Crossing Point Problem: Consider non-
vertical hyperplanes that contain M in their
“upper” closed halfspace. Find one whose
crossing point of the (n + 1)st axis is maxi-
mum.
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u u

u

w w

w

M M

M

M

M

Min Common
Point w

Min Common
Point w

Min Common
Point w

Max Crossing
Point q

Max Crossing
Point q Max Crossing

Point q

(a) (b)

(c)
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MATHEMATICAL FORMULATIONS

• Optimal value of min common problem:
w⇤ = inf w

(0,w)⌦M

u

w

M

M
(µ, 1)

(µ, 1)

q

q(µ) = inf
(u,w)⇤M

�
w + µ⇥u}

0

Dual function value

Hyperplane Hµ, =
�
(u, w) | w + µ⇥u =

⇥


w

• Math formulation of max crossing prob-
lem: Focus on hyperplanes with normals (µ, 1)
whose crossing point ξ satisfies

ξ ⌥ w + µ�u,  (u, w) ⌘M

Max crossing problem is to maximize ξ subject to
ξ ⌥ inf(u,w)⌦M{w + µ�u}, µ ⌘ �n, or

maximize q(µ) =
↵

inf
(u,w)⌦M

{w + µ�u}

subject to µ n.⌘ �
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GENERIC PROPERTIES – WEAK DUALITY

• Min common problem

inf w
(0,w)⌦M

• Max crossing problem

maximize q(µ) =
↵

inf
(u,w)⌦M

{w + µ�u}

subject to µ n.⌘ �

u

w

M

M
(µ, 1)

(µ, 1)

q

q(µ) = inf
(u,w)⇤M

�
w + µ⇥u}

0

Dual function value

Hyperplane Hµ, =
�
(u, w) | w + µ⇥u =

⇥


w

• Note that q is concave and upper-semicontinuous
(inf of linear functions).

• Weak Duality: For all µ ⌘ �n

q(µ) = inf w + µ�u inf w = w⇤,
(u,w)⌦M

{ } ⌥
(0,w)⌦M

so maximizing over µ ⌘ �n, we obtain q⇤ ⌥ w⇤.

• We say that strong duality holds if q = w .⇤ ⇤
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CONNECTION TO CONJUGACY

• An important special case:

M = epi(p)

where p : �n → [−⇣,⇣]. Then w⇤ = p(0), and

q(µ) = inf {w+µ�u} = inf w+µ�u ,
(u,w)⌦epi(p) {(u,w)|p(u)⌅w}

{ }

and finally
q(µ) = inf p(u) + µ

u m

�u

◆

⌦�

⇤ ⌅

u0

M = epi(p)

w = p(0)

q = p(0)

p(u)(µ, 1)

q(µ) = p(µ)

• Thus, q(µ) = −p (−µ) and

q⇤ = sup q(µ) = sup 0 ( µ) p ( µ) = p  (0)
µ n µ n⌦� ⌦�

⇤
· − − −

⌅
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GENERAL OPTIMIZATION DUALITY

• Consider minimizing a function f : �n → [−⇣,⇣].

• Let F : �n+r → [−⇣,⇣] be a function with

f(x) = F (x, 0),  x ⌘ �n

• Consider the perturbation function

p(u) = inf F (x, u)
x⌦�n

and the MC/MC framework with M = epi(p)

• The min common value w⇤ is

w⇤ = p(0) = inf F (x, 0) = inf f(x)
x⌦�n x⌦�n

• The dual function is

q(µ) = inf p(u)+µ�u = inf F (x, u)+µ�u
u⌦�r

⇤ ⌅
(x,u)⌦�n+r

so q(µ) = −F  (0,−µ), where F  is the

⇤

conjugate

⌅

of F , viewed as a function of (x, u)

• We have

q⇤ = sup q(µ) =
µ⌦�r

− inf F  (0,
µ⌦�r

−µ) = − inf F  (0, µ),
µ⌦�r

and weak duality has the form

w⇤ = inf F (x, 0)
x⌦�n

≥ − inf F  (0, µ) = q
µ⌦�r

⇤

◆
◆
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CONSTRAINED OPTIMIZATION

• Minimize f : �n → � over the set

C =
⇤
x ⌘ X | g(x) ⌥ 0 ,

where X ⌦ �n and g : �n → �r.

⌅

• Introduce a “perturbed constraint set”

Cu =
⇤
x ⌘ X | g(x) ⌥ u

⌅
, u ⌘ �r,

and the function

f(x) if x C ,
F (x, u) =

�
⌘ u

⇣ otherwise,

which satisfies F (x, 0) = f(x) for all x ⌘ C.

• Consider perturbation function

p(u) = inf F (x, u) = inf f(x),
x⌦�n x⌦X, g(x)⌅u

and the MC/MC framework with M = epi(p).

◆

◆
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CONSTR. OPT. - PRIMAL AND DUAL FNS

• Perturbation function (or primal function)
p(u) = inf f(x),

x⌦X, g(x)⌅u

• Introduce L(x, µ) = f(x) + µ�g(x). Then

q(µ) = inf ) +
u⌥ 

⇤
p(u µ⇧u

r

= inf

⌅

f(x) + µ⇧u
r

�
u⌥ , x⌥X, g(x)⇤u

inf
= x⌥X L(x, µ)

⇤

if µ ⌥ 0,

⌅

−∞ otherwise.

0 u

�
(g(x), f(x)) | x  X

⇥

M = epi(p)

w = p(0)

p(u)

q
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LINEAR PROGRAMMING DUALITY

• Consider the linear program

minimize c�x

subject to a�jx ≥ bj , j = 1, . . . , r,

where c ⌘ �n, aj ⌘ �n, and bj ⌘ �, j = 1, . . . , r.

• For µ ≥ 0, the dual function has the form

q(µ) = inf L(x, µ)
x⌦�n

= inf
x⌦�n

◆
⌫

c�x +


⌧r

 µj(bj

j=1

− a�jx)
⇠

�
� if

�r
a == b µ jj=1 µj c,



−⇣ otherwise

• Thus the dual problem is

maximize b�µ
r

subject to
⌧

ajµj = c, µ .
j

≥ 0
=1
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LECTURE 9

LECTURE OUTLINE

• Minimax problems and zero-sum games

• Min Common / Max Crossing duality for min-
imax and zero-sum games

• Min Common / Max Crossing duality theorems

• Strong duality conditions

• Existence of dual optimal solutions

Reading: Sections 3.4, 4.3, 4.4, 5.1
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u
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w

M M

M

M

M

Min Common
Point w

Min Common
Point w

Min Common
Point w

Max Crossing
Point q

Max Crossing
Point q Max Crossing

Point q

(a) (b)

(c)
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REVIEW OF THE MC/MC FRAMEWORK

• Given set M ⌦ �n+1,

w w, =
↵⇤ = inf q⇤ = sup q(µ) inf {w+µ�u

(0,w)⌦M µ⌦�n (u,w)⌦M
}

• Weak Duality: q⇤ ⌥ w⇤

• Important special case: M = epi(p). Then
w⇤ = p(0), q⇤ = p  (0), so we have w⇤ = q⇤ if p
is closed, proper, convex.

• Some applications:

− Constrained optimization: minx⌦X, g(x)⌅0 f(x),
with p(u) = infx⌦X, g(x)⌅u f(x)

− Other optimization problems: Fenchel and
conic optimization

− Useful theorems related to optimization: Farkas’
lemma, theorems of the alternative

− Subgradient theory

− Minimax problems, 0-sum games

• Strong Duality: q⇤ = w⇤. Requires that
M have some convexity structure, among other
conditions
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MINIMAX PROBLEMS

Given φ : X ⇤ Z ◆→ �, where X ⌦ �n, Z ⌦ �m

consider
minimize sup φ(x, z)

z⌦Z

subject to x ⌘ X

or
maximize inf φ(x, z)

x⌦X

subject to z ⌘ Z.

• Some important contexts:

− Constrained optimization duality theory

− Zero sum game theory

• We always have

sup inf φ(x, z) inf
x Xz⌦Z ⌦

⌥ sup φ(x, z)
x⌦X z⌦Z

• Key question: When does equality hold?
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CONSTRAINED OPTIMIZATION DUALITY

• For the problem

minimize f(x)

subject to x ⌘ X, g(x) ⌥ 0

introduce the Lagrangian function

L(x, µ) = f(x) + µ�g(x)

• Primal problem (equivalent to the original)

f(x) if g(x) ⌥ 0,
min sup L(x, µ) =
x⌦X µ⇧0

◆
⌫

⇣ otherwise,

• Dual problem

max inf L(x, µ)
µ⇧0 x⌦X

• Key duality question: Is it true that

?
inf sup L(x, µ) = w⇤ q⇤ = sup inf L(x, µ)

x⌦�n
µ⇧0 = µ⇧ x0 ⌦�n
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ZERO SUM GAMES

• Two players: 1st chooses i ⌘ {1, . . . , n}, 2nd
chooses j ⌘ {1, . . . ,m}.
• If i and j are selected, the 1st player gives aij

to the 2nd.

• Mixed strategies are allowed: The two players
select probability distributions

x = (x1, . . . , xn), z = (z1, . . . , zm)

over their possible choices.

• Probability of (i, j) is xizj , so the expected
amount to be paid by the 1st player

x�Az =
⌧

aijxizj

i,j

where A is the n⇤m matrix with elements aij .

• Each player optimizes his choice against the
worst possible selection by the other player. So

− 1st player minimizes maxz x�Az

2nd player maximizes minx x�Az−
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SADDLE POINTS

Definition: (x⇤, z⇤) is called a saddle point of φ
if

φ(x⇤, z) ⌥ φ(x⇤, z⇤) ⌥ φ(x, z⇤),  x ⌘ X,  z ⌘ Z

Proposition: (x⇤, z⇤) is a saddle point if and only
if the minimax equality holds and

x⇥ ⌃ arg min sup ⌅(x, z), z⇥ ⌃ arg max inf ⌅(x, z) (*)
x⌥X z⌥ zZ ⌥Z x⌥X

Proof: If (x⇤, z⇤) is a saddle point, then

inf sup ⌅(x, z) ⇤ sup ⌅(x⇥, z) = ⌅(x⇥, z⇥)
x⌥X z⌥Z z⌥Z

= inf ⌅(x, z⇥) ⇤ sup inf ⌅(x, z)
x⌥X x Xz⌥Z ⌥

By the minimax inequality, the above holds as an
equality throughout, so the minimax equality and
Eq. (*) hold.

Conversely, if Eq. (*) holds, then

sup inf ⌅(x, z) = inf ⌅(x, z⇥) ⌅(x⇥, z⇥)
x X x Xz Z

⇤
⌥ ⌥ ⌥

⇤ sup ⌅(x⇥, z) = inf sup ⌅(x, z)
xz⌥Z ⌥X z⌥Z

Using the minimax equ., (x⇤, z⇤) is a saddle point.
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VISUALIZATION

x

z

Curve of maxima

Curve of minima

f (x,z)

Saddle point
(x*,z*)

^f (x(z),z)

f (x,z(x))^

The curve of maxima f(x, ẑ(x)) lies above the
curve of minima f(x̂(z), z), where

ẑ(x) = arg max f(x, z), x̂(z) = arg min f(x, z)
z x

Saddle points correspond to points where these
two curves meet.
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MINIMAX MC/MC FRAMEWORK

• Introduce perturbation function p : �m →
[−⇣,⇣]

p(u) = inf sup φ(x, z) u�z , u m

x⌦X z⌦Z

⇤
−

⌅
⌘ �

• Apply the MC/MC framework with M = epi(p).
If p is convex, closed, and proper, no duality gap.

• Introduce cl̂φ, the concave closure of φ viewed
as a function of z for fixed x

• We have

sup φ(x, z) = sup (cl̂φ)(x, z),

so
z⌦Z z⌦�m

w⇤ = p(0) = inf sup (cl̂φ)(x, z).
x⌦X z⌦�m

• The dual function can be shown to be

q(µ) = inf (cl̂φ)(x, µ),
x⌦X

 µ ⌘ �m

so if φ(x, ·) is concave and closed,

w⇤ = inf sup φ(x, z), q⇤ = sup inf φ(x, z)
x⌦X z⌦�m z⌦�m x⌦X

◆
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PROOF OF FORM OF DUAL FUNCTION

• Write p(u) = inf p
x⌦ xX

(u), where

px(u) = sup
⇤
φ(x, z)− u�z

⌅
, x ⌘ X,

z⌦Z

and note that

inf
⇤
px(u)+u⇧µ

⌅
= − sup

⇤
u⇧(−µ)−p )

⌅
= −p⌥

x(u x(
u⌥ m

u⌥ m
−µ)

Except for a sign change, px is the conjugate of
(−φ)(x, ·) [assuming ( ˆ−clφ)(x, ·) is proper], so

p x( cl̂−µ) = −( φ)(x, µ).

Hence, for all µ ⌘ �m,

q(µ) = inf
⇤
p(u) + u

u⌦�m

�µ

= inf inf px(u) +

⌅

u µ
u⌦�m

inf

⇤
�

x⌦X

= inf px(u) + u

⌅

x⌦X u⌦�m

�µ

= inf p

⇤ ⌅

x⌦X

⇤
−  

x(−µ)

= inf (cl̂φ)(x, µ)

⌅

x X⌦
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DUALITY THEOREMS

• Assume that w⇤ < ⇣ and that the set

M =
⇤

(u, w) | there exists w with w ⇤ w and (u, w) ⌃ M

is convex.

⌅

• Min Common/Max Crossing Theorem I:

⇤We have q⇤ = w⇤ if and only if for every sequence
(uk, wk)

⌅
⌦ M with uk → 0, there holds

w⇤ ⌥ lim inf wk.
k⌃ 

u

w

M

M

0

(uk, wk)

(uk+1, wk+1)w∗ = q∗

�
(uk, wk)

⇥
⇤ M, uk ⌅ 0, w∗ ⇥ lim inf

k⇥⌅
wk

w

u

w

M

M

0

(uk, wk)

(uk+1, wk+1)
q∗

�
(uk, wk)

⇥
⇤ M, uk ⌅ 0, w∗ > lim inf

k⇥⌅
wk

• Corollary: If M = epi(p) where p is closed
proper convex and p(0) < ⇣, then q⇤ = w⇤.
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DUALITY THEOREMS (CONTINUED)

• Min Common/Max Crossing Theorem II:
Assume in addition that −⇣ < w⇤ and that

D =
⇤
u | there exists w ⌘ � with (u,w) ⌘ M}

contains the origin in its relative interior. Then
q⇤ = w⇤ and there exists µ such that q(µ) = q⇤.

D

u

w

M

M

0

w∗ = q∗

D

w

u

w

M

M

0

q∗

(µ, 1)

• Furthermore, the set {µ | q(µ) = q⇤} is nonempty
and compact if and only if D contains the origin
in its interior.

• Min Common/Max Crossing Theorem
III: Involves polyhedral assumptions, and will be
developed later.
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PROOF OF THEOREM I

• Assume that q⇤ = w⇤. Let
⇤
(uk, wk)

⌅
⌦ M be

such that uk → 0. Then,

q(µ) = inf u
(u,w)⌦

{w+µ�
M

} ⌥ wk+µ�uk,  k,  µ ⌘ �n

Taking the limit as k → ⇣, we obtain q(µ) ⌥
lim infk w⌃ k, for all µ ⌘ �n, implying that

w⇤ = q⇤ = sup q(µ)
µ⌦�n

⌥ lim inf wk
k⌃ 

⇤ Con⌅versely, assume that for every sequence
(uk, wk) ⌦ M with uk → 0, there holds w⇤ ⌥

lim infk w⌃ k. If w⇤ = −⇣, then q⇤ = −⇣, by
weak duality, so assume that −⇣ < w⇤. Steps:

• Step 1: (0, w⇤ − ⇧) ⌘/ cl(M) for any ⇧ > 0.

w

u

w

M

M

0

(uk, wk)

(uk+1, wk+1)

w∗ − ⇥ (uk, wk)

(uk+1, wk+1)
lim inf
k⇥⇤

wk
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PROOF OF THEOREM I (CONTINUED)

• Step 2: M does not contain any vertical lines.
If this were not so, (0,−1) would be a direction
of recession of cl(M⇤ ). Because (0, w⌅⇤) ⌘ cl(M),
the entire halfline (0, w⇤ − ⇧) | ⇧ ≥ 0 belongs to
cl(M), contradicting Step 1.

• Step 3: For any ⇧ > 0, since (0, w⇤−⇧) ⌘/ cl(M),
there exists a nonvertical hyperplane strictly sepa-
rating (0, w⇤− ⇧) and M . This hyperplane crosses
the (n + 1)st axis at a vector (0, ξ) with w⇤ − ⇧ ⌥
ξ ⌥ w⇤, so w⇤ − ⇧ ⌥ q⇤ ⌥ w⇤. Since ⇧ can be
arbitrarily small, it follows that q⇤ = w⇤.

u

w

M

M

0

(0, w∗ − ⇥)

(0, w∗)

(µ, 1)

q(µ)

Hyperplane
Strictly Separating

(0, ⇤)
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PROOF OF THEOREM II

• Note that (0, w⇤) is not a relative interior point
of M . Therefore, by the Proper Separation The-
orem, there is a hyperplane that passes through
(0, w⇤), contains M in one of its closed halfspaces,
but does not fully contain M , i.e., for some (µ,⇥) =
(0, 0)

⇥w⇤ ⌥ µ�u + ⇥w,  (u, w) ⌘M,

⇥w⇤ < sup {µ�u + ⇥w
(u,w)⌦M

}

Will show that the hyperplane is nonvertical.

• Since for⇤ any (u, w) ⌘⌅M , the set M contains the
halfline (u,w) | w ⌥ w , it follows that ⇥ ≥ 0. If
⇥ = 0, then 0 ⌥ µ�u for all u ⌘ D. Since 0 ⌘ ri(D)
by assumption, we must have µ�u = 0 for all u ⌘ D
a contradiction. Therefore, ⇥ > 0, and we can
assume that ⇥ = 1. It follows that

w⇤ ⌥ inf {µ�u + w} = q(µ) q
(u,w)⌦M

⌥ ⇤

Since the inequality q⇤ ⌥ w⇤ holds always, we
must have q(µ) = q⇤ = w⇤.

✓
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NONLINEAR FARKAS’ LEMMA

• Let X ⌦ �n, f : X ◆→ �, and gj : X ◆→ �,
j = 1, . . . , r, be convex. Assume that

f(x) ≥ 0,  x ⌘ X with g(x) ⌥ 0

Let

Q⇤ =
⇤
µ | µ ≥ 0, f(x) + µ�g(x) ≥ 0,  x ⌘ X .

Then Q⇤ is nonempty and compact if and only

⌅

if
there exists a vector x ⌘ X such that gj(x) < 0
for all j = 1, . . . , r.

0
(µ, 1)

(b)

0}0

(c)

0
(µ, 1)

(a)

�
(g(x), f(x)) | x ⌅ X

⇥ �
(g(x), f(x)) | x ⌅ X

⇥ �
(g(x), f(x)) | x ⌅ X

⇥

�
g(x), f(x)

⇥

• The lemma asserts the existence of a nonverti-
cal hyperplane in �r+1, with normal (µ, 1), that
passes through the origin and contains the set

⇤�
g(x), f(x)

⇥
| x ⌘ X

in its positive halfspace.

⌅
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PROOF OF NONLINEAR FARKAS’ LEMMA

• Apply MC/MC to

M = (u, w) | there is x ✏ X s. t. g(x) ⌃ u, f(x) ⌃ w
⇤ ⌅

(µ, 1)

0 u

w

(0, w∗)

D

such that g(x) ⇥ u, f(x) ⇥ w
⌅

�
(g(x), f(x)) | x ⌅ X

⇥

M =
{
(u, w) | there exists x ⌅ X

�
g(x), f(x)

⇥

• M is equal to M and is formed as the union of
positive orthants translated to points

�
g(x), f(x)

⇥
,

x ⌘ X.

• The convexity of X, f , and gj implies convexity
of M .

• MC/MC Theorem II applies: we have

D =
⇤
u | there exists w ⌘ � with (u,w) ⌘ M

and 0 int(D), because g(x), f(x) M .

⌅

⌘
� ⇥

⌘
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LECTURE 10

LECTURE OUTLINE

• Min Common/Max Crossing Th. III

• Nonlinear Farkas Lemma/Linear Constraints

• Linear Programming Duality

• Convex Programming Duality

• Optimality Conditions

Reading: Sections 4.5, 5.1,5.2, 5.3.1, 5.3.2

Recall the MC/MC Theorem II: If −⇣ < w⇤

and

0 ⌘ ri(D) =
⇤
u | there exists w ⌘ � with (u,w) ⌘M}

then q⇤ = w⇤ and there exists µ s. t. q(µ) = q⇤.

D

u

w

M

M

0

w∗ = q∗

D

w

u

w

M

M

0

q∗

(µ, 1)
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MC/MC TH. III - POLYHEDRAL

• Consider the MC/MC problems, and assume
that −⇣ < w⇤ and:

(1) M is a “horizontal translation” of M̃ by −P ,

M = M̃ −
⇤
(u, 0) | u ⌘ P

⌅
,

where P : polyhedral and M̃ : convex.

0 u

M̃

w

u0

w∗

w

(µ, 1)

q(µ)

u0

w

M = M̃ −
⇤
(u, 0) | u ⇧ P

⌅

P

(2) We have ri(D̃) ⌫ P = Ø, where

D̃ =
⇤
u | there exists w ⌘ � with (u,w) ˜⌘M}

Then q⇤ = w⇤, there is a max crossing solution,
and all max crossing solutions µ satisfy µ�d ⌥ 0
for all d ⌘ RP .

• Comparison with Th. II: Since D = D̃−P ,
the condition 0 ⌘ ri(D) of Theorem II is

ri(D̃) ri(P ) = Ø

✓

⌫ ✓
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PROOF OF MC/MC TH. III

• Consider the disjoint conv⌅ex sets C1 = (u, v) |
v > w for some (u,w) ˜

⌅ ⌘ M and C2 = (u, w⇤) |
u ⌘ P [u ⌘ P and (u,w) ˜

⇤

⌘ M with

⇤

w⇤ > w
contradicts the definition of w⇤]

(µ, )

0} u

v

C1

C2

M̃

w

P

• Since C2 is polyhedral, there exists a separat-
ing hyperplane not containing C1, i.e., a (µ,⇥) =
(0, 0) such that

⇥w⇤ + µ�z ⌥ ⇥v + µ�x,  (x, v) ⌘ C1,  z ⌘ P

inf
(x,v)⌦C1

Since (0, 1) is

⇤
⇥v + µ�x

⌅
< sup ⇥v + µ�x

(x,v)⌦C1

a direction of recession

⇤

of C

⌅

1, we see
that ⇥ ≥ 0. Because of the relative interior point
assumption, ⇥ = 0, so we may assume that ⇥ = 1.

✓

✓
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PROOF (CONTINUED)

• Hence,

w⇤ + µ�z ⌥ inf {v + µ�u},  z P,
(u,v)⌦C1

⌘

so that

w⇤ ⌥ inf v + µ�(u z)
(u,v)⌦C1, z⌦P

⇤
−

= inf

⌅

(u,v)⌦M̃−P
{v + µ�u}

= inf {v + µ�u
(u,v)⌦M

}

= q(µ)

Using q⇤ ⌥ w⇤ (weak duality), we have q(µ) =
q⇤ = w⇤.

Proof that all max crossing solutions µ sat-
isfy µ�d ⌥ 0 for all d ⌘ RP : follows from

q(µ) = inf v + µ�(u z)
(u,v)⌦C1, z⌦P

⇤
−

⌅

so that q(µ) = −⇣ if µ�d > 0. Q.E.D.

• Geometrical intuition: every (0,−d) with d ⌘
RP , is direction of recession of M .
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MC/MC TH. III - A SPECIAL CASE

• Consider the MC/MC framework, and assume:

(1) For a convex function f : �m → (−⇣,⇣],
an r ⇤m matrix A, and a vector b ⌘ �r:

M =
⇤
(u, w) | for some (x, w) ✏ epi(f), Ax− b ⌃ u

so M = M̃ + Positive Orthant, where

⌅

M̃ = (Ax− b, w) | (x,w) ⌘ epi(f)

◆

⇤ ⌅

0} x

epi(f)

w

0} u

M̃

w⇥

w

u0}

w⇥

(µ, 1)

q(µ)

Ax ⇥ b

(x⇥, w⇥) (x,w) ⇧⌅ (Ax − b, w)

p(u) = inf
Ax−b⇤u

f(x)

�
(u,w) | p(u) < w

⇥
⇤ M ⇤ epi(p)

M

(2) There is an x ⌘ ri(dom(f)) s. t. Ax− b ⌥ 0.

Then q⇤ = w⇤ and there is a µ ≥ 0 with q(µ) = q⇤.

• Also M = M  epi(p), where p(u) = infAx b u f(x).− ⌅

We have w⇤ = p(0) = infAx−b 0 f(x).⌅•
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NONL. FARKAS’ L. - POLYHEDRAL ASSUM.

• Let X ⌦ �n be convex, and f : X ◆→ � and gj :
�n → �, j = 1, . . . , r, be linear so g(x) = Ax− b
for some A and b. Assume that

f(x) ≥ 0,  x ⌘ X with Ax− b ⌥ 0

Let

Q⇤ =
⇤
µ | µ ≥ 0, f(x)+µ�(Ax−b) ≥ 0,  x ⌘ X .

Assume that there exists a vector x

⌅

⌘ ri(X) such
that Ax− b ⌥ 0. Then Q⇤ is nonempty.

Proof: As before, apply special case of MC/MC
Th. III of preceding slide, using the fact w⇤ ≥ 0,
implied by the assumption.

◆

(µ, 1)

0 u

w

(0, w∗)

D

⇤
(Ax − b, f(x)) | x ⌅ X

⌅

M =
⇤
(u, w) | Ax − b ⇥ u, for some (x,w) ⌅ epi(f)

⌅
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(LINEAR) FARKAS’ LEMMA

• Let A be an m ⇤ n matrix and c ⌘ �m. The
system Ay = c, y ≥ 0 has a solution if and only if

A�x ⌥ 0 ✏ c�x ⌥ 0. (⌅)

• Alternative/Equivalent Statement: If P =
cone{a1, . . . , an}, where a1, . . . , an are the columns
of A, then P = (P ⇤)⇤ (Polar Cone Theorem).

Proof: If y ⌘ �n is such that Ay = c, y
m

≥ 0, then
y�A�x = c�x for all x ⌘ � , which implies Eq. (*).

Conversely, apply the Nonlinear Farkas’ Lemma
with f(x) = −c�x, g(x) = A�x, and X = �m.
Condition (*) implies the existence of µ ≥ 0 such
that

−c�x + µ�A�x ≥ 0,  x ⌘ �m,

or equivalently

(Aµ− c)�x ≥ 0,  x ⌘ �m,

or Aµ = c.
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LINEAR PROGRAMMING DUALITY

• Consider the linear program

minimize c�x

subject to a�jx ≥ bj , j = 1, . . . , r,

where c ⌘ �n, aj ⌘ �n, and bj ⌘ �, j = 1, . . . , r.

• The dual problem is

maximize b�µ
r

subject to
⌧

ajµj = c, µ 0.
j=1

≥

• Linear Programming Duality Theorem:

(a) If either f⇤ or q⇤ is finite, then f⇤ = q⇤ and
both the primal and the dual problem have
optimal solutions.

(b) If f⇤ = −⇣, then q⇤ = −⇣.

(c) If q⇤ = ⇣, then f⇤ = ⇣.

Proof: (b) and (c) follow from weak duality. For
part (a): If f⇤ is finite, there is a primal optimal
solution x⇤, by existence of solutions of quadratic
programs. Use Farkas’ Lemma to construct a dual
feasible µ⇤ such that c�x⇤ = b�µ⇤ (next slide).
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PROOF OF LP DUALITY (CONTINUED)

Feasible Set

x

a1
a2

c = µ
1a1 + µ

2a2

Cone D (translated to x)

• Let x⇤ be a primal optimal solution, and let
J = {j | a�jx

⇤ = bj}. Then, c�y ≥ 0 for all y in the
cone of “feasible directions”

D = {y | a�jy ≥ 0,  j ⌘ J}

By Farkas’ Lemma, for some scalars µ⇤j ≥ 0, c can
be expressed as

r

c =
⌧

µ⇤jaj , µ⇤j ≥ 0,  j ⌘ J, µ⇤j = 0,
j=1

 j /⌘ J.

Taking inner product with x⇤, we obtain c�x⇤ =
b�µ⇤, which in view of q⇤ ⌥ f⇤, shows that q⇤ = f⇤

and that µ⇤ is optimal.
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LINEAR PROGRAMMING OPT. CONDITIONS

A pair of vectors (x⇤, µ⇤) form a primal and dual
optimal solution pair if and only if x⇤ is primal-
feasible, µ⇤ is dual-feasible, and

µ⇤j (bj − a�jx
⇤) = 0,  j = 1, . . . , r. (⌅)

Proof: If x⇤ is primal-feasible and µ⇤ is dual-
feasible, then

r

b�µ⇤ =
⌧ r

�

bjµ⇤j +

⌘

⇡c
=1

−
⌧

ajµ⇤j
j j=1

✓

⇢ x⇤

( )
r

⌅⌅

= c�x⇤ +
⌧

µ⇤j (bj a�jx
⇤)

j=1

−

So if Eq. (*) holds, we have b�µ⇤ = c�x⇤, and weak
duality implies that x⇤ is primal optimal and µ⇤

is dual optimal.
Conversely, if (x⇤, µ⇤) form a primal and dual

optimal solution pair, then x⇤ is primal-feasible,
µ⇤ is dual-feasible, and by the duality theorem, we
have b�µ⇤ = c�x⇤. From Eq. (**), we obtain Eq.
(*).
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CONVEX PROGRAMMING

Consider the problem

minimize f(x)

subject to x ⌘ X, gj(x) ⌥ 0, j = 1, . . . , r,

where X ⌦ �n is convex, and f : X ◆→ � and
gj : X ◆→ � are convex. Assume f⇤: finite.

• Recall the connection with the max crossing
problem in the MC/MC framework where M =
epi(p) with

p(u) = inf f(x)
x⌦X, g(x)⌅u

• Consider the Lagrangian function

L(x, µ) = f(x) + µ�g(x),

the dual function

inf ( ) if 0,
q( L

µ) =
�

x⌦X x, µ µ ≥
−⇣ otherwise

and the dual problem of maximizing infx⌦X L(x, µ)
over µ 0.≥
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STRONG DUALITY THEOREM

• Assume that f⇤ is finite, and that one of the
following two conditions holds:

(1) There exists x ⌘ X such that g(x) < 0.

(2) The functions gj , j = 1, . . . , r, are a⌅ne, and
there exists x ⌘ ri(X) such that g(x) ⌥ 0.

Then q⇤ = f⇤ and the set of optimal solutions of
the dual problem is nonempty. Under condition
(1) this set is also compact.

• Proof: Replace f(x) by f(x) − f⇤ so that
f(x) − f⇤ ≥ 0 for all x ⌘ X w/ g(x) ⌥ 0. Ap-
ply Nonlinear Farkas’ Lemma. Then, there exist
µ⇤j ≥ 0, s.t.

r

f⇤ ⌥ f(x) +
⌧

µ⇤jgj(x),
j=1

 x ⌘ X

• It follows that

f⇤ ⌥ inf
⇤
f(x)+µ⇤�g(x)

x⌦X

⌅
⌥ inf f(x) = f⇤.

x⌦X, g(x)⌅0

Thus equality
◆
holds throughout, and we have

r

f⇤ = inf f(x) + µ⇤jgj(x)
x X



= q(µ⇤)
⌦

⌫


⌧

j=1

⇠


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QUADRATIC PROGRAMMING DUALITY

• Consider the quadratic program

minimize 1
2x
�Qx + c�x

subject to Ax ⌥ b,

where Q is positive definite.

• If f⇤ is finite, then f⇤ = q⇤ and there exist
both primal and dual optimal solutions, since the
constraints are linear.

• Calculation of dual function:

q(µ) = inf
x⌦�n

{ 1
2x
�Qx + c�x + µ�(Ax− b)}

The infimum is attained for x = −Q−1(c + A�µ),
and, after substitution and calculation,

q(µ) = − 1µ�AQ−1A�µ−µ�(b+AQ−1c)− 1c�Q−1
2 2 c

• The dual problem, after a sign change, is

minimize 1
2µ
�Pµ + t�µ

subject to µ ≥ 0,

where P = AQ−1A� and t = b + AQ−1c.
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OPTIMALITY CONDITIONS

• We have q⇤ = f⇤, and the vectors x⇤ and µ⇤ are
optimal solutions of the primal and dual problems,
respectively, iff x⇤ is feasible, µ⇤ ≥ 0, and

x⇤ ⌘ arg min L(x, µ⇤), µ⇤jgj(x⇤) = 0, j.
x⌦X


(1)

Proof: If q⇤ = f⇤, and x⇤, µ⇤ are optimal, then

f⇤ = q⇤ = q(µ⇤) = inf L(x, µ⇤)
x⌦X

⌥ L(x⇤, µ⇤)

r

= f(x⇤) +
⌧

µ⇤jgj(x⇤) f(x⇤),
j=1

⌥

where the last inequality follows from µ⇤j ≥ 0 and
gj(x⇤) ⌥ 0 for all j. Hence equality holds through-
out above, and (1) holds.

Conversely, if x⇤, µ⇤ are feasible, and (1) holds,

q(µ⇤) = inf L(x, µ⇤) = L(x⇤, µ⇤)
x⌦X

r

= f(x⇤) +
⌧

µ⇤jgj(x⇤) = f(x⇤),
j=1

so q⇤ = f⇤, and x⇤, µ⇤ are optimal. Q.E.D.
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QUADRATIC PROGRAMMING OPT. COND.

For the quadratic program

minimize 1
2x
�Qx + c�x

subject to Ax ⌥ b,

where Q is positive definite, (x⇤, µ⇤) is a primal
and dual optimal solution pair if and only if:

• Primal and dual feasibility holds:

Ax⇤ ⌥ b, µ⇤ ≥ 0

• Lagrangian optimality holds [x⇤ minimizes L(x, µ⇤)
over x ⌘ �n]. This yields

x⇤ = −Q−1(c + A�µ⇤)

• Complementary slackness holds [(Ax⇤−b)�µ⇤ =
0]. It can be written as

µ⇤j > 0 ✏ a�jx
⇤ = bj ,  j = 1, . . . , r,

where a�j is the jth row of A, and bj is the jth
component of b.
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LINEAR EQUALITY CONSTRAINTS

• The problem is

minimize f(x)

subject to x ⌘ X, g(x) ⌥ 0, Ax = b,

where X is convex, g(x) =
�
g1(x), . . . , gr(x)

,

⇥�
, f :

X ◆→ � and gj : X ◆→ � j = 1, . . . , r, are convex.

• Convert the constraint Ax = b to Ax ⌥ b
and −Ax ⌥ −b, with corresponding dual variables
⌃+ ≥ 0 and ⌃− ≥ 0.

• The Lagrangian function is

f(x) + µ�g(x) + (⌃+ − ⌃−)�(Ax− b),

and by introducing a dual variable ⌃ = ⌃+ − ⌃−,
with no sign restriction, it can be written as

L(x, µ,⌃) = f(x) + µ�g(x) + ⌃�(Ax− b).

• The dual problem is

maximize q(µ,⌃) ⌃ inf L(x, µ,⌃)
x⌦X

subject to µ ≥ 0, ⌃ ⌘ �m.
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DUALITY AND OPTIMALITY COND.

• Pure equality constraints:

(a) Assume that f⇤: finite and there exists x ⌘
ri(X) such that Ax = b. Then f⇤ = q⇤ and
there exists a dual optimal solution.

(b) f⇤ = q⇤, and (x⇤,⌃⇤) are a primal and dual
optimal solution pair if and only if x⇤ is fea-
sible, and

x⇤ ⌘ arg min L(x,⌃⇤)
x⌦X

Note: No complementary slackness for equality
constraints.

• Linear and nonlinear constraints:

(a) Assume f⇤: finite, that there exists x ⌘ X
such that Ax = b and g(x) < 0, and that
there exists x̃ ⌘ ri(X) such that Ax̃ = b.
Then q⇤ = f⇤ and there exists a dual optimal
solution.

(b) f⇤ = q⇤, and (x⇤, µ⇤,⌃⇤) are a primal and
dual optimal solution pair if and only if x⇤

is feasible, µ⇤ ≥ 0, and

x⇤ ⌘ arg min L(x, µ⇤,⌃⇤), µ⇤jgj(x⇤) = 0,
x⌦X

 j
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LECTURE 11

LECTURE OUTLINE

• Review of convex progr. duality/counterexamples

• Fenchel Duality

• Conic Duality

Reading: Sections 5.3.1-5.3.6

Line of analysis so far:

• Convex analysis (rel. int., dir. of recession, hy-
perplanes, conjugacy)

• MC/MC - Three general theorems: Strong dual-
ity, existence of dual optimal solutions, polyhedral
refinements

• Nonlinear Farkas’ Lemma

• Linear programming (duality, opt. conditions)

• Convex programming

minimize f(x)

subject to x ⌘ X, g(x) ⌥ 0, Ax = b,

where X is convex, g(x) =
�
g1(x), . . . , gr(x)

�
, f :

X ◆→ � and gj : X ◆→ �, j = 1, . . . , r, are con

⇥

vex.
(Nonlin. Farkas’ Lemma, duality, opt. conditions)
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DUALITY AND OPTIMALITY COND.

• Pure equality constraints:

(a) Assume that f⇤: finite and there exists x ⌘
ri(X) such that Ax = b. Then f⇤ = q⇤ and
there exists a dual optimal solution.

(b) f⇤ = q⇤, and (x⇤,⌃⇤) are a primal and dual
optimal solution pair if and only if x⇤ is fea-
sible, and

x⇤ ⌘ arg min L(x,⌃⇤)
x⌦X

Note: No complementary slackness for equality
constraints.

• Linear and nonlinear constraints:

(a) Assume f⇤: finite, that there exists x ⌘ X
such that Ax = b and g(x) < 0, and that
there exists x̃ ⌘ ri(X) such that Ax̃ = b.
Then q⇤ = f⇤ and there exists a dual optimal
solution.

(b) f⇤ = q⇤, and (x⇤, µ⇤,⌃⇤) are a primal and
dual optimal solution pair if and only if x⇤

is feasible, µ⇤ ≥ 0, and

x⇤ arg min L(x, µ⇤,⌃⇤), µ⇤jgj(x⇤) = 0, j
x X

⌘
⌦


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COUNTEREXAMPLE I

• Strong Duality Counterexample: Consider


minimize f(x) = e− x1x2

subject to x1 = 0, x ⌘ X = {x | x ≥ 0}

Here f⇤ = 1 and f is convex (its Hessian is > 0 in
the interior of X). The dual function is

 0 if ⌃ 0,
q(⌃) = inf

0

⇤
e− x1x2 + ⌃x1

x⇧

⌅
=
�

≥
−⇣ otherwise,

(when ⌃ ≥ 0, the expression in braces is nonneg-
ative for x ≥ 0 and can approach zero by taking
x1 → 0 and x1x2 →⇣). Thus q⇤ = 0.

• The relative interior assumption is violated.

• As predicted by the corresponding MC/MC
framework, the perturbation function

0 if u > 0,
p(u) = inf e− x1x2 =

x1=u, x⇧0

✏
1 if u = 0,
⇣ if u < 0,

is not lower semicontinuous at u = 0.
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COUNTEREXAMPLE VISUALIZATION

0
5

10
15

20 0
5

10
15

200

0.2

0.4

0.6

0.8

1

p(u) = inf
x1=u, x⇤0

e−
√

x1x2 =

⇤ 0 if u > 0,
1 if u = 0,
⇧ if u < 0,

e−
√

x1x2

x2
x1 = u

• Connection with counterexample for preserva-
tion of closedness under partial minimization.
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COUNTEREXAMPLE II

• Existence of Solutions Counterexample:
Let X = �, f(x) = x, g(x) = x2. Then x⇤ = 0 is
the only feasible/optimal solution, and we have

1
q(µ) = inf

x⌦�
{x + µx2} = − ,

4µ
 µ > 0,

and q(µ) = −⇣ for µ ⌥ 0, so that q⇤ = f⇤ = 0.
However, there is no µ⇤ ≥ 0 such that q(µ⇤) =
q⇤ = 0.

• The perturbation function is

� ⌧
− u if up(u) = inf x =

x2 u

≥ 0,
⇣ if u < 0.⌅

u

p(u)

0

epi(p)
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FENCHEL DUALITY FRAMEWORK

• Consider the problem

minimize f1(x) + f2(x)

subject to x ⌘ �n,

where f1 : �n → (−⇣,⇣] and f2 : �n → (−⇣,⇣]
are closed proper convex functions.

• Convert to the equivalent problem

minimize f1(x1) + f2(x2)

subject to x1 = x2, x1 ⌘ dom(f1), x2 ⌘ dom(f2)

• The dual function is

q(⌥) = inf f
1

(x
1

) + f
2

(x
2

) + ⌥⇧(x
2

x
1

)
x1⌥dom(

⇤
f1), x2⌥dom(f2)

⇤
−

= inf f
1

(x
1

)− ⌥⇧x
1

⌅
+ inf f

x1⌥ n x2⌥ n

⇤
2

(x
2

) + ⌥⇧x
2

• Dual problem: max {−f (⌃) − f =

⌅

⌅ 1 2 (−⌃)}
−min⌅{−q(⌃)} or

minimize f 
1 (⌃) + f 

2 (−⌃)

subject to ⌃ ⌘ �n,

where f 
1 and f 

2 are the conjugates.

◆ ◆
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FENCHEL DUALITY THEOREM

• Consider the Fenchel framework:

(a) If f⇤ is finite and ri
�
dom(f1)

⇥
⌫ri

Ø

�
dom(f2)

⇥
=

, then f⇤ = q⇤ and there exists at least one
dual optimal solution.

(b) There holds f⇤ = q⇤, and (x⇤,⌃⇤) is a primal
and dual optimal solution pair if and only if

x⇥ ✏ arg min f
1

(x) x⇧⌥⇥ , x⇥ arg min f
2

(x)+x⇧⌥⇥
x⌥ n

⇤
−

⌅
✏

x⌥ n

⇤ ⌅

Proof: For strong duality use the equality con-
strained problem

minimize f1(x1) + f2(x2)

subject to x1 = x2, x1 ⌘ dom(f1), x2 ⌘ dom(f2)

and the fact

ri
�
dom(f1)⇤dom(f2)

⇥
= ri

�
dom(f1)

⇥
⇤
�
dom(f2)

to satisfy the relative interior condition.

⇥

For part (b), apply the optimality conditions
(primal and dual feasibility, and Lagrangian opti-
mality).

✓
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GEOMETRIC INTERPRETATION

Slope

Slope

x x

f1(x)

f2(x)

q()

f = q

f
1 ()

f
2 ()

• When dom(f1) = dom(f2) = �n, and f1 and
f2 are differentiable, the optimality condition is
equivalent to

⌃⇤ = ∇f1(x⇤) = −∇f2(x⇤)

• By reversing the roles of the (symmetric) primal
and dual problems, we obtain alternative criteria
for strong duality: if q⇤ is finite and ri

�
dom(f 

1 )
⇥

�
 
⇥ ⌫

ri −dom(f2 ) = Ø, then f⇤ = q⇤ and there exists
at least one primal optimal solution.

✓
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CONIC PROBLEMS

• A conic problem is to minimize a convex func-
tion f : �n → (−⇣,⇣] subject to a cone con-
straint.

• The most useful/popular special cases:

− Linear-conic programming

− Second order cone programming

− Semidefinite programming

involve minimization of a linear function over the
intersection of an a⌅ne set and a cone.

• Can be analyzed as a special case of Fenchel
duality.

• There are many interesting applications of conic
problems, including in discrete optimization.

◆

153



CONIC DUALITY

• Consider minimizing f(x) over x ⌘ C, where f :
�n → (−⇣,⇣] is a closed proper convex function
and C is a closed convex cone in �n.

• We apply Fenchel duality with the definitions

f1(x) = f(x), f2(x) =
�

0 if x ⌘ C,
⇣ if x ⌘/ C.

The conjugates are

f⌥(⇤) = sup
⇤

⇤⇧x−f(x)
⌅

, f⌥ 0
1 2

(⇤) = sup ⇤⇧x =
n

�
if ⇤ ⌃ C⇥,

⇧ if ⇤ ⌃/ C ,x
⇥

⌥ x⌥C

where C⇤ = {⌃ | ⌃�x ⌥ 0,  x ⌘ C}.
• The dual problem is

minimize f (⌃)

subject to ⌃ ˆ⌘ C,

where f is the conjugate of f and

Ĉ = {⌃ | ⌃�x ≥ 0,  x ⌘ C}.

Ĉ and ˆ−C are called the dual and polar cones.

◆
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CONIC DUALITY THEOREM

• Assume that the optimal value of the primal
conic problem is finite, and that

ri
�
dom(f)

Then, there is no dualit

⇥
⌫ ri(C) = Ø.

y gap and the dual problem
has an optimal solution.

• Using the symmetry of the primal and dual
problems, we also obtain that there is no duality
gap and the primal problem has an optimal solu-
tion if the optimal value of the dual conic problem
is finite, and

ri
�
dom(f )

⇥
⌫ ri(Ĉ) = Ø.

✓

✓
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LINEAR CONIC PROGRAMMING

• Let f be linear over its domain, i.e.,

�
c�x if x ⌘ X,

f(x) = ⇣ if x ⌘/ X,

where c is a vector, and X = b+S is an a⌅ne set.

• Primal problem is

minimize c�x

subject to x− b ⌘ S, x ⌘ C.

• We have

f (⌃) = sup (⌃ c)�x = sup(⌃ c)�(y + b)
x�−b⌦S

−
y S

−
⌦

(⌃− c)�b if ⌃− c ⌘ S⊥,= ⇣ if ⌃− c /⌘ S.

• Dual problem is equivalent to

minimize b�⌃

subject to ⌃ c S , ⌃ C.ˆ− ⌘ ⊥ ⌘

• If X ⌫ ri(C) = Ø, there is no duality gap an
there exists a dual optimal solution.

d
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ANOTHER APPROACH TO DUALITY

• Consider the problem

minimize f(x)

subject to x ⌘ X, gj(x) ⌥ 0, j = 1, . . . , r

and perturbation fn p(u) = infx⌦X, g(x) f⌅u (x)

• Recall the MC/MC framework with M = epi(p).
Assuming that p is convex and f⇤ < ⇣, by 1st
MC/MC theorem, we have f⇤ = q⇤ if and only if
p is lower semicontinuous at 0.

• Duality Theorem: Assume that X, f , and gj

are closed convex, and the feasible set is nonempty
and compact. Then f⇤ = q⇤ and the set of optimal
primal solutions is nonempty and compact.

Proof: Use partial minimization theory w/ the
function

( ) =
�

f(x) if x ⌘ X, g(x)F x, u ⌥ u,
⇣ otherwise.

p is obtained by the partial minimization:

p(u) = inf F (x, u).
x⌦�n

Under the given assumption, p is closed convex.
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LECTURE 12

LECTURE OUTLINE

• Subgradients

• Fenchel inequality

• Sensitivity in constrained optimization

• Subdifferential calculus

• Optimality conditions

Reading: Section 5.4
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SUBGRADIENTS

0

(g, 1)

f(z)

�
x, f(x)

⇥

z

• Let f : �n → (−⇣,⇣] be a convex function.
A vector g ⌘ �n is a subgradient of f at a point
x ⌘ dom(f) if

f(z) ≥ f(x) + (z − x)�g,  z ⌘ �n

• Support Hyperplane Interpretation: g is
a subgradient if and only if

f(z)− z�g ≥ f(x)− x�g,  z ⌘ �n

so g is a subgradient at x if and only if the hyper-
plane in ��n+1 that has normal (−g, 1) and passes
through x, f(x)

⇥
supports the epigraph of f .

• The set of all subgradients at x is the subdiffer-
ential of f at x, denoted ◆f(x).

By convention ◆f(x) = Ø for x / dom(f).

◆

• ⌘
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EXAMPLES OF SUBDIFFERENTIALS

Some examples:•

f(x)

f(x)

0 x x

xx

f(x) = max
�
0, (1/2)(x2  1)

⇥

f(x) = |x|

1

1

1-1

-1

-10

0

0

• If f is differentiable, then ◆f(x) = {∇f(x)}.
Proof: If g ⌘ ◆f(x), then

f(x + z) ≥ f(x) + g�z,  z ⌘ �n.

Apply this with z = ⇤
1st order Taylor series

�
∇f(x)−g

⇥
, ⇤ ⌘ �, and use

expansion to obtain

�∇f(x)− g�2 ⌥ −o(⇤)/⇤,  ⇤ < 0
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EXISTENCE OF SUBGRADIENTS

• Let f : �n → (−⇣,⇣] be proper convex.

• Consider MC/MC with

M = epi(fx), fx(z) = f(x + z)− f(x)

◆

0

(g, 1)

f(z)

�
x, f(x)

⇥

z

0
z

(g, 1)
Epigraph of fEpigraph of f
Translated

fx(z)

• By 2nd MC/MC Duality Theorem, ◆f(x) is
nonempty and compact if and only if x is in the
interior of dom(f).

• More generally: for every x ⌘ ri dom(f)),

◆f(x) = S⊥ + G,

�

where:

− S is the subspace that is parallel to the a⌅ne
hull of dom(f)

G is a nonempty and compact set.−
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EXAMPLE: SUBDIFFERENTIAL OF INDICATOR

• Let C be a convex set, and ⌅C be its indicator
function.

• For x ⌘/ C, ◆⌅C(x) = Ø (by convention).

• For x ⌘ C, we have g ⌘ ◆⌅C(x) iff

⌅C(z) ≥ ⌅C(x) + g�(z − x),  z ⌘ C,

or equivalently g�(z − x) ⌥ 0 for all z ⌘ C. Thus
◆⌅C(x) is the normal cone of C at x, denoted
NC(x):

NC(x) = g g�(z x) 0, z C .
⇤

| − ⌥  ⌘
⌅

C

NC(x)

x C

NC(x)

x
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EXAMPLE: POLYHEDRAL CASE

NC(x)

C

a1

a2

x

• For the case of a polyhedral set

C = {x | a�ix ⌥ bi, i = 1, . . . ,m},

we have

NC(x) =
�
{0} if x ⌘ int(C),
cone

�
{ai | a�ix = bi}

⇥
if x ⌘/ int(C).

• Proof: Given x, disregard inequalities with
a�ix < bi, and translate C to move x to 0, so it
becomes a cone. The polar cone is NC(x).
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FENCHEL INEQUALITY

• Let f : �n → (−⇣,⇣] be proper convex and
let f be its conjugate. Using the definition of
conjugacy, we have Fenchel’s inequality :

x�y ⌥ f(x) + f (y),  x ⌘ �n, y ⌘ �n.

• Conjugate Subgradient Theorem: The fol-
lowing two relations are equivalent for a pair of
vectors (x, y):

(i) x�y = f(x) + f (y).

(ii) y ⌘ ◆f(x).

If f is closed, (i) and (ii) are equivalent to

(iii) x ⌘ ◆f (y).

◆

f(x)

x y
2

0 0

Epigraph of f

(x, 1)
(y, 1)

f⇥(y)

Epigraph of f⇥

⇧f(y) ⇧f(x)
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MINIMA OF CONVEX FUNCTIONS

• Application: Let f be closed proper convex
and let X⇤ be the set of minima of f over �n.
Then:

(a) X⇤ = ◆f (0).

(b) X⇤ is nonempty if 0 ⌘ ri dom(f ) .

(c) X⇤ is nonempt� y and compact

�

if and

⇥

only if
0 ⌘ int dom(f ) .

Proof: (a) We have x

⇥

⇤ ⌘ X⇤ iff f(x) ≥ f(x⇤) for
all x ⌘ �n. So

x⇤ ⌘ X⇤ iff 0 ⌘ ◆f(x⇤) iff x⇤ ⌘ ◆f (0)

where:

− 1st relation follows from the subgradient in-
equality

− 2nd relation follows from the conjugate sub-
gradient theorem

(b) ◆f (0) is nonempty if 0 ⌘ ri dom(f ) .

(c) ◆f (0) is nonempty and compact

�

if and

⇥

only
if 0 ⌘ int dom(f ) . Q.E.D.

� ⇥
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SENSITIVITY INTERPRETATION

• Consider MC/MC for the case M = epi(p).

• Dual function is

q(µ) = inf p(u) + µ u = p ( µ),
u⌦�m

⇤
�
⌅

− −

where p is the conjugate of p.

• Assume p is proper convex and strong duality
holds, so p(0) = w⇤ = q⇤ = supµ m

⇤
−p (⌦� −µ)

⌅
.

Let Q⇤ be the set of dual optimal solutions,

Q⇤ =
⇤
µ⇤ | p(0) + p (−µ⇤) = 0

⌅
.

From Conjugate Subgradient Theorem, µ⇤ ⌘ Q⇤

if and only if −µ⇤ ⌘ ◆p(0), i.e., Q⇤ = −◆p(0).

• If p is convex and differentiable at 0, −∇p(0) is
equal to the unique dual optimal solution µ⇤.

• Constrained optimization example:

p(u) = inf f(x),
x⌦X, g(x)⌅u

If p is convex and differentiable,

◆p(0)
µ⇤j = − , j = 1, . . . , r.

◆uj
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EXAMPLE: SUBDIFF. OF SUPPORT FUNCTION

• Consider the support function ↵X(y) of a set
X. To calculate ◆↵X(y) at some y, we introduce

r(y) = ↵X(y + y), y ⌘ �n.

• We have ◆↵X(y) = ◆r(0) = arg minx n r (x).⌦�

• We have r (x) = supy n{y�x− r(y)⌦� }, or

r (x) = sup {y�x− ↵X(y + y)
y⌦�n

} = ⌅(x)− y�x,

where ⌅ is the indicator function of cl
�
conv(X) .

• Hence ◆↵X(y) = arg minx n

⇤
⌅(x)− y�x⌦�

⇥

⌅
, or

◆↵X(y) = arg max y�x
x⌦cl conv(X)

� ⇥

0

y1

y2

X

⇥σX(y2)

⇥σX(y1)
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EXAMPLE: SUBDIFF. OF POLYHEDRAL FN

• Let

f(x) = max a�1x + b1, . . . , a�rx + br .{ }

f(x)

x0

Epigraph of f

(g, 1)

x x0

(g, 1)
r(x)

• For a fixed x ⌘ �n, consider

Ax =
⇤
j | a�jx + bj = f(x)

and the function r(x) = max a�

⌅

jx | j ⌘ Ax .

• It can be seen that ◆f(x) =

⇤

◆r(0).

⌅

• Since r is the support function of the finite set
{aj | j ⌘ Ax}, we see that

◆f(x) = ◆r(0) = conv {aj | j ⌘ Ax}
� ⇥
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CHAIN RULE

• Let f : �m → (−⇣,⇣] be convex, and A be
a matrix. Consider F (x) = f(Ax) and assume
that F is proper. If either f is polyhedral or else
Range(A) ⌫ ri(dom(f)) = Ø, then

◆F (x) = A�◆f(Ax),  x ⌘ �n.

Proof: Showing ◆F (x) ↵ A�◆f(Ax) is simple and
does not require the relative interior assumption.
For the reverse inclusion, let d ⌘ ◆F (x) so F (z) ≥
F (x)+(z−x)�d ≥ 0 or f(Az)−z�d ≥ f(Ax)−x�d
for all z, so (Ax, x) solves

minimize f(y)− z�d

subject to y ⌘ dom(f), Az = y.

If R(A)⌫ ri(dom(f)) = Ø, by strong duality theo-
rem, there is a dual optimal solution ⌃, such that

(Ax, x) ⌘ arg min
⇤
f(y)−z�d+⌃

y⌦�m, z⌦�n

�(Az−y)

Since the min over z is unconstrained, we hav

⌅

e
d = A�⌃, so Ax ⌘ arg miny⌦�m

f(y) f(Ax) + ⌃�(y Ax),

⇤
f(y)− ⌃�y

⌅
, or

≥ −  y ⌘ �m.

Hence ⌃ ⌘ ◆f(Ax), so that d = A�⌃ ⌘ A�◆f(Ax).
It follows that ◆F (x) ⌦ A�◆f(Ax). In the polyhe-
dral case, dom(f) is polyhedral. Q.E.D.

◆

✓

✓
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SUM OF FUNCTIONS

• Let fi : �n → (−⇣,⇣], i = 1, . . . ,m, be proper
convex functions, and let

F = f1 + · · · + fm.

• Assume that ⌫m
1=1ri dom(fi) = Ø.

• Then

� ⇥

◆F (x) = ◆f1(x) + · · · + ◆fm(x),  x ⌘ �n.

Proof: We can write F in the form F (x) = f(Ax),
where A is the matrix defined by Ax = (x, . . . , x),
and f : �mn → (−⇣,⇣] is the function

f(x1, . . . , xm) = f1(x1) + · · · + fm(xm).

Use the proof of the chain rule.

• Extension: If for some k, the functions fi, i =
1, . . . , k, are polyhedral, it is su⌅cient to assume

⌥
⌫k

i=1 dom(fi)
�
⌫
⌥
⌫m

i=k+1 ri
�
dom(fi)

⇥�
= Ø.

◆

✓

◆

✓
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CONSTRAINED OPTIMALITY CONDITION

• Let f : �n → (−⇣,⇣] be proper convex, let X
be a convex subset of �n, and assume that one of
the following four conditions holds:

(i) ri
�
dom(f)

⇥
⌫ ri(X) = Ø.

(ii) f is polyhedral and dom( ) ri( ) = Ø

(iii) X is polyhedral and ri

(iv) f and X are polyhedral,

�
f ⌫

⇥
X .

dom(f) ⌫X = Ø.

and dom(f) ⌫X = Ø.

Then, a vector x⇤ minimizes f over X iff there
exists g ⌘ ◆f(x⇤) such that −g belongs to the
normal cone NX(x⇤), i.e.,

g�(x− x⇤) ≥ 0,  x ⌘ X.

Proof: x⇤ minimizes

F (x) = f(x) + ⌅X(x)

if and only if 0 ⌘ ◆F (x⇤). Use the formula for
subdifferential of sum. Q.E.D.

◆

✓
✓
✓

✓
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ILLUSTRATION OF OPTIMALITY CONDITION

Level Sets of f

⌃f(x∗)

x∗

Level Sets of f

x∗

⇧f(x∗)
g

C C

NC(x∗)
NC(x∗)

• In the figure on the left, f is differentiable and
the condition is that

−∇f(x⇤) ⌘ NC(x⇤),

which is equivalent to

∇f(x⇤)�(x− x⇤) ≥ 0,  x ⌘ X.

• In the figure on the right, f is nondifferentiable,
and the condition is that

−g ⌘ NC(x⇤) for some g ⌘ ◆f(x⇤).
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LECTURE 13

LECTURE OUTLINE

• Problem Structures

− Separable problems

− Integer/discrete problems – Branch-and-bound

− Large sum problems

− Problems with many constraints

• Conic Programming

− Second Order Cone Programming

− Semidefinite Programming
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SEPARABLE PROBLEMS

• Consider the problem

m

minimize
⌧

fi(xi)
i=1

⌧m
s. t. gji(xi) 0

i=1

⌥ , j = 1, . . . , r, xi ⌘ Xi,  i

where f : �n n
i i → � and gji : � i → � are given

functions, and Xi are given subsets of �ni .

• Form the dual problem

m

maximize
⌧ m

qi(µ) ⇧
⌧

✏
r

inf fi(xi) + µjgji(xi)
xi Xi

i=1 i=1

⌥

⌧

j=1

⇣

subject to µ ⌥ 0

• Important point: The calculation of the dual
function has been decomposed into n simpler
minimizations. Moreover, the calculation of dual
subgradients is a byproduct of these mini-
mizations (this will be discussed later)

• Another important point: If Xi is a discrete
set (e.g., Xi = {0, 1}), the dual optimal value is
a lower bound to the optimal primal value. It is
still useful in a branch-and-bound scheme.

◆ ◆
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LARGE SUM PROBLEMS

• Consider cost function of the form
m

f(x) =
⌧

fi(x), m is very large,
i=1

where fi : �n → � are convex. Some examples:

• Dual cost of a separable problem.

• Data analysis/machine learning: x is pa-
rameter vector of a model; each fi corresponds to
error between data and output of the model.

− Least squares problems (fi quadratic).

− *1-regularization (least squares plus *1 penalty):
⌧m ⌧n

min (a�jxx
j=1

− bj)2 + ⇤ xi

i=1

| |

The nondifferentiable penalty tends to set a large
number of components of x to 0.

• Min of an expected value E F (x,w) , where
w is a random variable taking a
large number of values wi, i = 1, .

⇤

finite but

⌅

very
. . ,m, with cor-

responding probabilities  i.

• Stochastic
↵

programming:

min F1(x) + Ew{min F2(x, y, w)
x y

⌅�

Special methods, called incremental apply.

◆

•
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PROBLEMS WITH MANY CONSTRAINTS

• Problems of the form

minimize f(x)

subject to a�jx ⌥ bj , j = 1, . . . , r,

where r: very large.

• One possibility is a penalty function approach:
Replace problem with

r

min f(x) + c P a
n

⌧
( �jx

x⌦�
j=1

− bj)

where P (·) is a scalar penalty function satisfying
P (t) = 0 if t ⌥ 0, and P (t) > 0 if t > 0, and c is a
positive penalty parameter.

• Examples:

− The quadratic penalty P (t) = max{0, t} 2
.

− The nondifferentiable penalty P

�

(t) = max

⇥

{0, t}.
• Another possibility: Initially discard some of
the constraints, solve a less constrained problem,
and later reintroduce constraints that seem to be
violated at the optimum (outer approximation).

• Also inner approximation of the constraint set.
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CONIC PROBLEMS

• A conic problem is to minimize a convex func-
tion f : �n → (−⇣,⇣] subject to a cone con-
straint.

• The most useful/popular special cases:

− Linear-conic programming

− Second order cone programming

− Semidefinite programming

involve minimization of a linear function over the
intersection of an a⌅ne set and a cone.

• Can be analyzed as a special case of Fenchel
duality.

• There are many interesting applications of conic
problems, including in discrete optimization.

◆
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PROBLEM RANKING IN

INCREASING PRACTICAL DIFFICULTY

• Linear and (convex) quadratic programming.

− Favorable special cases (e.g., network flows).

• Second order cone programming.

• Semidefinite programming.

• Convex programming.

− Favorable special cases (e.g., network flows,
monotropic programming, geometric program-
ming).

• Nonlinear/nonconvex/continuous programming.

− Favorable special cases (e.g., twice differen-
tiable, quasi-convex programming).

− Unconstrained.

− Constrained.

• Discrete optimization/Integer programming

− Favorable special cases.
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CONIC DUALITY

• Consider minimizing f(x) over x ⌘ C, where f :
�n → (−⇣,⇣] is a closed proper convex function
and C is a closed convex cone in �n.

• We apply Fenchel duality with the definitions

f1(x) = f(x), f2(x) =
�

0 if x ⌘ C,
⇣ if x ⌘/ C.

The conjugates are

f⌥ 0 if ⇤
1

(⇤) = sup
⇤ ,

⇤⇧x−f(x
⌅

, f⌥ C⇥
)

2

(⇤) = sup ⇤⇧x =
x⌥ n

x⌥C

�
⌃

⇧ if ⇤ ⌃/ C⇥,

where C⇤ = {⌃ | ⌃�x ⌥ 0,  x ⌘ C} is the polar
cone of C.

• The dual problem is

minimize f (⌃)

subject to ⌃ ˆ⌘ C,

where f is the conjugate of f and

Ĉ = {⌃ | ⌃�x ≥ 0,  x ⌘ C}.

Ĉ = C is called the dual cone.

◆

− ⇤
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LINEAR-CONIC PROBLEMS

• Let f be a⌅ne, f(x) = c�x, with dom(f) be-
ing an a⌅ne set, dom(f) = b + S, where S is a
subspace.

• The primal problem is

minimize c�x

subject to x− b ⌘ S, x ⌘ C.

• The conjugate is

f (⌃) = sup (⌃− c)�x = sup(⌃ )
x−b⌦S y S

− c �(y + b)

� ⌦

(⌃− c)�b if ⌃− c S
=

⌘ ⊥,
⇣ if ⌃− c /⌘ S⊥,

so the dual problem can be written as

minimize b�⌃

subject to ⌃− c ˆ⌘ S⊥, ⌃ ⌘ C.

• The primal and dual have the same form.

• If C is closed, the dual of the dual yields the
primal.
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SPECIAL LINEAR-CONIC FORMS

min c�x
Ax=b, x⌦C

⇐✏ max b�⌃,
c− ˆA0⌅⌦C

min c�x max b�⌃,
Ax−b⌦C

⇐✏
0⌅=c, ⌅⌦ ˆA C

where x ⌘ �n, ⌃ ⌘ �m, c ⌘ �n, b ⌘ �m, A : m⇤n.

• For the first relation, let x be such that Ax = b,
and write the problem on the left as

minimize c�x

subject to x− x ⌘ N(A), x ⌘ C

• The dual conic problem is

minimize x�µ

subject to µ− c ⌘ N(A)⊥, µ C.ˆ⌘
• Using N(A)⊥ = Ra(A�), write the constraints
as c− µ ⌘ −Ra(A�) = Ra(A�), µ ⌘ Ĉ, or

c− µ = A�⌃, µ ˆ⌘ C, for some ⌃ ⌘ �m.

• Change variables µ = c−A�⌃, write the dual as

minimize x�(c−A�⌃)

subject to c−A�⌃ ˆ⌘ C

discard the constant x�c, use the fact Ax = b, and
change from min to max.
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SOME EXAMPLES

• Nonnegative Orthant: C = {x | x ≥ 0}.
• The Second Order Cone: Let

C =
�

(x1, . . . , xn) | xn ≥
!

x2
1 + · · · + x2

n−1

�

x1

x2

• The Positive Semidefinite Cone: Consider
the space of symmetric n n matrices, viewed as
the space � 2n

⇤
with the inner product

n n

< X,Y >= trace(XY ) =

Let

⌧

i=1

⌧
xijyij

j=1

C be the cone of matrices that are positive
semidefinite.

All these are self-dual , i.e., C = C⇤ = Ĉ.

x3

• −
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SECOND ORDER CONE PROGRAMMING

• Second order cone programming is the linear-
conic problem

minimize c�x

subject to Aix− bi ⌘ Ci, i = 1, . . . ,m,

where c, bi are vectors, Ai are matrices, bi is a
vector in �ni , and

Ci : the second order cone of �ni

• The cone here is

C = C1 ⇤ · · ·⇤ Cm

x1

x2

x3
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SECOND ORDER CONE DUALITY

• Using the generic special duality form

min c�x max b�⌃,
Ax−b⌦C

⇐✏
0⌅=c, ⌅⌦ ˆA C

and self duality of C, the dual problem is

m

maximize
⌧

b�i⌃i

i=1

m

subject to
⌧

A�i⌃i = c, ⌃i

i=1

⌘ Ci, i = 1, . . . ,m,

where ⌃ = (⌃1, . . . ,⌃m).

• The duality theory is no more favorable than
the one for linear-conic problems.

• There is no duality gap if there exists a feasible
solution in the interior of the 2nd order cones Ci.

• Generally, 2nd order cone problems can be
recognized from the presence of norm or convex
quadratic functions in the cost or the constraint
functions.

• There are many applications.
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LECTURE 14

LECTURE OUTLINE

• Conic programming

• Semidefinite programming

• Exact penalty functions

• Descent methods for convex/nondifferentiable
optimization

• Steepest descent method

185



LINEAR-CONIC FORMS

min c�x
Ax=b, x⌦C

⇐✏ max b�⌃,
c−A0 ˆ⌅⌦C

min c�x
Ax−b⌦C

⇐✏ max b�⌃,
A0⌅=c, ⌦ ˆ⌅ C

where x ⌘ �n, ⌃ ⌘ �m, c ⌘ �n, b ⌘ �m, A : m⇤n.

• Second order cone programming:

minimize c�x

subject to Aix− bi ⌘ Ci, i = 1, . . . ,m,

where c, bi are vectors, Ai are matrices, bi is a
vector in �ni , and

C n
i : the second order cone of � i

• The cone here is C = C1 ⇤ · · ·⇤ Cm

• The dual problem is

m

maximize
⌧

b�i⌃i

i=1

m

subject to
⌧

A�i⌃i = c, ⌃i

i=1

⌘ Ci, i = 1, . . . ,m,

where ⌃ = (⌃1, . . . ,⌃m).
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EXAMPLE: ROBUST LINEAR PROGRAMMING

minimize c�x

subject to a�jx ⌥ bj ,  (aj , bj) ⌘ Tj , j = 1, . . . , r,

where c ⌘ �n, and Tj is a given subset of �n+1.

• We convert the problem to the equivalent form

minimize c�x

subject to gj(x) ⌥ 0, j = 1, . . . , r,

where gj(x) = sup(aj ,bj) a� x b .⌦Tj
{ j − j}

• For special choice where Tj is an ellipsoid,

Tj =
⇤
(aj +Pjuj , bj +qj

�uj) | �uj� ⌥ 1, uj ⌘ �nj

we can express gj(x)

⌅

⌥ 0 in terms of a SOC:

gj(x) = sup
⇤
(aj + Pjuj)�x

◆uj◆⌅1

− (bj + qj
�uj)

= sup (P

⌅

j
�x− qj)�uj + a�jx− bj ,

◆uj◆⌅1

= �Pj
�x− qj�+ a�jx− bj .

Thus, gj(x) ⌥ 0 iff (Pj
�x−qj , bj−a�jx) ⌘ Cj , where

Cj is the SOC of nj+1.�
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SEMIDEFINITE PROGRAMMING

• Consider the symmetric n ⇤ n matrices. Inner
product < X,Y >= trace(XY ) =

�n
ij iji,j=1 x y .

• Let C be the cone of pos. semidefinite matrices.

• C is self-dual, and its interior is the set of pos-
itive definite matrices.

• Fix symmetric matrices D, A1, . . . , Am, and
vectors b1, . . . , bm, and consider

minimize < D,X >

subject to < Ai, X >= bi, i = 1, . . . ,m, X ⌘ C

• Viewing this as a linear-conic problem (the first
special form), the dual problem (using also self-
duality of C) is

m

maximize
⌧

bi⌃i

i=1

subject to D − (⌃1A1 + · · · + ⌃mAm) ⌘ C

• There is no duality gap if there exists primal
feasible solution that is pos. definite, or there ex-
ists ⌃ such that D− (⌃1A1 + · · ·+ ⌃mAm) is pos.
definite.
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EXAMPLE: MINIMIZE THE MAXIMUM

EIGENVALUE

• Given n⇤n symmetric matrix M(⌃), depending
on a parameter vector ⌃, choose ⌃ to minimize the
maximum eigenvalue of M(⌃).

• We pose this problem as

minimize z

subject to maximum eigenvalue of M(⌃) ⌥ z,

or equivalently

minimize z

subject to zI −M(⌃) ⌘ C,

where I is the n⇤n identity matrix, and C is the
semidefinite cone.

• If M(⌃) is an a⌅ne function of ⌃,

M(⌃) = D + ⌃1M1 + · · · + ⌃mMm,

the problem has the form of the dual semidefi-
nite problem, with the optimization variables be-
ing (z,⌃1, . . . ,⌃m).
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EXAMPLE: LOWER BOUNDS FOR

DISCRETE OPTIMIZATION

• Quadr. problem with quadr. equality constraints

minimize x�Q0x + a�0x + b0

subject to x�Qix + a�ix + bi = 0, i = 1, . . . ,m,

Q0, . . . , Qm: symmetric (not necessarily ≥ 0).

• Can be used for discrete optimization. For ex-
ample an integer constraint xi ⌘ {0, 1} can be
expressed by x2

i − xi = 0.

• The dual function is

q(⌃) = inf
⇤
x�Q(⌃)x + a(⌃)

x⌦�n

�x + b(⌃)
⌅
,

where
⌧m

Q(⌃) = Q0 + ⌃iQi,
i=1

m m

a(⌃) = a0 +
⌧

⌃iai, b(⌃) = b0 + ⌃ibi

i=1

⌧

i=1

• It turns out that the dual problem is equivalent
to a semidefinite program ...
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EXACT PENALTY FUNCTIONS

• We use Fenchel duality to derive an equiva-
lence between a constrained convex optimization
problem, and a penalized problem that is less con-
strained or is entirely unconstrained.

• We consider the problem

minimize f(x)

subject to x ⌘ X, g(x) ⌥ 0,

where g(x) = g1(x), . . . , gr(x) , X is a convex
subset of �n, and

�

f : �n → �

⇥

and gj : �n → �
are real-valued convex functions.

• We introduce a convex function P : �r → �,
called penalty function, which satisfies

P (u) = 0,  u ⌥ 0, P (u) > 0, if ui > 0 for some i

• We consider solving, in place of the original, the
“penalized” problem

minimize f(x) + P
�
g(x)

subject to x ⌘ X,

⇥

◆
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FENCHEL DUALITY

• We have

inf
⇤
f(x) + P

�
g(x)

⇥⌅
= inf

⇤
p(u) + P (u)

x⌦X u⌦�r

⌅

where p(u) = infx X, g(x) u f(x) is the primal func-⌦ ⌅
tion.

• Assume −⇣ < q⇤ and f⇤ < ⇣ so that p is
proper (in addition to being convex).

• By Fenchel duality

inf µ
u r

⇤
p(u) + P (u)

⌅
= sup )

µ 0

⇤
q( −Q(µ)

⌦� ⇧

⌅
,

where for µ ≥ 0,

q(µ) = inf
⇤
f(x) + µ�g(x)

x⌦X

is the dual function, and Q is the conjugate

⌅

convex
function of P :

Q(µ) = sup
u⌦�r

⇤
u�µ− P (u)

⌅
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PENALTY CONJUGATES

!"#$%&'(%!"&$%')%

* ) * (

+"('!,")'!-!(./0*1!.)2

* ) * (

+"('!

* ) * (

+"('!,")'

,")'!-!(./0*1!.)!3)%2

.

.

45678!-!.

u

u

u

µ

µ

µ

0 0

00

0 0

a

Slope = a

Q(µ)P (u) = max{0, au+u2}

P (u) = c max{0, u}

c

P (u) = (c/2)
�
max{0, u}

⇥2

Q(µ) =
⇤

(1/2c)µ2 if µ ⇥ 0
⇤ if µ < 0

Q(µ) =
⌅

0 if 0 ≤ µ ≤ c
⇤ otherwise

• Important observation: For Q to be flat for
some µ > 0, P must be nondifferentiable at 0.
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FENCHEL DUALITY VIEW
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0

f̃

f̃

q = f = f̃
q(µ)

q(µ)

q(µ)

f̃ + Q(µ)

f̃ + Q(µ)

f̃ + Q(µ)

µ̃

µ̃

µ̃

• For the penalized and the original problem to
have equal optimal values, Q must be“flat enough”
so that some optimal dual solution µ⇤ minimizes
Q, i.e., 0 ⌘ ◆Q(µ⇤) or equivalently

µ⇤ ⌘ ◆P (0)

• True if ( ) =
�r

P u c j=1 max{0, uj} with c ≥
�µ⇤� for some optimal dual solution µ⇤.
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DIRECTIONAL DERIVATIVES

• Directional derivative of a proper convex f :

f(x + αd) f(x)
f �(x; d) = lim

−
, x

α⌥0 α
⌘ dom(f), d ⌘ �n



Slope: f ⇥(x; d)

0

f(x + d)

Slope: f(x+d)−f(x)


f(x)

• The ratio

f(x + αd)− f(x)
α

is monotonically nonincreasing as α ↓ 0 and con-
verges to f �(x; d).

• For all x ⌘ ri
�
dom(f)

⇥
, f �(x; ·) is the support

function of ◆f(x).
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STEEPEST DESCENT DIRECTION

• Consider unconstrained minimization of convex
f : �n → �.

• A descent direction d at x is one for which
f �(x; d) < 0, where

f(x + αd) f(x)
f �(x; d) = lim

−
= sup d�g

α⌥0 α g⌦⌦f(x)

is the directional derivative.

• Can decrease f by moving from x along descent
direction d by small stepsize α.

• Direction of steepest descent solves the problem

minimize f �(x; d)

subject to �d� ⌥ 1

• Interesting fact: The steepest descent direc-
tion is −g⇤, where g⇤ is the vector of minimum
norm in ◆f(x):

min f �(x; d) = min max d�g = max min d�g
◆d◆⌅1 ◆d◆⌅1 g⌦

�
⌦f(x)

⇥
g⌦⌦f(x) ◆d◆⌅1

= max
g⌦⌦f(x)

−�g� = − min
g⌦⌦f(x)

�g�

◆

196



STEEPEST DESCENT METHOD

• Start with any x0 ⌘ �n.

• For k ≥ 0, calculate −gk, the steepest descent
direction at xk and set

xk+1 = xk − αkgk

• Di⇥culties:
− Need the entire ◆f(xk) to compute gk.

− Serious convergence issues due to disconti-
nuity of ◆f(x) (the method has no clue that
◆f(x) may change drastically nearby).

• Example with αk determined by minimization
along −gk: {xk} converges to nonoptimal point.
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LECTURE 15

LECTURE OUTLINE

• Subgradient methods

• Calculation of subgradients

• Convergence

***********************************************

• Steepest descent at a point requires knowledge
of the entire subdifferential at a point

Convergence failure of steepest descent•

z

x2

x1

-3
-2

-1
0

1
2

3

-3-2-10123

60

-20

0
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40

x1

x
2

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

• Subgradient methods abandon the idea of com-
puting the full subdifferential to effect cost func-
tion descent ...

• Move instead along the direction of a single
arbitrary subgradient
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SINGLE SUBGRADIENT CALCULATION

• Key special case: Minimax

f(x) = sup φ(x, z)
z⌦Z

where Z ⌦ �m and φ(·, z) is convex for all z ⌘ Z.

• For fixed x ⌘ dom(f), assume that zx ⌘ Z
attains the supremum above. Then

gx ⌘ ◆φ(x, zx) ✏ gx ⌘ ◆f(x)

• Proof: From subgradient inequality, for all y,

f(y) = sup  (y, z) ⌥  (y, zx) ⌥  (x, zx) + gx
⇧ (y − x)

z⌥Z

= f(x) + gx
⇧ (y − x)

• Special case: Dual problem of minx X, g(x) 0 f(x):⌦ ⌅

max q(µ) ⌃ inf L(x, µ) = inf
⇤
f(x) + µ�g(x)

µ⇧0 x⌦X x⌦X

⌅

or minµ⇧0 F (µ), where F (−µ) ⌃ −q(µ).
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ALGORITHMS: SUBGRADIENT METHOD

• Problem: Minimize convex function f : �n →
� over a closed convex set X.

• Subgradient method:

xk+1 = PX(xk − αkgk),

where gk is any subgradient of f at xk, αk is a
positive stepsize, and PX( ) is projection on X.

◆

·

!

"#

"#$%$&'#

"(

)*+*,$&*-&$./$0

"#%1$23!$4"#$%$& '#5

Level sets of f

X
xk

xk  αkgk

xk+1 = PX(xk  αkgk)

x

gk

⇥f(xk)
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KEY PROPERTY OF SUBGRADIENT METHOD

• For a small enough stepsize αk, it reduces the
Euclidean distance to the optimum.

!

"#

"#$%$& #'#

"#%($)*!$+"#$%$& #'#,

"-

.$/0 1

23435$&36&$17$8Level sets of f X

xk

x∗

xk+1 = PX(xk  kgk)

xk  kgk

< 90⇥

• Proposition: Let {xk be generated by the
subgradient method. Then,

}
for all y ⌘ X and k:

⇠xk+1

−y⇠2 ⌃ ⇠xk−y⇠2−2αk

�
f(xk)−f(y)

⇥
+α2

k⇠gk⇠2

and if f(y) < f(xk),

�xk+1 − y� < �xk − y�,

for all αk such that

2
0 < αk <

�
f(xk)− f(y)

�gk�2

⇥
.
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PROOF

• Proof of nonexpansive property

�PX(x)− PX(y)� ⌥ �x− y�,  x, y ⌘ �n.

Use the projection theorem to write
�
z − PX(x)

⇥��
x− PX(x)

⇥
⌥ 0,  z ⌘ X

from which
�
PX(y) − PX(x)

⇥�
� x − PX(x) ⌥ 0.

Similarly, PX(x)− PX(y)
�

y − PX(y) ⌥ 0.
Adding and using the h

�
⇥

Sc

⇥
�

warz inequalit

⇥

y,

⌃⌃ 2

PX(y) − PX(x)
⌃⌃ ⇤

�
PX(y) − PX(x)

⇥⇧
⌃ ⌃

(y − x)

⇤ ⌃PX(y) − PX(x)⌃ · �y − x�

Q.E.D.

• Proof of proposition: Since projection is non-
expansive, we obtain for all y ⌘ X and k,

�xk+1 − y�2 =
⌃⌃ 2
PX (xk − αkgk)− y

⌥ �x g 2
k − αk k − y�

⌃

= �xk − y�2 − 2αkgk
� (x y

⌃

k − ) + α2
k�gk�2

⌥ �xk − y�2 − 2αk

�
f(xk)− f(y)

⇥
+ α2

k�gk�2,

where the last inequality follows from the subgra-
dient inequality. Q.E.D.202



CONVERGENCE MECHANISM

• Assume constant stepsize: αk ⌃ α

• If �gk� ⌥ c for some constant c and all k,

�x −x⇤�2 ⌥ �x −x⇤�2−2α
�
f(x )−f(x⇤)

⇥
+α2 2

k+1 k k c

so the distance to the optimum decreases if

2
0 < α <

�
f(xk)− f(x⇤)

c2

⇥

or equivalently, if xk does not belong to the level
set

αc2

x f(x) < f(x⇤) +
� ⇧⇧⇧

2

�

!"#$%&'()*'+#$*,
)-#

.-/-'()-#(0 (1(23 4( (25(6(789:9;Level set�
x | f(x)  f + c2/2

⇥

Optimal solution set

x0
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STEPSIZE RULES

• Constant Stepsize: αk ⌃ α.

• Diminishing Stepsize: αk → 0,
�

k αk = ⇣
• Dynamic Stepsize:

f(x
αk = k)− fk

c2

where fk is an estimate of f⇤:

− If fk = f⇤, makes progress at every iteration.
If fk < f⇤ it tends to oscillate around the
optimum. If fk > f⇤ it tends towards the
level set {x | f(x) ⌥ fk}.

− fk can be adjusted based on the progress of
the method.

• Example of dynamic stepsize rule:

fk = min f(xj)
0⌅j⌅k

− ⌅k,

and ⌅k (the “aspiration level of cost reduction”) is
updated according to

⌅k+1 =
�
⌦⌅k if f(xk+1) ⌥ fk,
max

⇤
⇥⌅k, ⌅

⌅
if f(xk+1) > fk,

where ⌅ > 0, ⇥ < 1, and ⌦ ≥ 1 are fixed constants.
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SAMPLE CONVERGENCE RESULTS

• Let f = infk 0 f(xk), and assume that for some⇧
c, we have

c ≥ sup
k⇧0

⇤
�g� | g ⌘ ◆f(xk)

⌅
.

• Proposition: Assume that αk is fixed at some
positive scalar α. Then:

(a) If f⇤ = −⇣, then f = f⇤.

(b) If f⇤ > −⇣, then

αc2

f ⌥ f⇤ + .
2

• Proposition: If αk satisfies

 

lim αk = 0, αk = ,
k⌃ 

k

⌧

=0

⇣

then f = f⇤.

• Similar propositions for dynamic stepsize rules.

• Many variants ...
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LECTURE 16

LECTURE OUTLINE

• Approximate subgradient methods

• Approximation methods

• Cutting plane methods
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APPROXIMATE SUBGRADIENT METHODS

• Consider minimization of

f(x) = sup φ(x, z)
z⌦Z

where Z ⌦ �m and φ(·, z) is convex for all z ⌘ Z
(dual minimization is a special case).

• To compute subgradients of f at x ⌘ dom(f),
we find zx ⌘ Z attaining the supremum above.
Then

gx ⌘ ◆φ(x, zx) ✏ gx ⌘ ◆f(x)

• Potential di⇥culty: For subgradient method,
we need to solve exactly the above maximization
over z ⌘ Z.

• We consider methods that use “approximate”
subgradients that can be computed more easily.
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⇧-SUBDIFFERENTIAL

• Fot a proper convex f : �n → (−⇣,⇣] and
⇧ > 0, we say that a vector g is an ⇧-subgradient
of f at a point x ⌘ dom(f) if

f(z) ≥ f(x) + (z − x)�g − ⇧,  z ⌘ �n

◆

0

f(z)

(g, 1)

z

�
x, f(x) 

⇥

• The ⇧-subdifferential ◆⇤f(x) is the set of all ⇧-
subgradients of f at x. By convention, ◆⇤f(x) = Ø
for x ⌘/ dom(f).

• We have ⌫⇤⌥0◆⇤f(x) = ◆f(x) and

◆⇤1f(x) ⌦ ◆⇤2f(x) if 0 < ⇧1 < ⇧2
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CALCULATION OF AN ⇧-SUBGRADIENT

• Consider minimization of

f(x) = sup φ(x, z), (1)
z⌦Z

where x
n

⌘ �n, z ⌘ �m, Z is a subset of �m, and
φ : � ⇤ �m → (−⇣,⇣] is a function such that
φ(·, z) is convex and closed for each z ⌘ Z.

• How to calculate ⇧-subgradient at x ⌘ dom(f)?

• Let zx ⌘ Z attain the supremum within ⇧ ≥ 0
in Eq. (1), and let gx be some subgradient of the
convex function φ(·, zx).

• For all y ⌘ �n, using the subgradient inequality,

f(y) = sup φ(y, z)
z⌦Z

≥ φ(y, zx)

≥ φ(x, zx) + gx
� (y − x) ≥ f(x)− ⇧+ gx

� (y − x)

i.e., gx is an ⇧-subgradient of f at x, so

φ(x, zx) ≥ sup φ(x, z)
z⌦Z

− ⇧ and gx ⌘ ◆φ(x, zx)

✏ gx ⌘ ◆⇤f(x)

◆
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⇧-SUBGRADIENT METHOD

• Uses an ⇧-subgradient in place of a subgradient.

• Problem: Minimize convex f : �n → � over a
closed convex set X.

• Method:

xk+1 = PX(xk − αkgk)

where gk is an ⇧k-subgradient of f at xk, αk is a
positive stepsize, and PX(·) denotes projection on
X.

• Can be viewed as subgradient method with “er-
rors”.

◆

210



CONVERGENCE ANALYSIS

• Basic inequality: If xk is the ⇧-subgradient
method sequence, for all

{
y

}
⌘ X and k ≥ 0

⇠xk+1

−y⇠2 ⌃ ⇠xk−y⇠2−2αk

�
f(xk)−f(y)−⇧k +α2

k⇠gk⇠2

• Replicate the entire convergence analysis

⇥

for
subgradient methods, but carry along the ⇧k terms.

• Example: Constant αk ⌃ α, constant ⇧k ⌃ ⇧.
Assume �gk� ⌥ c for all k. For any optimal x⇤,

�xk+1−x⇤�2 ⌥ �xk−x⇤�2−2α
�
f(xk)−f⇤−⇧

so

⇥
+α2c2,

the distance to x⇤ decreases if

2 x
0 α <

�
f( k)− f⇤ ⇧

<
c2

−
⇥

or equivalently, if xk is outside the level set

�
x
⇧⇧ 2

⇧
αc

f(x) ⌥ f⇤ + ⇧+
2

�

• Example: If αk → 0,
�

k αk →⇣, and ⇧k → ⇧,
we get convergence to the ⇧-optimal set.
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INCREMENTAL SUBGRADIENT METHODS

• Consider minimization of sum

m

f(x) = fi(x)
i=1

• Often arises in duality

⌧

contexts with m: very
large (e.g., separable problems).

• Incremental method moves x along a sub-
gradient gi of a component function fi NOT
the (expensive) subgradient of f , which is

�
gii .

• View an iteration as a cycle of m subiterations,
one for each component fi.

• Let xk be obtained after k cycles. To obtain
xk+1, do one more cycle: Start with ψ0 = xk, and
set xk+1 = ψm, after the m steps

ψi = PX(ψi 1 − αkgi), i = 1, . . . ,m−

with gi being a subgradient of fi at ψi−1.

• Motivation is faster convergence. A cycle
can make much more progress than a subgradient
iteration with essentially the same computation.
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CONNECTION WITH ⇧-SUBGRADIENTS

• Neighborhood property: If x and x are
“near” each other, then subgradients at x can be
viewed as ⇧-subgradients at x, with ⇧ “small.”

• If g ⌘ ◆f(x), we have for all z ⌘ �n,

f(z) ≥ f(x) + g�(z − x)

≥ f(x) + g�(z − x) + f(x)− f(x) + g�(x− x)

≥ f(x) + g�(z − x)− ⇧,

where ⇧ = |f(x) − f(x)| + �g� · �x − x�. Thus,
g ⌘ ◆⇤f(x), with ⇧: small when x is near x.

• The incremental subgradient iter. is an ⇧-subgradient
iter. with ⇧ = ⇧1 + · · ·+ ⇧m, where ⇧i is the “error”
in ith step in the cycle (⇧i: Proportional to αk).

• Use

◆⇤1f1(x) + · · · + ◆⇤mfm(x) ⌦ ◆⇤f(x),

where ⇧ = ⇧1 + · · · + ⇧m, to appro� ximate the ⇧-
subdifferential of the sum f = m

i=1 fi.

• Convergence to optimal if αk → 0,
�

k αk →⇣.
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APPROXIMATION APPROACHES

• Approximation methods replace the original
problem with an approximate problem.

• The approximation may be iteratively refined,
for convergence to an exact optimum.

• A partial list of methods:

− Cutting plane/outer approximation.

− Simplicial decomposition/inner approxima-
tion.

− Proximal methods (including Augmented La-
grangian methods for constrained minimiza-
tion).

− Interior point methods.

• A partial list of combination of methods:

− Combined inner-outer approximation.

− Bundle methods (proximal-cutting plane).

− Combined proximal-subgradient (incremen-
tal option).
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SUBGRADIENTS-OUTER APPROXIMATION

• Consider minimization of a convex function f :
�n → �, over a closed convex set X.

• We assume that at each x ⌘ X, a subgradient
g of f can be computed.

• We have

f(z) ≥ f(x) + g�(z − x),  z ⌘ �n,

so each subgradient defines a plane (a linear func-
tion) that approximates f from below.

• The idea of the outer approximation/cutting
plane approach is to build an ever more accurate
approximation of f using such planes.

◆

x0 x1x2x3

f(x)

X

x

f(x0) + (x  x0)⇥g0

f(x1) + (x  x1)⇥g1

x∗
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CUTTING PLANE METHOD

• Start with any x0 ⌘ X. For k ≥ 0, set

xk+1 ⌘ arg min Fk(x),
x⌦X

where

Fk(x) = max f(x
0

)+(x−x
0

)⇧g
0

, . . . , f(xk)+(x−xk)⇧gk

and gi is a

⇤

subgradient of f at xi.

⌅

x0 x1x2x3

f(x)

X

x

f(x0) + (x  x0)⇥g0

f(x1) + (x  x1)⇥g1

x∗

• Note that Fk(x) ⌥ f(x) for all x, and that
Fk(xk+1) increases monotonically with k. These
imply that all limit points of xk are optimal.

Proof: If xk → x then Fk(xk) → f(x), [otherwise
there would exist a hyperplane strictly separating
epi(f) and (x, limk Fk(x⌃ k))]. This implies that
f(x) limk F⌃ k(x) f(x) for all x. Q.E.D.⌥ ⌥
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CONVERGENCE AND TERMINATION

• We have for all k

Fk(xk+1) ⌥ f⇤ ⌥ min f(xi)
i⌅k

• Termination when mini⌅k f(xi)−Fk(xk+1) comes
to within some small tolerance.

• For f polyhedral, we have finite termination
with an exactly optimal solution.

x0 x1x2x3

f(x)

X

x

f(x0) + (x  x0)⇥g0

f(x1) + (x  x1)⇥g1

x∗

• Instability problem: The method can make
large moves that deteriorate the value of f .

• Starting from the exact minimum it typically
moves away from that minimum.
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VARIANTS

• Variant I: Simultaneously with f , construct
polyhedral approximations to X.

• Variant II: Central cutting plane methods

x0 x1x2

f(x)

X

x

f(x0) + (x  x0)⇥g0

f(x1) + (x  x1)⇥g1

x∗

f̃2

Central pair (x2, w2)

Set S1

F1(x)
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LECTURE 17

LECTURE OUTLINE

• Review of cutting plane method

• Simplicial decomposition

• Duality between cutting plane and simplicial
decomposition
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CUTTING PLANE METHOD

• Start with any x0 ⌘ X. For k ≥ 0, set

xk+1 ⌘ arg min Fk(x),
x⌦X

where

Fk(x) = max f(x
0

)+(x−x
0

)⇧g
0

, . . . , f(xk)+(x−xk)⇧gk

and gi is a

⇤

subgradient of f at xi.

⌅

x0 x1x2x3

f(x)

X

x

f(x0) + (x  x0)⇥g0

f(x1) + (x  x1)⇥g1

x∗

• We have Fk(x) ⌥ f(x) for all x, and Fk(xk+1)
increases monotonically with k.

• These imply that all limit points of xk are op-
timal.

220



BASIC SIMPLICIAL DECOMPOSITION

• Minimize a differentiable convex f : �n → �
over bounded polyhedral constraint set X.

• Approximate X with a simpler inner approx-
imating polyhedral set.

• Construct a more refined problem by solving a
linear minimization over the original constraint.

◆

Level sets of f

f(x0)

f(x1)

f(x2)

f(x3)

X

x0

x1

x2

x3

x4 = x

x̃1

x̃2

x̃3

x̃4

• The method is appealing under two conditions:

− Minimizing f over the convex hull of a rela-
tive small number of extreme points is much
simpler than minimizing f over X.

− Minimizing a linear function over X is much
simpler than minimizing f over X.
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SIMPLICIAL DECOMPOSITION METHOD

Level sets of f

f(x0)

f(x1)

f(x2)

f(x3)

X

x0

x1

x2

x3

x4 = x

x̃1

x̃2

x̃3

x̃4

• Given current iterate xk, and finite set Xk ⌦ X
(initially x0 ⌘ X, X0 = {x0}).
• Let x̃k+1 be extreme point of X that solves

minimize ∇f(xk)�(x− xk)

subject to x ⌘ X

and add x̃k+1 to Xk: Xk+1 = {x̃k+1} ∪Xk.

• Generate xk+1 as optimal solution of

minimize f(x)

subject to x conv(Xk+1).⌘
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CONVERGENCE

• There are two possibilities for x̃k+1:

(a) We have

0 ⌥ ∇f(xk)�(x̃k+1−xk) = min �
x⌦

∇f(xk) (x
X

−xk)

Then xk minimizes f over X (satisfies the
optimality condition)

(b) We have

0 > ∇f(xk)�(x̃k+1 − xk)

Then x̃k+1 ⌘/ conv(Xk), since xk minimizes
f over x ⌘ conv(Xk), so that

∇f(xk)�(x− xk) ≥ 0,  x ⌘ conv(Xk)

• Case (b) cannot occur an infinite number of
times (x̃k+1 ⌘/ Xk and X has finitely many ex-
treme points), so case (a) must eventually occur.

• The method will find a minimizer of f over X
in a finite number of iterations.
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COMMENTS ON SIMPLICIAL DECOMP.

• Important specialized applications

• Variant to enhance e⌅ciency. Discard some of
the extreme points that seem unlikely to “partici-
pate” in the optimal solution, i.e., all x̃ such that

∇f(xk+1)�(x̃− xk+1) > 0

• Variant to remove the boundedness assumption
on X (impose artificial constraints)

• Extension to X nonpolyhedral (method remains
unchanged, but convergence proof is more com-
plex)

• Extension to f nondifferentiable (requires use
of subgradients in place of gradients, and more
sophistication)

• Duality relation with cutting plane meth-
ods

• We will view cutting plane and simplicial de-
composition as special cases of two polyhedral ap-
proximation methods that are dual to each other
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OUTER LINEARIZATION OF FNS

f(x)

x0x0 x1 x2 0

F (x)

y

Outer Linearization of f

Slope = y0

Slope = y1
Slope = y2

y2y1y0

Inner Linearization of Conjugate f

f(y)
F (y)

f

• Outer linearization of closed proper convex func-
tion f : �n → (−⇣,⇣]

• Defined by set of “slopes” {y1, . . . , y⌫}, where
yj ⌘ ◆f(xj) for some xj

• Given by

F (x) = max
⇤
f(xj) + (x− xj)�y n

j
=1,...,⌫

⌅
, x

j
⌘ �

or equivalently

F (x) = max
⇤
y  

j
�x

j=1,...,⌫
− f (yj)

⌅

[this follows using x�jyj = f(xj)+ f (yj), which is
implied by yj ⌘ ◆f(xj) – the Conjugate Subgra-
dient Theorem]

◆
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INNER LINEARIZATION OF FNS

f(x)

x0x0 x1 x2 0

F (x)

y

Outer Linearization of f

Slope = y0

Slope = y1
Slope = y2

y2y1y0

Inner Linearization of Conjugate f

f(y)
F (y)

f

• Consider conjugate F  of outer linearization F

• After calculation using the formula

F (x) = max
⇤
yj
�x− f (yj)

j=1,...,⌫

F  is a piecewise linear approximation

⌅

of f de-
fined by “break points” at y1, . . . , y⌫

• We have

dom(F  ) = conv
�
{y1, . . . , y⌫}

with values at y1, . . . , y⌫ equal to the corresp

⇥
,

ond-
ing values of f 

• Epigraph of F  is the convex hull of the union of
the vertical halflines corresponding to y1, . . . , y⌫:

epi(F  ) = conv j=1,...,⌫ (yj , w) f (yj) w
⌥
∪

⇤
| ⌥

⌅�
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GENERALIZED SIMPLICIAL DECOMPOSITION

• Consider minimization of f(x) + c(x), over x ⌘
�n, where f and c are closed proper convex

• Case where f is differentiable

xk xxk+1

Slope: −⇥f(xk)

c(x)

Const.−f(x)

Ck+1(x)
Ck(x)

x̃k+1

• Given Ck: inner linearization of c, obtain

xk ⌘ arg min f
x⌦�n

⇤
(x) + Ck(x)

⌅

• Obtain x̃k+1 such that

−∇f(xk) ⌘ ◆c(x̃k+1),

and form Xk+1 = Xk ∪ {x̃k+1}
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NONDIFFERENTIABLE CASE

• Given Ck: inner linearization of c, obtain

xk ⌘ arg min f(x) + Ck(x)
x⌦�n

⇤ ⌅

• Obtain a subgradient gk ⌘ ◆f(xk) such that

−gk ⌘ ◆Ck(xk)

• Obtain x̃k+1 such that

−gk ⌘ ◆c(x̃k+1),

and form Xk+1 = Xk ∪ {x̃k+1}
• Example: c is the indicator function of a poly-
hedral set

gk

Level sets of f

x0

conv(Xk)

x

x̃k+1

x̂k+1

x̂k

C

gk+1

gk  f(x̂k)
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DUAL CUTTING PLANE IMPLEMENTATION

− gk Constant − f
1 ()

f
2 (−)

F
2,k(−)

Slope: x̃i, i ⇥ k
Slope: x̃i, i ⇥ k

Slope: x̃k+1

• Primal and dual Fenchel pair

min f1(x) + f2(x), min f (⌃) + f 
1 2 ( ⌃

x⌦�n ⌅⌦�n
− )

• Primal and dual approximations

min f  
1(x) + F f 

2,k(x) min 1 (⌃) + F2,k(−⌃)
x⌦�n ⌅⌦�n

• F2,k and F  
2,k are inner and outer approxima-

tions of f and f 
2 2

• x̃i+1 and gi are solutions of the primal or the
dual approximating problem (and corresponding
subgradients)
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LECTURE 18

LECTURE OUTLINE

• Generalized polyhedral approximation methods

• Combined cutting plane and simplicial decom-
position methods

• Lecture based on the paper

D. P. Bertsekas and H. Yu, “A Unifying Polyhe-
dral Approximation Framework for Convex Op-
timization,” SIAM J. on Optimization, Vol. 21,
2011, pp. 333-360.
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Polyhedral Approximation Extended Monotropic Programming Special Cases

Generalized Polyhedral Approximations in
Convex Optimization

Dimitri P. Bertsekas

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Lecture 18, 6.253 Class
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Polyhedral Approximation Extended Monotropic Programming Special Cases

Lecture Summary

Outer/inner linearization and their duality.

f(x)

x0x0 x1 x2 0

F (x)

y

Outer Linearization of f

Slope = y0

O
Slope = y1

f Slope = y2

f

y2y1

f
y0

Inner Linearization of Conjugate f

f(y)
F (y)

A unifying framework for polyhedral approximation methods.
Includes classical methods:

Cutting plane/Outer linearization
Simplicial decomposition/Inner linear

3

ization

Includes new methods, and new versions/extensions of old methods.
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Polyhedral Approximation Extended Monotropic Programming Special Cases

Vehicle for Unification

Extended monotropic programming (EMP)

m

min f

i

(x
i

)
(x1,...,x

m

)2S

X

i=1

where f

n

i

i

: < 7! (−1,1] is a convex function and S is a subspace.

The dual EMP is
m

min
X

f

?
i

(y
i

)
(y1,...,y

m

)2S

?
i=1

where f

?
i

is the convex conjugate function of f

i

.
Algorithmic Ideas:

Outer or inner linearization for some of the f

i

Refinement of linearization using duality
Features of outer or inner linearization use:

They are combined in the same algorithm
Their roles are reversed in the dual problem

4

Become two (mathematically equivalent dual) faces of the same coin233



Polyhedral Approximation Extended Monotropic Programming Special Cases

Advantage over Classical Cutting Plane Methods

The refinement process is much faster.
Reason: At each iteration we add multiple cutting planes (as many as one
per component function f

i

).
By contrast a single cutting plane is added in classical methods.

The refinement process may be more convenient.
For example, when f

i

is a scalar function, adding a cutting plane to the
polyhedral approximation of f

i

can be very simple.
By contrast, adding a cutting plane may require solving a complicated
optimization process in classical methods.
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Polyhedral Approximation Extended Monotropic Programming Special Cases

References

D. P. Bertsekas, “Extended Monotropic Programming and Duality," Lab.
for Information and Decision Systems Report 2692, MIT, Feb. 2010; a
version appeared in JOTA, 2008, Vol. 139, pp. 209-225.

D. P. Bertsekas, “Convex Optimization Theory," 2009, www-based “living
chapter" on algorithms.

D. P. Bertsekas and H. Yu, “A Unifying Polyhedral Approximation
Framework for Convex Optimization," Lab. for Information and Decision
Systems Report LIDS-P-2820, MIT, September 2009; SIAM J. on
Optimization, Vol. 21, 2011, pp. 333-360.
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Polyhedral Approximation Extended Monotropic Programming Special Cases

Outline

1 Polyhedral Approximation
Outer and Inner Linearization
Cutting Plane and Simplicial Decomposition Methods

2 Extended Monotropic Programming
Duality Theory
General Approximation Algorithm

3 Special Cases
Cutting Plane Methods
Simplicial Decomposition for min

x2C

f (x)
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Polyhedral Approximation Extended Monotropic Programming Special Cases

Outer Linearization - Epigraph Approximation by Halfspaces

Given a convex function f

n: < 7! (−1,1].

Approximation using subgradients:

max
˘

f (x0) + y0
0(x − x0), . . . , f (x

k

) + y

k

0(x − x

k

)

where

¯

y

i

2 @f (x
i

), i = 0, . . . , k

x0 x1x2

f(x)

x

dom(f)

f(x0) + y⇤
0(x − x0)

f(x1) + y⇤
1(x − x1)

8
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Polyhedral Approximation Extended Monotropic Programming Special Cases

Convex Hulls

Convex hull of a finite set of points x

i

x0

x1

x2

x3

Convex hull of a union of a finite number of rays R

i

R0

R1
R2

9
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Polyhedral Approximation Extended Monotropic Programming Special Cases

Inner Linearization - Epigraph Approximation by Convex Hulls

Given a convex function h : <n 7! (−1,1] and a finite set of points

y0, . . . , y

k

2 dom(h)

Epigraph approximation by convex hull of rays (y
i

, w) | w ≥ h(y
i

)
˘ ¯

0y0 y1 y2 y

h(y)
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Polyhedral Approximation Extended Monotropic Programming Special Cases

Conjugacy of Outer/Inner Linearization

Given a function f : <n 7! (−1,1] and its conjugate f

?.

The conjugate of an outer linearization of f is an inner linearization of f

?.

f(x)

x0x0 x1 x2 0

F (x)

y

Outer Linearization of f

Slope = y0

O
Slope = y1

Slope = y2

f

y2y1y0

Inner Linearization of Conjugate f

f(y)
F (y)

Subgradients in outer lin. <==> Break points in inner lin.
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Polyhedral Approximation Extended Monotropic Programming Special Cases

Cutting Plane Method for min
x C

f (x) (C polyhedral)2

Given y

i

2 @f (x
i

) for i = 0, . . . , k , form

F

k

(x) = max
˘

f (x0) + y0
0(x − x0), . . . , f (x

k

) + y

k

0(x − x

k

)

and let

¯

x

k+1 2 arg min F

k

(x)
x2C

At each iteration solves LP of large dimension (which is simpler than the
original problem).

x0 x1x2x3

f(x)

xx∗

C

f(x0) + y⇤
0(x − x0)

f(x1) + y⇤
1(x − x1)
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Polyhedral Approximation Extended Monotropic Programming Special Cases

Simplicial Decomposition for min
x2C

f (x) (f smooth, C polyhedral)

At the typical iteration we have x

k

and X

k

= {x0, x̃1, . . . , x̃

k

}, where
x̃1, . . . , x̃

k

are extreme points of C.
Solve LP of large dimension: Generate

x̃

k+1 2 arg min{rf (x
k

)0(x − x

k

)
x2C

}

Solve NLP of small dimension: Set X

k+1 = {x̃

k+1} [ X

k

, and generate
x

k+1 as
x

k+1 2 arg min f (x)
x2conv(X

k+1)

Level sets of f

C

x̃1

x̃2

x̃3

x̃4

x0

∇f(x0)

∇f(x1)

∇f(x2)

∇f(x3)

x1

x2

x3

x4 = x∗

Finite convergence if C is a bounded polyhedron.
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Polyhedral Approximation Extended Monotropic Programming Special Cases

Comparison: Cutting Plane - Simplicial Decomposition

Cutting plane aims to use LP with same dimension and smaller number
of constraints.

Most useful when problem has small dimension and:
There are many linear constraints, or
The cost function is nonlinear and linear versions of the problem are much
simpler

Simplicial decomposition aims to use NLP over a simplex of small
dimension [i.e., conv(X

k

)].
Most useful when problem has large dimension and:

Cost is nonlinear, and
Solving linear versions of the (large-dimensional) problem is much simpler
(possibly due to decomposition)

The two methods appear very different, with unclear connection, despite
the general conjugacy relation between outer and inner linearization.

We will see that they are special cases of two methods that are dual
(and mathematically equivalent) to each other.
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Polyhedral Approximation Extended Monotropic Programming Special Cases

Extended Monotropic Programming (EMP)

m

min f

i

(x
i

)
(x1,...,x

m

)2S

i=1

where f <n

i

i

:

X

7! (−1,1] is a closed proper convex, S is subspace.
Monotropic programming (Rockafellar, Minty), where f

i

: scalar functions.
Single commodity network flow (S: circulation subspace of a graph).
Block separable problems with linear constraints.
Fenchel duality framework: Let m = 2 and S

n= (x , x) | x 2 < . Then
the problem

min f1(x1) + f2(x2)

˘ ¯

(x1,x2)2S

can be written in the Fenchel format

min f1(x) + f2(x)
x2<n

Conic programs (second order, semidefinite - special case of Fenchel).
Sum of functions (e.g., machine learning): For S =

˘
(x , . . . , x

n) | x 2 <
m

min f

i

(x)

¯

x2<n

=

X

i 1244



Polyhedral Approximation Extended Monotropic Programming Special Cases

Dual EMP

Derivation: Introduce z

i

2 <n

i and convert EMP to an equivalent form
m m

min
X

f

i

(x
i

) f

i

( )
(x ,...,x )2S

⌘ min z

i

z x1 m i

=
i

, i=1,...,m,
i=1 (x x S

i=11,...,
m

)2

X

Assign multiplier y

i

2 <n

i to constraint z

i

= x

i

, and form the Lagrangian
m

L(x , z, y) =
X

f

i

(z
i

) + y

i

0(x
i

z

i=1

−
i

)

where y = (y1, . . . , y

m

).
The dual problem is to maximize the dual function

q(y) = inf L(x , z, y)
(x1,...,x

m

)2S, z

i

2<n

i

Exploiting the separability of L(x , z, y) and changing sign to convert
maximization to minimization, we obtain the dual EMP in symmetric form

m

min f

?
i

(y
i

)
(y1,...,y

m

)2S

?

X

i=1

where f

? is the convex conjugate function of f .
i

i
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Polyhedral Approximation Extended Monotropic Programming Special Cases

Optimality Conditions

There are powerful conditions for strong duality q

⇤ = f

⇤ (generalizing
classical monotropic programming results):

Vector Sum Condition for Strong Duality: Assume that for all feasible x , the
set

S

? + @✏(f1 + · · · + f

m

)(x)

is closed for all ✏ > 0. Then q

⇤ = f

⇤.
Special Case: Assume each f

i

is finite, or is polyhedral, or is essentially
one-dimensional, or is domain one-dimensional. Then q

⇤ = f

⇤.
By considering the dual EMP, “finite" may be replaced by “co-finite" in the
above statement.

Optimality conditions, assuming −1 < q

⇤ = f

⇤ < 1:
(x⇤, y

⇤) is an optimal primal and dual solution pair if and only if

x

⇤ 2 S, y

⇤ 2 S

?, y

i

⇤ 2 @f

i

(x
i

⇤), i = 1, . . . , m

Symmetric conditions involving the dual EMP:

x

⇤
S, y

⇤
S

?, x

i

⇤ @f

?(
i

y

i

⇤), i = 1, . . . , m2 2 2
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Polyhedral Approximation Extended Monotropic Programming Special Cases

Outer Linearization of a Convex Function: Definition

Let f : <n 7! (−1,1] be closed proper convex.

Given a finite set Y ⇢ dom(f ?), we define the outer linearization of f

f

Y

(x) = max
˘

f (x
y

) + y

0(x
y2Y

− x

y

)

where x

y

is such that y

¯

2 @f (x
y

).

xxy

f(xy) + y′(x − xy)

f
Y

f
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Polyhedral Approximation Extended Monotropic Programming Special Cases

Inner Linearization of a Convex Function: Definition

Let f : <n 7! (−1,1] be closed proper convex.
Given a finite set X ⇢ dom(f ), we define the inner linearization of f as
t̆he function f̄

X

whose epigraph is the convex hull of the rays
(x , w) | w ≥ f (x), x 2 X

¯
:

(
min P

x X

↵
x

x=z,

P
x X

↵
x

f (z) if z conv(X )
f̄

X

(z) =
P 2

1 0 x X

x2X

↵
x

= , ↵
x

2
≥ , 2

2

1 otherwise

f
fXf

X
x

X
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Polyhedral Approximation Extended Monotropic Programming Special Cases

Polyhedral Approximation Algorithm

Let f

i

: <n

i 7! (−1,1] be closed proper convex, with conjugates f

?
i

.
Consider the EMP

m

min
(x1,...,x

m

)2S

X
f

i

(x
i

)
i=1

Introduce a fixed partition of the index set:

{1 m} I [ I [ Ī I Outer indices ¯, . . . , = , : , I : Inner indices

Typical Iteration: We have finite subsets Y

i

⇢ dom(f ?
i

) for each i

¯
2 I,

and X

i

⇢ dom(f
i

) for each i 2 I.

Find primal-dual optimal pair x̂ = (x̂1, . . . , x̂

m

), and ŷ = (ŷ1, . . . , ŷ

m

) of
the approximate EMP

min
X

f

¯
i

(x
i

) + f

i,Y (x
i

) + f

i,X (x
i

(x1,...,x i

i

)
m

)2S

i2I

X

i2I

X

i2Ī

Enlarge Y

i

and X

i

by differentiation:
For each i 2 I, add ỹ

i

to Y

i

where ỹ

i

2 @f

i

(x̂
i

)
For each i 2 Ī, add x̃

i

to X

i

where x̃

i

2 @f

?(ˆ
i

y

i

).
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Polyhedral Approximation Extended Monotropic Programming Special Cases

Enlargement Step for i th Component Function

Outer: For each i I, add ỹ

i

to Y

i

where ỹ

i

@f

i

(x̂
i

).2 2

New Slope ỹi

Slope ŷi

x̂i

fi(xi)

f
i,Yi

(xi)

Inner: For each i 2 Ī, add x̃

i

to X

i

where x̃

i

2 @f

?
i

(ŷ
i

).

Slope ŷi

Slope ŷi

fi(xi)

x̂i

f i,Xi
(xi)

New Point x̃i

21
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Polyhedral Approximation Extended Monotropic Programming Special Cases

Mathematically Equivalent Dual Algorithm

Instead of solving the primal approximate EMP

min
X

f

¯
i

(x
i

) +
X

f

i,Y (
i

) +
X

i

x

X
f

i,
i

(x
i

)
(x1,...,x

m

)2S

i2I i2I

i2Ī

we may solve its dual

min
X

f

?
i

(y
i

) +
X

f

?
i,Y (

i

y

i

) +
X

f̄

?
i,X

i

(x
i

)
(y1,...,y

m

)2S

?
i2I i2I

i2Ī

where f

? ?
i Y

i

and f̄, i,X
i

are the conjugates of f

¯
i,Y i

i

and f ,X
i

.

Note that f

?
i,Y

i

is an inner linearization, and f̄

?
i,X

i

is an outer linearization
(roles of inner/outer have been reversed).

The choice of primal or dual is a matter of computational convenience,
but does not affect the primal-dual sequences produced.
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Polyhedral Approximation Extended Monotropic Programming Special Cases

Comments on Polyhedral Approximation Algorithm

In some cases we may use an algorithm that solves simultaneously the
primal and the dual.

Example: Monotropic programming, where x

i

is one-dimensional.
Special case: Convex separable network flow, where x

i

is the
one-dimensional flow of a directed arc of a graph, S is the circulation
subspace of the graph.

In other cases, it may be preferable to focus on solution of either the
primal or the dual approximate EMP.
After solving the primal, the refinement of the approximation (ỹ

i

for i

˜ ¯
2 I,

and x

i

for i I) may be found later by differentiation and/or some special
procedure/optimization.

2

This may be easy, e.g., in the cutting plane method, or
This may be nontrivial, e.g., in the simplicial decomposition method.

Subgradient duality [y @f (x) iff x @f

?(y)] may be useful.2 2
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Polyhedral Approximation Extended Monotropic Programming Special Cases

Cutting Plane Method for min
x2C

f (x)

EMP equivalent: min
x1=x2 f (x1) + δ(x2 | C), where δ(x2 | C) is the

indicator function of C.
Classical cutting plane algorithm: Outer linearize f only, and solve the
primal approximate EMP. It has the form

min f

Y

(x)
x2C

where Y is the set of subgradients of f obtained so far. If x̂ is the
solution, add to Y a subgradient ỹ 2 @f (x̂).

x0

f(x)

xx∗

C

x̂1x̂2x̂3

f(x0) + ỹ′
0(x − x0)

f(x̂1) + ỹ′
1(x − x̂1)
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Polyhedral Approximation Extended Monotropic Programming Special Cases

Simplicial Decomposition Method for min
x2C

f (x)

EMP equivalent: min
x1=x2 f (x1) + δ(x2 | C), where δ(x2 | C) is the

indicator function of C.

Generalized Simplicial Decomposition: Inner linearize C only, and solve
the primal approximate EMP. In has the form

min f (x)
x2C̄

X

where C̄

X

is an inner approximation to C.

Assume that x̂ is the solution of the approximate EMP.
Dual approximate EMP solutions:

(ŷ ,−ŷ) | ŷ 2 @f (x̂), −ŷ 2 (normal cone of C̄

X

at x̂)

In the classical

˘

case where f is differentiable, ŷ = rf (x̂).

¯

Add to X a point x̃ such that −ŷ 2 @δ(x̃ | C), or

x̃ arg min ŷ

0
x2

x2C254



Polyhedral Approximation Extended Monotropic Programming Special Cases

Illustration of Simplicial Decomposition for min
x2C

f (x)

Level sets of f

C

Level sets of f

x0

conv(Xk)

x∗

C

ŷk+1

ŷk

Dierentiable f Nondierentiable f

x̃k+1

x̂k+1

x̂k

x̃1

x̃2

x̃3

x̃4

x̂1

x̂2

x̂3

x̂4 = x∗

∇f(x̂1)

∇f(x̂2)

x0

∇f(x0)

∇f(x̂3)
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Polyhedral Approximation Extended Monotropic Programming Special Cases

Dual Views for min
x2<n

f1(x) + f2(x)

Inner linearize f2

�  

> 0 x

Const. − f1(x)

f2(x)

x̂

Slope: − ŷ

f̄2,X2(x)

x̃

Dual view: Outer linearize f

?
2

− gk Constant − f
1 ()

f
2 (−)

F
2,k(−)

Slope: x̃i, i ≤ k
Slope: x̃i, i ≤ k

Slope: x̃k+1
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Polyhedral Approximation Extended Monotropic Programming Special Cases

Convergence - Polyhedral Case

Assume that
All outer linearized functions f

i

are finite polyhedral
All inner linearized functions f

i

are co-finite polyhedral
The vectors ỹ

i

and x̃

i

added to the polyhedral approximations are element
of the finite representations of the corresponding f

i

Finite convergence: The algorithm terminates with an optimal
primal-dual pair.

Proof sketch: At each iteration two possibilities:
Either (x̂ , ŷ) is an optimal primal-dual pair for the original problem
Or the approximation of one of the f

i

, i 2 I [ Ī, will be refined/improved

By assumption there can be only a finite number of refinements.

s
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Polyhedral Approximation Extended Monotropic Programming Special Cases

Convergence - Nonpolyhedral Case

Convergence, pure outer linearization (̄I: Empty). Assume that the
sequence {ỹ

k

i

} is bounded for every i 2 I. Then every limit point of {x̂

k}
is primal optimal.

Proof sketch: For all k , `  k − 1, and x 2 S, we have

X
f

k

i

(x̂
i

)+
X ` m

f −x

`
i

(x̂`
i

)+(xk

î î

)0ỹ`
i

´


X
f

k k

i

(x̂
i

)+
X

f

k 1(
i Y

x̂

i

)
, −

i

i2/I

i2I

i2/

 f

i

(x
i

)
I

i2I

X

i=1

Let {x̂

k}K ! x̄ and take limit as ` ! 1, k 2 K, ` 2 K, ` < k .

Exchanging roles of primal and dual, we obtain a convergence result for
pure inner linearization case.

Convergence, pure inner linearization (I: Empty). Assume that the
sequence {x̃

k

i

} is bounded for every i 2 Ī. Then every limit point of {ŷ

k}
is dual optimal.

General mixed case: Convergence proof is more complicated (see the
Bertsekas and Yu paper). 258



Polyhedral Approximation Extended Monotropic Programming Special Cases

Concluding Remarks

A unifying framework for polyhedral approximations based on EMP.

Dual and symmetric roles for outer and inner approximations.

There is option to solve the approximation using a primal method or a
dual mathematical equivalent - whichever is more convenient/efficient.

Several classical methods and some new methods are special cases.
Proximal/bundle-like versions:

Convex proximal terms can be easily incorporated for stabilization and for
improvement of rate of convergence.
Outer/inner approximations can be carried from one proximal iteration to the
next.
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LECTURE 19

LECTURE OUTLINE

• Proximal minimization algorithm

• Extensions

********************************************

Consider minimization of closed proper convex f :
�n → (−⇣,+⇣] using a different type of approx-
imation:

• Regularization in place of linearization

• Add a quadratic term to f to make it strictly
convex and “well-behaved”

• Refine the approximation at each iteration by
changing the quadratic term

◆
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PROXIMAL MINIMIZATION ALGORITHM

• A general algorithm for convex fn minimization

1
xk+1 ⌘ arg min

x⌦�n

�
f(x) +

2ck
�x− xk�2

�

− f : �n → (−⇣,⇣] is closed proper convex

− ck is a positive scalar parameter

− x0 is arbitrary starting point

◆

k

k − 1
2ck

⇥x − xk⇥2

f(x)

xxk+1xk x

f(xk)

• xk+1 exists because of the quadratic.

• Note it does not have the instability problem of
cutting plane method

• If xk is optimal, xk+1 = xk.

• If k ck = ⇣, f(xk) → f⇤ and {xk} converges
to some optimal solution if one exists.

�
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CONVERGENCE

k

k − 1
2ck

⇥x − xk⇥2

f(x)

xxk+1xk x

f(xk)

• Some basic properties: For all k

(xk − xk+1)/ck ⌘ ◆f(xk+1)

so xk to xk+1 move is “nearly” a subgradient step.

• For all k and y ⌘ �n

⇠xk+1

−y⇠2 ⌃ ⇠xk−y⇠2−2ck

�
f(xk+1

)−f(y)
⇥
−⇠x 2

k−xk+1

⇠

Distance to the optimum is improved.

• Convergence mechanism:

1
f(xk+1) + �x �2k+1 − xk < f(xk).

2ck

Cost improves by at least 1 xk+1 x 2
k2ck

� − � , and
this is su⌅cient to guarantee convergence.
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RATE OF CONVERGENCE I

• Role of penalty parameter ck:

f(x)

xxk+1xk xxk+2

f(x)

xxk+1
xk xxk+2

• Role of growth properties of f near optimal
solution set:

f(x)

xxk+1xk xxk+2

f(x)

xxk+1xk x
xk+2

263



RATE OF CONVERGENCE II

• Assume that for some scalars ⇥ > 0, ⌅ > 0, and
α ≥ 1,

f⇤ + ⇥
�
d(x)

⇥α ⌥ f(x),  x ⌘ �n with d(x) ⌥ ⌅

where
d(x) = min �x− x⇤

x⇤⌦X⇤
�

i.e., growth of order α from optimal solution
set X⇤.

• If α = 2 and limk c⌃ k = c̄, then

d(x
lim sup k+1) 1

k d(x⌃ k)
⌥

1 + ⇥c̄

linear convergence.

• If 1 < α < 2, then

d(x
lim sup k+1)

k⌃ 
� <

1/(α 1)
d(xk)

⇥ − ⇣

superlinear convergence.

264



FINITE CONVERGENCE

• Assume growth order α = 1:

f⇤ + ⇥d(x) ⌥ f(x),  x ⌘ �n,

e.g., f is polyhedral.

f(x)

x
X

f

f + d(x)

Slope Slope

• Method converges finitely (in a single step for
c0 su⌅ciently large).

f(x)

x

f(x)

xxx0x0 x1 x2 = x
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IMPORTANT EXTENSIONS

• Replace quadratic regularization by more gen-
eral proximal term.

• Allow nonconvex f .

f(x)

xxk+1xk xxk+2

k  Dk(x, xk)

k+1  Dk+1(x, xk+1)

k

k+1

• Combine with linearization of f (we will focus
on this first).
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LECTURE 20

LECTURE OUTLINE

• Proximal methods

• Review of Proximal Minimization

• Proximal cutting plane algorithm

• Bundle methods

• Augmented Lagrangian Methods

• Dual Proximal Minimization Algorithm

*****************************************

• Method relationships to be established:

Proximal Method
Outer Linearization

Inner Linearization

Fenchel
Duality

Dual Proximal Method

Proximal Cutting 
Plane/Bundle Method

Proximal Simplicial 
Decomp/Bundle Method

Fenchel
Duality
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RECALL PROXIMAL MINIMIZATION

k

k − 1
2ck

⇥x − xk⇥2

f(x)

xxk+1xk x

f(xk)

Slope ⇥k+1

Optimal primal
proximal solution

proximal solution
Optimal dual

• Minimizes closed convex proper f :

xk+1 = arg min
x⌦�n

�
1

f(x) +
2ck
�x− xk�2

�

where x0 is an arbitrary starting point, and {ck}
is a positive parameter sequence.

• We have f(xk) → f⇤. Also xk → some mini-
mizer of f , provided one exists.

• Finite convergence for polyhedral f .

• Each iteration can be viewed in terms of Fenchel
duality.
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PROXIMAL/BUNDLE METHODS

• Replace f with a cutting plane approx. and/or
change quadratic regularization more conservatively.

• A general form:

xk+1 ⌘ arg min
⇤
Fk(x) + pk(x)

x⌦X

⌅

Fk(x) = max
⇤
f(x

0

)+(x−x
0

)⇧g
0

, . . . , f(xk)+(x−xk)⇧gk

1
pk(x) = x y 2

k

⌅

2ck
⇠ − ⇠

where ck is a positive scalar parameter.

• We refer to pk(x) as the proximal term, and to
its center yk as the proximal center .

f(x)

xxk+1 xyk

Fk(x)

k  pk(x)

k

Change yk in different ways => different methods.
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PROXIMAL CUTTING PLANE METHODS

• Keeps moving the proximal center at each iter-
ation (yk = xk)

• Same as proximal minimization algorithm, but
f is replaced by a cutting plane approximation
Fk:

xk+1

✏ arg min
x⌥X

�
1

Fk(x) +
2ck

⇠x− xk⇠2
 

where

Fk(x) = max f(x
0

)+(x−x
0

)⇧g
0

, . . . , f(xk)+(x−xk)⇧gk

• Drawbacks:

⇤ ⌅

(a) Stability issue: For large enough ck and
polyhedral X, xk+1

is the exact minimum
of Fk over X in a single minimization, so
it is identical to the ordinary cutting plane
method. For small ck convergence is slow.

(b) The number of subgradients used in Fk

may become very large; the quadratic pro-
gram may become very time-consuming.

• These drawbacks motivate algorithmic variants,
called bundle methods.
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BUNDLE METHODS

• Allow a proximal center yk = xk:

xk+1

✏ arg min F
x⌥X

⇤
k(x) + pk(x)

⌅

Fk(x) = max
⇤
f(x

0

)+(x−x
0

)⇧g
0

, . . . , f(xk)+(x−xk)⇧gk

1
pk(x) = ⇠x− y 2

k

⌅

2ck
⇠

• Null/Serious test for changing yk: For some
fixed ⇥ ✏ (0, 1)

yk+1

=

�
xk+1

if f(yk)− f(xk+1

) ⌥ ⇥⌅k,
yk if f(yk)− f(xk+1

) < ⇥⌅k,

⌅k = f(yk) Fk(xk+1

) + pk(xk+1

) > 0

⇣

−
� ⇥

Serious Step

k

f(yk)  f(xk+1)

xyk yk+1 = xk+1

f(x)k

Fk(x)

f(yk)  f(xk+1)

xyk yk+1 = xk+1

Null Step

f(x)

k
Fk(x)

f(yk)  f(xk+1)

xxk+1yk = yk+1
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REVIEW OF FENCHEL DUALITY

• Consider the problem

minimize f
1

(x) + f
2

(x)

subject to x ✏ ◆n,

where f
1

and f
2

are closed proper convex.

• Duality Theorem:

(a) If f⇥ is finite and ri
�
dom(f

1

)
⇥
 ri
�
dom(f

2

) =
Ø, then strong duality holds and there exists
at least one dual optimal solution.

⇥

(b) Strong duality holds, and (x⇥,⌥⇥) is a primal
and dual optimal solution pair if and only if

x⇥ ✏ arg min
⇤
f
1

(x)−x⇧⌥⇥
⌅
, x⇥ ✏ arg min f

x⌥ n x⌥ n

⇤
2

(x)+x⇧⌥⇥
⌅

• By Fenchel inequality, the last condition is equiv-
alent to

⌥⇥ ✏ ✏f
1

(x⇥) [or equivalently x⇥ ✏ ✏f⌥
1

(⌥⇥)]

and

−⌥⇥ ✏ ✏f
2

(x⇥) [or equivalently x⇥ ✏ ✏f⌥
2

(−⌥⇥)]

⇣
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GEOMETRIC INTERPRETATION

• When f
1

and/or f
2

are differentiable, the opti-
mality condition is equivalent to

⌥⇥ = ⇢f
1

(x⇥) and/or ⌥⇥ = −⇢f
2

(x⇥)
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Slope

Slope

x x

f1(x)

f2(x)

q()

f = q

f
1 ()

f
2 ()



DUAL PROXIMAL MINIMIZATION

• The proximal iteration can be written in the
Fenchel form: minx{f1

(x) + f
2

(x)} with

1
f
1

(x) = f(x), f
2

(x) =
2ck

⇠x− xk⇠2

• The Fenchel dual is

minimize f⌥
1

(⌥) + f⌥
2

(−⌥)

subject to ⌥ ✏ ◆n

• We have f⌥
2

(−⌥) = −x⇧k⌥ + ck
2

⇠⌥⇠2, so the dual
problem is

minimize f⌥ c
(⌥)− x⇧

k
k⌥+

2
⇠⌥⇠2

subject to ⌥ ✏ ◆n

where f⌥ is the conjugate of f .

• f
2

is real-valued, so no duality gap.

• Both primal and dual problems have a unique
solution, since they involve a closed, strictly con-
vex, and coercive cost function.
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DUAL PROXIMAL ALGORITHM

• Can solve the Fenchel-dual problem instead of
the primal at each iteration:

⌥ ⌥ ck
2

k+1

= arg min f
⌥ n

�
(⌥)− x⇧k⌥+

2
⇠⌥

⇤
⇠
 

(1)

• Lagragian optimality conditions:

xk+1

✏ arg max
x⌥ n

⇤
x⇧⌥k+1

− f(x)

1

⌅

xk+1

= arg min x
x⌥ n

�
⇧⌥k+1

+ k
ck
⇠x− x

2
⇠2

or equivalently,

 

x
⌥k+1

✏ k
✏f(xk+1

), ⌥k+1

=
− xk+1

ck

• Dual algorithm: At iteration k, obtain ⌥k+1

from the dual proximal minimization (1) and set

xk+1

= xk − ck⌥k+1

• As xk converges to a primal optimal solution x⇥,
the dual sequence ⌥k converges to 0 (a subgradient
of f at x⇥).
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VISUALIZATION

k

k − 1
2ck

⇥x − xk⇥2

f(x)

xxk+1xk

x∗

Slope = xk
Slope = xk+1

⇤k+1

Slope = x∗

⇥k

⇥k + x⇥
k⇤ − ck

2
⇥⇤⇥2

Primal Proximal Iteration Dual Proximal Iteration

f(⇤)

• The primal and dual implementations are
mathematically equivalent and generate iden-
tical sequences {xk}.

• Which one is preferable depends on whether f
or its conjugate f⌥ has more convenient structure.

• Special case: When −f is the dual function of
the constrained minimization ming(x)

F (x), the⇤0

dual algorithm is equivalent to an important gen-
eral purpose algorithm: the Augmented Lagrangian
method.

• This method aims to find a subgradient of the
primal function p(u) = ming(x)⇤u F (x) at u = 0
(i.e., a dual optimal solution).

276



AUGMENTED LAGRANGIAN METHOD

• Consider the convex constrained problem

minimize f(x)

subject to x ✏ X, Ex = d

• Primal and dual functions:

p(u) = inf f(x), q(µ) = inf f(x)+µ⇧(Ex d)
x2X x

Ex−d=u
⌥X

−

• Assume p: closed, so (q, p) are

⇤

“conjugate” pair.

⌅

• Proximal algorithms for maximizing q:
�

1
µk+1

= arg max q(µ)
µ⌥ m

−
2ck

⇠µ− µk⇠2
 

uk+1

= arg min
u⌥ m

Dual update: µ =

�
c⇧ k

p(u) + µku +
2
⇠u⇠2

k+1

µ

 

k + ckuk+1

• Implementation:

uk+1

= Exk+1

− d, xk+1

✏ arg min Lck (x, µk)
x⌥X

where Lc is the Augmented Lagrangian function
c

Lc(x, µ) = f(x) + µ⇧(Ex− d) +
2
⇠Ex− d⇠2

277



GRADIENT INTERPRETATION

• Back to the dual proximal algorithm and the
dual update x

⌥ = k−xk+1
k+1 ck

• Proposition: ⌥k+1

can be viewed as a gradient:

xk
⌥k+1

=
− xk+1

=
c

⇢ ck (xk),

where
k

1
 c(z) = inf f(x) + 2

x⌥ n 2
⇠x− z

c
⇠

�  

f(x)

xx

f(z)

c(z)

xc(z)z

c(z) − 1
2c

⇥x − z⇥2

Slope ⇤c(z)

• So the dual update xk+1

= xk − ck⌥k+1

can be
viewed as a gradient iteration for minimizing  c(z)
(which has the same minima as f).

• The gradient is calculated by the dual prox-
imal minimization. Possibilities for faster meth-
ods (e.g., Newton, Quasi-Newton). Useful in aug-
mented Lagrangian methods.
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PROXIMAL LINEAR APPROXIMATION

• Convex problem: Min f : ◆n ⌘⌦ ◆ over X.

• Proximal outer linearization method: Same
as proximal minimization algorithm, but f is re-
placed by a cutting plane approximation Fk:

1
xk+1

✏ arg min
x⌥ n

�
Fk(x) + x x 2

k
2ck

⇠ − ⇠

x

 

k
⌥k+1

=
− xk+1

ck

where gi ✏ ✏f(xi) for i ⌃ k and

Fk(x) = max
⇤

f(x
0

)+(x−x
0

)⇧g
0

, . . . , f(xk)+(x−xk)⇧gk

x

⌅
+⇥X(x)

• Pro imal Inner Linearization Method (Dual
proximal implementation): Let F ⌥

k be the con-
jugate of Fk. Set

⌥k+1

✏ arg min
⇤⌥ n

�
F ⌥ c

k (⌥)− k
x⇧k⌥+

2
⇠⌥⇠2

xk+1

= xk c

 

− k⌥k+1

Obtain gk+1

✏ ✏f(xk+1

), either directly or via

gk+1

✏ arg max
⇤
xk
⇧ ⌥
+1

⌥
⇤⌥ n

− f (⌥)

• Add gk+1

to the outer linearization,

⌅

or xk+1

to
the inner linearization, and continue.
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PROXIMAL INNER LINEARIZATION

• It is a mathematical equivalent dual to the outer
linearization method.

Slope = xk

Slope = xk+1

gk+1

f()F
k ()

• Here we use the conjugacy relation between
outer and inner linearization.

• Versions of these methods where the proximal
center is changed only after some “algorithmic
progress” is made:
− The outer linearization version is the (stan-

dard) bundle method.
− The inner linearization version is an inner

approximation version of a bundle method.
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LECTURE 21

LECTURE OUTLINE

• Generalized forms of the proximal point algo-
rithm

• Interior point methods

• Constrained optimization case - Barrier method

• Conic programming cases
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GENERALIZED PROXIMAL ALGORITHM

• Replace quadratic regularization by more gen-
eral proximal term.

• Minimize possibly nonconvex f :⌘⌦ (−∞,∞].

f(x)

xxk+1xk xxk+2

k  Dk(x, xk)

k+1  Dk+1(x, xk+1)

k

k+1

• Introduce a general regularization term Dk :
◆2n ⌘⌦ (−∞,∞]:

xk+1

✏ arg min f(x) + Dk(x, xk)
x⌥ n

⇤ ⌅

• Assume attainment of min (but this is not au-
tomatically guaranteed)

• Complex/unreliable behavior when f is noncon-
vex
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SOME GUARANTEES ON GOOD BEHAVIOR

• Assume

Dk(x, xk) ⌥ Dk(xk, xk), ✓ x ✏ ◆n, k (1)

Then we have a cost improvement property:

f(xk+1

) ⌃ f(xk+1

) + Dk(xk+1

, xk)−Dk(xk, xk)

⌃ f(xk) + Dk(xk, xk)−Dk(xk, xk)

= f(xk)

• Assume algorithm stops only when xk in optimal
solution set X⇥, i.e.,

xk ✏ arg min f(x) + Dk(x, xk) xk X⇥
x⌥ n

⇤
} ⇒ ✏

• Then strict cost improvement for xk ✏/ X⇥

• Guaranteed if f is convex and

(a) Dk(·, xk) satisfies (1), and is convex and dif-
ferentiable at xk

(b) We have

ri dom(f)  ri dom(Dk(·, xk)) = Ø
� ⇥ � ⇥

⇣
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EXAMPLE METHODS

• Bregman distance function

1
Dk(x, y) =

�
 (x)−  (y)−⇢ (y)⇧(x

ck
− y)

⇥
,

where  : ◆n ⌘⌦ (−∞,∞] is a convex function, dif-
ferentiable within an open set containing dom(f),
and ck is a positive penalty parameter.

• Majorization-Minimization algorithm:

Dk(x, y) = Mk(x, y)−Mk(y, y),

where M satisfies

Mk(y, y) = f(y), ✓ y ✏ ◆n, k = 0, 1,

Mk(x, xk) ⌥ f(xk), ✓ x ✏ ◆n, k = 0, 1, . . .

• Example for case f(x) = R(x)+⇠Ax−b⇠2, where
R is a convex regularization function

M(x, y) = R(x) + ⇠Ax− b⇠2−⇠Ax−Ay⇠2 + ⇠x− y⇠2

• Expectation-Maximization (EM) algorithm (spe-
cial context in inference, f nonconvex)
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INTERIOR POINT METHODS

• Consider min f(x) s. t. gj(x) ⌃ 0, j = 1, . . . , r

• A barrier function, that is continuous and
goes to ∞ as any one of the constraints gj(x) ap-
proaches 0 from negative values; e.g.,

r

B(x) = −

Barrier

⌧
ln

j=1

⇤
−gj(x)

⌅
, B(x) = −

method: Let

⌧r
1

.
gj(x)

j=1

•

xk = arg min f(x) + ⇧kB(x) , k = 0, 1, . . . ,
x⌥S

where S =

⇤ ⌅

{x | gj(x) < 0, j = 1, . . . , r} and the
parameter sequence {⇧k} satisfies 0 < ⇧k+1

< ⇧k for
all k and ⇧k 0.⌦

!

"#$%&'()*#+*! "#$%&'()*#+*!

, "-./

,0 "-./
,0*1*,

Boundary of SBoundary of S

 <
B(x)

B(x)

S
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BARRIER METHOD - EXAMPLE

2.05 2.1 2.15 2.2 2.25
-1

-0.5

0

0.5

1

2.05 2.1 2.15 2.2 2.25
-1

-0.5

0

0.5

1

minimize f(x) = 1
2 (x1)2 + (x2)2

subject to 2 ⌃ x1,

with optimal solution x⇥ = (2, 0).

• Logarithmic barrier: 1

• We have xk =

xk ✏ arg min 1
21x >2

�
B(x) = − ln (x − 2)

1 +
⇡

1 + ⇧k , 0 from
⇤ �

(x1)2 + (x2)2

⇥
⇥
− ⇧k ln (x1 − 2)

• As ⇧k is decreased, the unconstrained minim

⌅

um
xk approaches the constrained minimum x⇥ = (2, 0).

• As ⇧k ⌦ 0, computing xk becomes more di⌅cult
because of ill-conditioning (a Newton-like method
is essential for solving the approximate problems).

� ⇥
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CONVERGENCE

• Every limit point of a sequence {xk} generated
by a barrier method is a minimum of the original
constrained problem.

Proof: Let {x} be the limit of a subsequence {xk}k⌥K .
Since xk ✏ S and X is closed, x is feasible for the
original problem.

If x is not a minimum, there exists a feasible
x⇥ such that f(x⇥) < f(x) and therefore also an
interior point x̃ ✏ S such that f(x̃) < f(x). By the
definition of xk,

f(xk) + ⇧kB(xk) ⌃ f(x̃) + ⇧kB(x̃), ✓ k,

so by taking limit

f(x) + lim inf ⇧kB(xk)
k⌅⌃, k⌥K

⌃ f(x̃) < f(x)

Hence lim infk⌅⌃, k ⇧ B(x ) < 0.⌥K k k

If x ✏ S, we have limk⌅⌃, k⌥K ⇧kB(xk) = 0,
while if x lies on the boundary of S, we have by
assumption limk⌅⌃, k⌥K B(xk) =∞. Thus

lim inf ⇧kB(xk)
k⌅⌃

⌥ 0,

– a contradiction.
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SECOND ORDER CONE PROGRAMMING

• Consider the SOCP

minimize c⇧x

subject to Aix− bi ✏ Ci, i = 1, . . . , m,

where x ✏ ◆n, c is a vector in ◆n, and for i =
1, . . . , m, Ai is an ni ⇤ n matrix, bi is a vector in
◆ni , and Ci is the second order cone of ◆ni .

• We approximate this problem with

m

minimize c⇧x + ⇧k
⌧

Bi(Aix− bi)

i=1

subject to x ✏ ◆n, Aix− bi ✏ int(Ci), i = 1, . . . , m,

where Bi is the logarithmic barrier function:

Bi(y) = − ln
�
y2

ni
− (y2

1

+ · · ·+ y2

ni−1

) , y ✏ int(Ci),

and {⇧k} is a positive sequence with

⇥

⇧k ⌦ 0.

• Essential to use Newton’s method to solve the
approximating problems.

• Interesting complexity analysis
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SEMIDEFINITE PROGRAMMING

• Consider the dual SDP

maximize b⇧⌥

subject to D − (⌥
1

A
1

+ · · · + ⌥mAm) ✏ C,

where b ✏ ◆m, D, A
1

, . . . , Am are symmetric ma-
trices, and C is the cone of positive semidefinite
matrices.

• The logarithmic barrier method uses approxi-
mating problems of the form

maximize b⇧⌥+⇧k ln det(D−⌥
1

A
1

− · · ·−⌥mAm)

over all ⌥ m

� ⇥

✏ ◆ such that D− (⌥
1

A
1

+ · · ·+⌥mAm)
is positive definite.

• Here ⇧k > 0 and ⇧k ⌦ 0.

• Furthermore, we should use a starting point
such that D − ⌥

1

A
1

− · · · − ⌥mAm is positive def-
inite, and Newton’s method should ensure that
the iterates keep D−⌥

1

A
1

− · · ·−⌥mAm within the
positive definite cone.
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LECTURE 22

LECTURE OUTLINE

• Incremental methods

• Review of large sum problems

• Review of incremental gradient and subgradient
methods

• Combined incremental subgradient and proxi-
mal methods

• Convergence analysis

• Cyclic and randomized component selection

• References:

(1) D. P. Bertsekas, “Incremental Gradient, Sub-
gradient, and Proximal Methods for Convex
Optimization: A Survey”, Lab. for Informa-
tion and Decision Systems Report LIDS-P-
2848, MIT, August 2010

(2) Published versions in Math. Programming
J., and the edited volume “Optimization for
Machine Learning,” by S. Sra, S. Nowozin,
and S. J. Wright, MIT Press, Cambridge,
MA, 2012.
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LARGE SUM PROBLEMS

• Minimize over X  ◆n

m

f(x) =
⌧

fi(x), m is very large,
i=1

where X, fi are convex. Some examples:

• Dual cost of a separable problem.

• Data analysis/machine learning: x is parame-
ter vector of a model; each fi corresponds to error
between data and output of the model.
− Least squares problems (fi quadratic).
− !

1

-regularization (least squares plus !
1

penalty):

min ⇤
x

The nondifferenti

⌧n ⌧m
|xj | + (c⇧ix− di)

2

j=1 i=1

able penalty tends to set a large
number of components of x to 0.

• Min of an expected value minx E
⇤
F (x, w)

⌅
-

Stochastic programming:

min

↵
F

1

(x) + Ew{min F
2

(x, y, w)
x y

⌅�

• More (many constraint problems, distributed
incremental optimization ...)
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INCREMENTAL SUBGRADIENT METHODS

• The special structure of the sum

m

f(x) =
⌧

fi(x)

i=1

can be exploited by incremental methods.

• We first consider incremental subgradient meth-
ods which ˜move x along a subgradient ⇢fi of a
component function fi NOT the (expensive) sub-
gradient of f , which is

�
˜

i
⇢fi.

• At iteration k select a component ik and set

xk+1

= PX

�
xk − ˜αk⇢fik (xk)

with ˜ fi (xk) being a subgradient of

⇥
,

⇢ k fik at xk.

• Motivation is faster convergence. A cycle
can make much more progress than a subgradient
iteration with essentially the same computation.
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CONVERGENCE PROCESS: AN EXAMPLE

• Example 1: Consider

1
min (1
x⌥ 2

⇤
− x)2 + (1 + x)2

⌅

• Constant stepsize: Convergence to a limit cycle

• Diminishing stepsize: Convergence to the opti-
mal solution

• Example 2: Consider

min 1 +
x

⇤
+

⌥ 
|1− x| | x| + |x|

⌅

• Constant stepsize: Convergence to a limit cycle
that depends on the starting point

• Diminishing stepsize: Convergence to the opti-
mal solution

• What is the effect of the order of component
selection?
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CONVERGENCE: CYCLIC ORDER

• Algorithm

xk+1

= PX

�
xk − ˜αk⇢fik (xk)

• Assume all subgradients generated b

⇥

y the algo-
rithm are bounded: ⇠⇢̃fik (xk)⇠ ⌃ c for all k

• Assume components are chosen for iteration
in cyclic order, and stepsize is constant within a
cycle of iterations (for all k with ik = 1 we have
αk = αk+1

= . . . = αk+m−1

)

• Key inequality: For all y ✏ X and all k that
mark the beginning of a cycle

⇠xk+m−y⇠2 ⌃ ⇠x 2

k−y⇠ −2αk

�
f(xk)−f(y)

⇥
+α2

km2c2

• Result for a constant stepsize αk ⇧ α:

m2c2

lim inf f(xk) ⇥ + α
k⌅⌃

⌃ f
2

• Convergence for αk ↵ 0 with
�⌃

αk =
k=0

∞.
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CONVERGENCE: RANDOMIZED ORDER

• Algorithm

xk+1

= PX

�
xk − ˜αk⇢fik (xk)

⇥

• Assume component ik chosen for iteration in
randomized order (independently with equal prob-
ability)

• Assume all subgradients generated by the algo-
rithm are bounded: ⇠⇢̃fik (xk)⇠ ⌃ c for all k

• Result for a constant stepsize αk ⇧ α:

mc2

lim inf f(xk) ⌃ f⇥ + α
k⌅⌃ 2

(with probability 1)

• Convergence for αk ↵ 0 with
�⌃

αk =
(with probability 1)

k=0

∞.

• In practice, randomized stepsize and variations
(such as randomization of the order within a cycle
at the start of a cycle) often work much faster
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PROXIMAL-SUBGRADIENT CONNECTION

• Key Connection: The proximal iteration

x = arg min
�

1
f(x) + ⇠x− x ⇠2k+1 k

x⌥X 2αk

 

can be written as

xk+1

= PX

where ˜ f(xk+1

) is some

�
⇢̃xk − αk f(xk+1

)
⇥

⇢ subgradient of f at xk+1

.

• Consider an incremental proximal iteration for
m

minx X

�
f⌥ i(x)

i=1

1
xk+1

= arg min fik (x) + x x 2

k
x⌥X

�
2αk

⇠ − ⇠
 

• Motivation: Proximal methods are more “sta-
ble” than subgradient methods

• Drawback: Proximal methods require special
structure to avoid large overhead

• This motivates a combination of incremental
subgradient and proximal
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INCR. SUBGRADIENT-PROXIMAL METHODS

• Consider the problem

m
def

min F (x) = Fi(x)
x⌥X

⌧

i=1

where for all i,

Fi(x) = fi(x) + hi(x)

X, fi and hi are convex.

• We consider combinations of subgradient and
proximal incremental iterations

1
zk = arg min

�
fik (x) +

x⌥X 2αk
⇠x− xk⇠2

 

xk+1

= PX

�
zk − ⇢̃αk hik (zk)

• Variations:

⇥

− Min. over ◆n (rather than X) in proximal
− Do the subgradient without projection first

and then the proximal

• Idea: Handle “favorable” components fi with
the more stable proximal iteration; handle other
components hi with subgradient iteration.
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CONVERGENCE: CYCLIC ORDER

• Assume all subgradients generated by the algo-
rithm are bounded: ⇠⇢̃fi (xk)⇠ ⌃ ˜c, ⇠⇢hi (xk)⇠ ⌃
c for all k, plus mild additional

k

conditions
k

• Assume components are chosen for iteration in
cyclic order, and stepsize is constant within a cycle
of iterations

• Key inequality: For all y ✏ X and all k that
mark the beginning of a cycle:

⇠x 2

k − 2

+m y⇠ ⌃ ⇠xk−y⇠ −2αk

�
F (xk)−F (y)

⇥
+⇥α2

km2c2

where ⇥ is a (small) constant

• Result for a constant stepsize αk ⇧ α:

m2c2

lim inf f(xk) ⌃ f⇥ + α⇥
k⌅⌃ 2

• Convergence for αk ↵ 0 with
�⌃

αk =
k=0

∞.
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CONVERGENCE: RANDOMIZED ORDER

• Result for a constant stepsize αk ⇧ α:

mc2

lim inf f(xk) f⇥ + α⇥
k⌅⌃

⌃
2

(with probability 1)

• Convergence for αk ↵ 0 with
�⌃

αk =
k=0

∞.
(with probability 1)
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EXAMPLE

• !
1

-Regularization for least squares with large
number of terms

m
1

min ⇤
x⌥ n

✏
⇠x⇠

1

+
2

⌧
(c⇧ix− di)

2

i=1

⇣

• Use incremental gradient or proximal on the
quadratic terms

• Use proximal on the ⇠x⇠
1

term:

1
zk = arg min ⇤

x⌥ n

�
⇠x⇠

1

+ x
αk
⇠x

2
− k⇠2

 

• Decomposes into the n one-dimensional mini-
mizations

zj
k = arg min

xj⌥ 

�
1

⇤ |xj | +
2αk

|xj − xj
k|

2

 
,

and can be done in closed form

✏
xj

k
j

− ⇤αk if ⇤αk ⌃ xj
k,

zk = 0 if −⇤αk < xj < ⇤αkk ,
xj

k + ⇤αk if xj
k ⌃ −⇤αk.

Note that “small” coordinates xj
k are set to 0.•
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LECTURE 23

LECTURE OUTLINE

• Review of subgradient methods

• Application to differentiable problems - Gradi-
ent projection

• Iteration complexity issues

• Complexity of gradient projection

• Projection method with extrapolation

• Optimal algorithms

******************************************

• Reference: The on-line chapter of the textbook
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SUBGRADIENT METHOD

• Problem: Minimize convex function f : ◆n ⌘⌦ ◆
over a closed convex set X.

• Subgradient method - constant step α:

− ⇢̃xk+1

= PX xk αk f(xk) ,

where ⇢̃f(xk) is a subgradien

�

t of f at x

⇥

k, and PX(·)
is projection on X.

• Assume ⇠⇢̃f(xk)⇠ ⌃ c for all k.

• Key inequality: For all optimal x⇥

⇠xk+1

− x⇥⇠2 ⌃ ⇠xk − x⇥⇠2 − 2α
�
f(xk)− f⇥ + α2c2

• Convergence to a neighborhood result:

⇥

αc2

lim inf f(xk) ⌃ f⇥ +
k⌅⌃ 2

• Iteration complexity result: For any ⇧ > 0,
αc2 + ⇧

min f(xk) ⌃ f⇥ + ,
0⇤k⇤K 2

where K =
�

minx
⇤ 2⇤2X⇤ ↵x0−x ↵

.
α⇥

• For α = ⇧/c2, we need O(1/

�

⇧2) iterations to get
within ⇧ of the optimal value f⇥.
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GRADIENT PROJECTION METHOD

• Let f be differentiable and assume

• Gradien

⌃⌃⇢f(x)−⇢f(y)

t projection

⌃⌃ ⌃ L ⇠x− y⇠, ✓ x, y ✏ X

method:

xk+1

= PX

�
xk − α⇢f(xk)

• Define the linear approximation fun

⇥

ction at x

!(y; x) = f(x) +⇢f(x)⇧(y − x), y ✏ ◆n

• First key inequality: For all x, y ✏ X

L
f(y) ⌃ !(y; x) +

2
⇠y − x⇠2

• Using the projection theorem to write

�
xk − α⇢f(xk)− xk+1

⇥⇧
(xk − xk+1

) ⌃ 0,

and then the 1st key inequality, we have

1 L
f(xk+1

) ⌃ f(xk)−

so

⌥
α
−

2

�
⇠xk+1

− xk⇠2

there is cost reduction for α ✏ 0, 2

L

� ⇥

303



ITERATION COMPLEXITY

• Connection with proximal algorithm

y = arg min
�

1
!(z; x) + ⇠z − x⇠2 =

z⌥X 2α

 
PX

�
x−α⇢f(x)

• Second� key⇥inequality: For any x ✏ X, if y =

⇥

PX x− α⇢f(x) , then for all z ✏ X, we have

1 1 1
!(y; x)+

2α
⇠y−x⇠2 ⌃ !(z; x)+

2α
⇠z−x⇠2−

2α
⇠z−y⇠2

• Complexity Estimate: Let the stepsize of the
method be α = 1/L. Then for all k

L minx⇤ X⇤ ⇠x 2

0

f(xk)− f⇥ ⌃ ⌥ − x⇥⇠
2k

• Thus, we need O(1/⇧) iterations to get within ⇧
of f⇥. Better than nondierentiable case.

• Practical implementation/same complexity: Start
with some α and reduce it by some factor as many
times as necessary to get

1
f(xk+1

) ⌃ !(xk ; xk) +
2α
⇠x 2

+1 k+1

− xk⇠
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SHARPNESS OF COMPLEXITY ESTIMATE

f(x)

x0 

Slope c

• Unconstrained minimization of
�

c |x|2 if |x ⇧
f(x) = 2

| ⌃ ,
2

c⇧|x|− c⇥ if |x| > ⇧
2

• With stepsize α = 1/L = 1/c and any xk > ⇧,

1 1
xk+1

= xk − ⇢f(xk) = xk
L

− c ⇧ = xk
c

− ⇧

• The number of iterations to get within an ⇧-
neighborhood of x⇥ = 0 is |x

0

|/⇧.

• The number of iterations to get to within ⇧ of
f⇥ = 0 is proportional to 1/⇧ for large x

0

.

305



EXTRAPOLATION VARIANTS

• An old method for unconstrained optimiza-
tion, known as the heavy-ball method or gradient
method with momentum:

xk+1

= xk − α⇢f(xk) + ⇥(xk − xk−1

),

where x = x and ⇥ is a scalar with 0 < ⇥ < 1.−1 0

• A variant of this scheme for constrained prob-
lems separates the extrapolation and the gradient
steps:

yk = xk + ⇥(xk − xk−1

), (extrapolation step),

xk+1

= PX

�
yk − α⇢f(yk)

⇥
, (grad. projection step).

• When applied to the preceding example, the
method converges to the optimum, and reaches a
neighborhood of the optimum more quickly

• However, the method still has an O(1/⇧) itera-
tion complexity, since for x

0

>> 1, we have

xk+1

− xk = ⇥(xk − xk−1

)− ⇧

so xk+1

− xk ≈ ⇧/(1− ⇥), and the number of itera-
tions needed to obtain xk < ⇧ is O (1− ⇥)/⇧ .

� ⇥
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OPTIMAL COMPLEXITY ALGORITHM

• Surprisingly with a proper more vigorous ex-
trapolation ⇥k ⌦ 1 in the extrapolation scheme

yk = xk + ⇥k(xk − xk−1

), (extrapolation step),

xk+1

= PX

the

�
yk − α⇢f(yk)

⇥
, (grad. projection step),

method has iteration complexity O

•

�
1/
⇡
⇧
⇥
.

Choices that work

⌃k(1
⇥k =

− ⌃k−1

)

⌃k−1

where the sequence {⌃k} satisfies ⌃
0

= ⌃
1

✏ (0, 1],
and

1− ⌃k+1

1 2

⌃2

k+1

⌃ , ⌃k
⌃2

k

⌃
k + 2

• One possible choice is

⇥k =

�
0 if k = 0, 1 if k = 1
k−1

− ,
if ⌃ =

k ⌥ 1, k
k+2

�
2

k+2

if k ⌥ 0.

• Highly unintuitive. Good performance reported.
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EXTENSION TO NONDIFFERENTIABLE CASE

• Consider the nondifferentiable problem of min-
imizing convex function f : ◆n ⌘⌦ ◆ over a closed
convex set X.

• Approach: “Smooth” f , i.e., approximate it
with a differentiable function by using a proximal
minimization scheme.

• Apply optimal complexity gradient projection
method with extrapolation. Then an O(1/⇧) iter-
ation complexity algorithm is obtained.

• Can be shown that this complexity bound is
sharp.

• Improves on the subgradient complexity bound
by a an ⇧ factor.

• Limited experience with such methods.

• Major disadvantage: Cannot take advantage
of special structure, e.g., there are no incremental
versions.
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LECTURE 24

LECTURE OUTLINE

• Gradient proximal minimization method

• Nonquadratic proximal algorithms

• Entropy minimization algorithm

• Exponential augmented Lagrangian mehod

• Entropic descent algorithm

**************************************

References:

• Beck, A., and Teboulle, M., 2010. “Gradient-
Based Algorithms with Applications to Signal Re-
covery Problems, in Convex Optimization in Sig-
nal Processing and Communications (Y. Eldar and
D. Palomar, eds.), Cambridge University Press,
pp. 42-88.

• Beck, A., and Teboulle, M., 2003. “Mirror De-
scent and Nonlinear Projected Subgradient Meth-
ods for Convex Optimization,” Operations Research
Letters, Vol. 31, pp. 167-175.

• Bertsekas, D. P., 1999. Nonlinear Programming,
Athena Scientific, Belmont, MA.
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PROXIMAL AND GRADIENT PROJECTION

• Proximal algorithm to minimize convex f over
closed convex X

1
xk+1

✏ arg min f(x) +
x⌥X 2ck

⇠x− xk⇠2
�  

k

k − 1
2ck

⇥x − xk⇥2

f(x)

xxk+1xk x

f(xk)

• Let f be differentiable and assume

⌃⌃⇢f(x)−⇢f(y)
⌃⌃ ⌃ L ⇠x− y⇠, ✓ x, y ✏ X

• Define the linear approximation function at x

!(y; x) = f(x) +⇢f(x)⇧(y − x), y ✏ ◆n

• Connection of proximal with gradient projection

1
y = arg min !(z; x) +

z⌥X 2α
⇠z − x⇠2 = PX x−α⇢f(x)

�  � ⇥
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GRADIENT-PROXIMAL METHOD I

• Minimize f(x)+g(x) over x ✏ X, where X: closed
convex, f , g: convex, f is dierentiable.

• Gradient-proximal method:

1
xk+1

✏ arg min !(x; xk) + g(x) +
x⌥X 2α

⇠x− xk⇠2

• Recall key inequalit

�

y: For all x, y

 

✏ X

L
f(y) ⌃ !(y; x) + ⇠y − x⇠2

2

• Cost reduction for α ⌃ 1/L:

L
(xk+1

) + g(xk+1

) ⌃ !(xk+1

; xk) + x
2
⇠ k+1

− xk⇠2 + g(xk+1

)

1⌃ !(xk+1

; xk) + g(xk+1

) +
2α
⇠xk+1

− xk⇠2

⌃ !(xk; xk) + g(xk)

= f(xk) + g(xk)

• This is a key insight for the convergence analy-
sis.

f
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GRADIENT-PROXIMAL METHOD II

• Equivalent definition of gradient-proximal:

zk = xk − α⇢f(xk)

xk+1

✏ arg min
x⌥X

�
1

g(x) + k
α
⇠x− z

2
⇠2
 

• Simplifies the implementation of proximal, by
using gradient iteration to deal with the case of
an inconvenient component f

• This is similar to incremental subgradient-proxi-
mal method, but the gradient-proximal method
does not extend to the case where the cost consists
of the sum of multiple components.

• Allows a constant stepsize (under the restriction
α ⌃ 1/L). This does not extend to incremental
methods.

• Like all gradient and subgradient methods, con-
vergence can be slow.

• There are special cases where the method can be
fruitfully applied (see the reference by Beck and
Teboulle).
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GENERALIZED PROXIMAL ALGORITHM

• Introduce a general regularization term Dk:

xk+1

✏ arg min
x⌥X

• Example: Bregman

⇤
f(x) + Dk(x, xk)

distance function

⌅

1
Dk(x, y) =

�
 (x) (

k
−  y)−⇢ (y)⇧(x

c
− y) ,

where  : ◆n (

⇥

⌘⌦ −∞,∞] is a convex function, dif-
ferentiable within an open set containing dom(f),
and ck is a positive penalty parameter.

• All the ideas for applications and connections of
the quadratic form of the proximal algorithm ex-
tend to the nonquadratic case (although the anal-
ysis may not be trivial). In particular we have:
− A dual proximal algorithm (based on Fenchel

duality)
− Equivalence with (nonquadratic) augmented

Lagrangean method
− Combinations with polyhedral approximations

(bundle-type methods)
− Incremental subgradient-proximal methods
− Nonlinear gradient projection algorithms
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ENTROPY MINIMIZATION ALGORITHM

• A special case involving entropy regularization:

✏
n

1 xi

xk+1

✏ arg min f(x) + xi ln 1
x⌥X c i

k

⌧

i

  

xk

⌦
−

=1

⌦⇣

where x
0

and all subsequent xk have positive com-
ponents

• We use Fenchel duality to obtain a dual form
of this minimization

• Note: The logarithmic function

x(ln x− 1) if x > 0,
p(x) =

✏
0 if x = 0,
∞ if x < 0,

and the exponential function

p⌥(y) = ey

are a conjugate pair.

• The dual problem is

yk+1

✏ arg min

✏
n

f⌥ 1 i

(y) + xi
kecky

y⌥ n ck
i=1

⇣
⌧
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EXPONENTIAL AUGMENTED LAGRANGIAN

• The dual proximal iteration is

i

xi = xi ecky
k+1

k+1 k , i = 1, . . . , n

where yk+1

is obtained from the dual proximal:

n
1

yk+1

✏
i

arg min
⌥ n

✏
f⌥(y) +

y ck

⌧
xi

kecky

i=1

⇣

• A special case for the convex problem

minimize f(x)

subject to g
1

(x) ⌃ 0, . . . , gr(x) ⌃ 0, x ✏ X

is the exponential augmented Lagrangean method

• Consists of unconstrained minimizations

x ✏ arg min

✏
1

f(x) +
⌧r

µj eckgj(x)

k k ,
x⌥X ck

j=1

⇣

followed by the multiplier iterations

j

µj j c gj(xk)

k
k+1

= µke , j = 1, . . . , r
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NONLINEAR PROJECTION ALGORITHM

• Subgradient projection with general regulariza-
tion term Dk:

xk+1

✏ ˜arg min
⇤
f(xk)+

x⌥X
⇢f(xk)⇧(x−xk)+Dk(x, xk)

⌅

where ⇢̃f(xk) is a subgradient of f at xk. Also
called mirror descent method.

• Linearization of f simplifies the minimization

• The use of nonquadratic linearization is useful
in problems with special structure

• Entropic descent method: Minimize f(x) over
the unit simplex X =

⇤
x ⌥ 0 |

�n
xi = 1

i=1

⌅
.

• Method:

x ✏ arg min
⌧n i

xi i
k+1

x⌥
i=1

 
1

gk + ln
αk

 
x

X xi
k

⌦⌦

where gi ˜
k are the components of ⇢f(xk).

• This minimization can be done in closed form:

− i

xi e αkg
k

xi
k+1

= k , n
n j i = 1, . . . ,

xj e−αkg
k

j=1

k

�
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LECTURE 25: REVIEW/EPILOGUE

LECTURE OUTLINE

CONVEX ANALYSIS AND DUALITY

• Basic concepts of convex analysis

• Basic concepts of convex optimization

• Geometric duality framework - MC/MC

• Constrained optimization duality

• Subgradients - Optimality conditions

*******************************************

CONVEX OPTIMIZATION ALGORITHMS

• Special problem classes

• Subgradient methods

• Polyhedral approximation methods

• Proximal methods

• Dual proximal methods - Augmented Lagrangeans

• Interior point methods

• Incremental methods

• Optimal complexity methods

• Various combinations around proximal idea and
generalizations
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BASIC CONCEPTS OF CONVEX ANALYSIS

Epigraphs, level sets, closedness, semicontinuity•

!"#$

#
%&'()#*!+',-.&'

!"#$

#
/&',&'()#*!+',-.&'

01.23415 01.23415f(x) f(x)

xx

Epigraph Epigraph

Convex function Nonconvex function

dom(f) dom(f)

• Finite representations of generated cones and
convex hulls - Caratheodory’s Theorem.

• Relative interior:
− Nonemptiness for a convex set
− Line segment principle
− Calculus of relative interiors

• Continuity of convex functions

• Nonemptiness of intersections of nested sequences
of closed sets.

• Closure operations and their calculus.

• Recession cones and their calculus.

• Preservation of closedness by linear transforma-
tions and vector sums.
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HYPERPLANE SEPARATION

(a)

C1 C2

x

a

(b)

C1

C2
x1

x2

• Separating/supporting hyperplane theorem.

• Strict and proper separation theorems.

• Dual representation of closed convex sets as
unions of points and intersection of halfspaces.

A union of points An intersection of halfspaces

• Nonvertical separating hyperplanes.
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CONJUGATE FUNCTIONS

x

Slope = y

0

(y, 1)

f(x)

inf
x⇥⇤n

{f(x)  x�y} = f(y)

• Conjugacy theorem: f = f⌥⌥

• Support functions

0

y

X

X(y)/y

x̂

• Polar cone theorem: C = C⌥⌥

− Special case: Linear Farkas’ lemma
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BASIC CONCEPTS OF CONVEX OPTIMIZATION

• Weierstrass Theorem and extensions.

• Characterization of existence of solutions in
terms of nonemptiness of nested set intersections.

Optimal
Solution

Level Sets of f

X

• Role of recession cone and lineality space.

• Partial Minimization Theorems: Character-
ization of closedness of f(x) = infz⌥ m F (x, z) in
terms of closedness of F .

x

z

w

x1

x2

O

F (x, z)

f(x) = inf
z

F (x, z)

epi(f)

x

z

w

x1

x2

O

F (x, z)

f(x) = inf
z

F (x, z)

epi(f)
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MIN COMMON/MAX CROSSING DUALITY

0!

"#$

%&'()*++*'(,*&'-(./

%#0()1*22&'3(,*&'-(4/

%

!

"5$

%

6
%

%#0()1*22&'3(,*&'-(4/

%&'()*++*'(,*&'-(./
. .

7

!

"8$

9

6
%

%
%#0()1*22&'3(,*&'-(4/

%&'()*++*'(,*&'-(./

.

7

70 0

0

u u

u

w w

w

M M

M

M

M

Min Common
Point w

Min Common
Point w

Min Common
Point w

Max Crossing
Point q

Max Crossing
Point q Max Crossing

Point q

(a) (b)

(c)

• Defined by a single set M  ◆n+1.

• w⇥ = inf
(0,w)⌥M w

• q⇥ = supµ n q(µ) =
�

inf
(u,w) M{w + µ⇧u⌥ ⌥ }

• Weak duality: q⇥ ⌃ w⇥

• Two key questions:
− When does strong duality q⇥ = w⇥ hold?
− When do there exist optimal primal and dual

solutions?
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MC/MC THEOREMS (M CONVEX, W ⇥ < ∞)

• MC/MC Theorem I: We have q⇥ = w⇥ if and
only if for every sequence

⇤
(uk, wk)

⌅
 M with

uk ⌦ 0, there holds

w⇥ ⌃ lim inf wk.
k⌅⌃

• MC/MC Theorem II: Assume in addition that
−∞ < w⇥ and that

D =
⇤
u | there exists w ✏ ◆ with (u, w) ✏ M}

contains the origin in its relative interior. Then
q⇥ = w⇥ and there exists µ such that q(µ) = q⇥.

• MC/MC Theorem III: Similar to II but in-
volves special polyhedral assumptions.

(1) M is a “horizontal translation” of M̃ by −P ,

˜M = M −
⇤
(u, 0) | u ✏ P

⌅
,

where P : polyhedral and M̃ : convex.

(2) We have ˜ri(D)  P = Ø, where

D̃ = u | there exists w ✏ ◆ with (u, w) ✏ M̃}

⇣
⇤
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IMPORTANT SPECIAL CASE

• Constrained optimization: infx⌥X, g(x)⇤0

f(x)

• Perturbation function (or primal function)

p(u) = inf f(x),
x⌥X, g(x)⇤u

0 u

�
(g(x), f(x)) | x  X

⇥

M = epi(p)

w = p(0)

p(u)

q

• Introduce L(x, µ) = f(x) + µ⇧g(x). Then

q(µ) = inf ) +
u⌥ 

⇤
p(u µ⇧u

r

= inf

⌅

f(x) + µ⇧u
r

�
u⌥ , x⌥X, g(x)⇤u

inf
= x⌥X L(x, µ)

⇤

if µ ⌥ 0,

⌅

−∞ otherwise.
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NONLINEAR FARKAS’ LEMMA

• Let X  ◆n, f : X ⌘⌦ ◆, and gj : X ⌘⌦ ◆,
j = 1, . . . , r, be convex. Assume that

f(x) ⌥ 0, ✓ x ✏ X with g(x) ⌃ 0

Let

Q⇥ =
⇤
µ | µ ⌥ 0, f(x) + µ⇧g(x) ⌥ 0, ✓ x ✏ X

⌅
.

• Nonlinear version: Then Q⇥ is nonempty and
compact if and only if there exists a vector x ✏ X
such that gj(x) < 0 for all j = 1, . . . , r.

0
(µ, 1)

(b)

00

(c)

0
(µ, 1)

(a)

�
(g(x), f(x)) | x ⌅ X

⇥ �
(g(x), f(x)) | x ⌅ X

⇥ �
(g(x), f(x)) | x ⌅ X

⇥

�
g(x), f(x)

⇥

• Polyhedral version: Q⇥ is nonempty if g is
linear [g(x) = Ax − b] and there exists a vector
x ✏ ri(X) such that Ax− b ⌃ 0.
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CONSTRAINED OPTIMIZATION DUALITY

minimize f(x)

subject to x ✏ X, gj(x) ⌃ 0, j = 1, . . . , r,

where X  ◆n, f : X ⌘⌦ ◆ and gj : X ⌘⌦ ◆ are
convex. Assume f⇥: finite.

• Connection with MC/MC: M = epi(p) with
p(u) = infx⌥X, g(x)

f(x)⇤u

• Dual function:

µ
q µ) =

�
inf

( x L(x, µ) if⌥X ⌥ 0,
−∞ otherwise

where L(x, µ) = f(x) + µ⇧g(x) is the Lagrangian
function.

• Dual problem of maximizing q(µ) over µ ⌥ 0.

• Strong Duality Theorem: q⇥ = f⇥ and there
exists dual optimal solution if one of the following
two conditions holds:

(1) There exists x ✏ X such that g(x) < 0.

(2) The functions gj , j = 1, . . . , r, are a⌅ne, and
there exists x ri(X) such that g(x) 0.✏ ⌃
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OPTIMALITY CONDITIONS

• We have q⇥ = f⇥, and the vectors x⇥ and µ⇥ are
optimal solutions of the primal and dual problems,
respectively, iff x⇥ is feasible, µ⇥ ⌥ 0, and

x⇥ ✏ arg min L(x, µ⇥), µ⇥j gj(x
⇥) = 0, j.

x⌥X
✓

• For the linear/quadratic program

minimize 1
2x⇧Qx + c⇧x

subject to Ax ⌃ b,

where Q is positive semidefinite, (x⇥, µ⇥) is a pri-
mal and dual optimal solution pair if and only if:

(a) Primal and dual feasibility holds:

Ax⇥ ⌃ b, µ⇥ ⌥ 0

(b) Lagrangian optimality holds [x⇥ minimizes
L(x, µ⇥) over x ✏ ◆n]. (Unnecessary for LP.)

(c) Complementary slackness holds:

(Ax⇥ − b)⇧µ⇥ = 0,

i.e., µ⇥j > 0 implies that the jth constraint is tight.
(Applies to inequality constraints only.)
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FENCHEL DUALITY

• Primal problem:

minimize f
1

(x) + f
2

(x)

subject to x ✏ ◆n,

where f
1

: ◆n ⌘⌦ (−∞,∞] and f
2

: ◆n ⌘⌦ (−∞,∞]
are closed proper convex functions.

• Dual problem:

minimize f⌥
1

(⌥) + f⌥
2

(−⌥)

subject to ⌥ ✏ ◆n,

where f⌥
1

and f⌥
2

are the conjugates.

Slope

Slope

x x

f1(x)

f2(x)

q()

f = q

f
1 ()

f
2 ()

328



CONIC DUALITY

• Consider minimizing f(x) over x ✏ C, where f :
◆n ⌘⌦ (−∞,∞] is a closed proper convex function
and C is a closed convex cone in ◆n.

• We apply Fenchel duality with the definitions

f
1

(x) = f(x), f
2

(x) =
�

0 if x ✏ C,
∞ if x /✏ C.

• Linear Conic Programming:

minimize c⇧x

subject to x− b ✏ S, x ✏ C.

• The dual linear conic problem is equivalent to

minimize b⇧⌥

subject to ⌥− c ✏ S⌦, ⌥ ✏ Ĉ.

• Special Linear-Conic Forms:

min c⇧x ,
Ax=b, x C

⇐⇒ max b⇧⌥
⌥ −A0

ˆc ⇤⌥C

min c⇧x
Ax−b⌥C

⇐⇒ max b⇧⌥,
A0

ˆ⇤=c, ⇤⌥C

where x ✏ ◆n, ⌥ ✏ ◆m, c ✏ ◆n, b ✏ ◆m, A : m⇤ n.
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SUBGRADIENTS

0

(g, 1)

f(z)

�
x, f(x)

⇥

z

• ✏f(x) = Ø x ✏ ri dom(f)

• Conjugate Subgradient Theorem: If f is closed
proper convex, the following are equivalent for a
pair of vectors (x, y):

(i) x⇧y = f(x) + f⌥(y).

(ii) y ✏ ✏f(x).

(iii) x ✏ ✏f⌥(y).

• Characterization of optimal solution set X⇥ =
arg minx n f(x) of closed proper convex f :⌥ 

(a) X⇥ = ✏f⌥(0).

(b) X⇥ is nonempty if 0 ✏ ri dom(f⌥) .

(c) X⇥ is nonempty and compact

�

if

⇥

and only if
0 ✏ int dom(f⌥) .

⇣ for
� ⇥

.

� ⇥
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CONSTRAINED OPTIMALITY CONDITION

• Let f : ◆n ⌘⌦ (−∞,∞] be proper convex, let X
be a convex subset of ◆n, and assume that one of
the following four conditions holds:

(i) ri
�
dom(f)  ri(X) = Ø.

(ii) f is polyhedral

⇥

and dom(f)  ri(X) = Ø.

(iii) X is polyhedral and ri
�
dom(f)

⇥
X = Ø.

(iv) f and X are polyhedral, and dom(f) X = Ø.

Then, a vector x⇥ minimizes f over X iff there ex-
ists g ✏ ✏f(x⇥) such that −g belongs to the normal
cone NX(x⇥), i.e.,

g⇧(x− x⇥) ⌥ 0, ✓ x ✏ X.

⇣

⇣

⇣

⇣

Level Sets of f

⌃f(x∗)

x∗

Level Sets of f

x∗

⇧f(x∗)
g

C C

NC(x∗)
NC(x∗)

331



COMPUTATION: PROBLEM RANKING IN

INCREASING COMPUTATIONAL DIFFICULTY

• Linear and (convex) quadratic programming.
− Favorable special cases.

• Second order cone programming.

• Semidefinite programming.

• Convex programming.
− Favorable cases, e.g., separable, large sum.
− Geometric programming.

• Nonlinear/nonconvex/continuous programming.
− Favorable special cases.
− Unconstrained.
− Constrained.

• Discrete optimization/Integer programming
− Favorable special cases.

• Caveats/questions:
− Important role of special structures.
− What is the role of “optimal algorithms”?
− Is complexity the right philosophical view to

convex optimization?
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DESCENT METHODS

• Steepest descent method: Use vector of min
norm on −✏f(x); has convergence problems.
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• Subgradient method:

!

"#

"#$%$&'#

"(

)*+*,$&*-&$./$0

"#%1$23!$4"#$%$& '#5

Level sets of f

X
xk

xk  αkgk

xk+1 = PX(xk  αkgk)

x

gk

⇥f(xk)

• ⇧-subgradient method (approx. subgradient)

• Incremental (possibly randomized) variants for
minimizing large sums (can be viewed as an ap-
proximate subgradient method).
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OUTER AND INNER LINEARIZATION

• Outer linearization: Cutting plane

x0 x1x2x3

f(x)

X

x

f(x0) + (x  x0)⇥g0

f(x1) + (x  x1)⇥g1

x∗

• Inner linearization: Simplicial decomposition

Level sets of f

f(x0)

f(x1)

f(x2)

f(x3)

X

x0

x1

x2

x3

x4 = x

x̃1

x̃2

x̃3

x̃4

• Duality between outer and inner linearization.
− Extended monotropic programming framework

Fenchel-like duality theory−

334



PROXIMAL MINIMIZATION ALGORITHM

• A general algorithm for convex fn minimization

1
xk+1

✏ arg min
x⌥ n

�
f(x) +

2ck
⇠x− xk⇠2

 

− f : ◆n ⌘⌦ (−∞,∞] is closed proper convex
− ck is a positive scalar parameter

x
0

is arbitrary starting point−

k

k − 1
2ck

⇥x − xk⇥2

f(x)

xxk+1xk x

f(xk)

• xk+1

exists because of the quadratic.

• Strong convergence properties

• Starting point for extensions (e.g., nonquadratic
regularization) and combinations (e.g., with lin-
earization)
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PROXIMAL-POLYHEDRAL METHODS

Proximal-cutting plane method•

f(x)

xxk+1 xyk

Fk(x)

k  pk(x)

k

• Proximal-cutting plane-bundle methods: Re-
place f with a cutting plane approx. and/or change
quadratic regularization more conservatively.

• Dual Proximal - Augmented Lagrangian meth-
ods: Proximal method applied to the dual prob-
lem of a constrained optimization problem.

k

k − 1
2ck

⇥x − xk⇥2

f(x)

xxk+1xk

x∗

Slope = xk
Slope = xk+1

⇤k+1

Slope = x∗

⇥k

⇥k + x⇥
k⇤ − ck

2
⇥⇤⇥2

Primal Proximal Iteration Dual Proximal Iteration

f(⇤)
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DUALITY VIEW OF PROXIMAL METHODS

Proximal Method
Outer Linearization

Inner Linearization

Fenchel
Duality

Dual Proximal Method

Proximal Cutting 
Plane/Bundle Method

Proximal Simplicial 
Decomp/Bundle Method

Fenchel
Duality

• Applies also to cost functions that are sums of
convex functions

m

f(x) =
⌧

fi(x)

i=1

in the context of extended monotropic program-
ming
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INTERIOR POINT METHODS

• Barrier method: Let

xk = arg min f(x) + ⇧kB(x) , k = 0, 1, . . . ,
x⌥S

where S = {x

⇤

| gj(x) < 0, j

⌅

= 1, . . . , r} and the
parameter sequence {⇧k} satisfies 0 < ⇧k+1

< ⇧k for
all k and ⇧k ⌦ 0.

!

"#$%&'()*#+*! "#$%&'()*#+*!

, "-./

,0 "-./
,0*1*,

Boundary of SBoundary of S

 <
B(x)

B(x)

S

• Ill-conditioning. Need for Newton’s method

-0.5

0

0.5

1

-0.5

0

0.5

1

2.05 2.1 2.15 2.2 2.25
-1

2.05 2.1 2.15 2.2 2.25
-1338



ADVANCED TOPICS

• Incremental subgradient-proximal methods

• Complexity view of first order algorithms
− Gradient-projection for differentiable prob-

lems
− Gradient-projection with extrapolation
− Optimal iteration complexity version (Nes-

terov)
− Extension to nondifferentiable problems by

smoothing

• Gradient-proximal method

• Useful extension of proximal. General (non-
quadratic) regularization - Bregman distance func-
tions
− Entropy-like regularization
− Corresponding augmented Lagrangean method

(exponential)
− Corresponding gradient-proximal method
− Nonlinear gradient/subgradient projection (en-

tropic minimization methods)
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