
A Standard material on convexity

Definition A.1 A set S in Rn is said to be convex if for every x1, x2 ∈ S the line
segment {λx1 + (1 − λ)x2 : 0 ≤ λ ≤ 1} belongs to S.

For instance, a hyperplane S = {x ∈ Rn : ptx = α} or a ball S = {x ∈ Rn : |x− x0| ≤
β} are examples of convex sets. However, the sphere S = {x ∈ Rn : |x − x0| = β}
provides an example of a set that is not convex (β > 0). It is easy to see that
arbitrary intersections of convex sets are again convex; also finite sums of convex sets
are convex again.

Theorem A.2 (strict point-set separation [1, Thm. 2.4.4]) Let S be a nonempty
closed convex subset of Rn and let y ∈ Rn\S. Then there exists p ∈ Rn, p ̸= 0, such
that

sup
x∈S

ptx < pty.

Proof. It is a standard result that there exists x̂ ∈ S such that sups∈S |y − s| =
|y− x̂| (consider a suitable closed ball around y and apply the theorem of Weierstrass
[1, Thm. 2.3.1]). By convexity of S, this means that for every x ∈ S and every
λ ∈ (0, 1]

|y − (λx + (1 − λ)x̂)|2 ≥ |y − x̂|2.
Obviously, the expression on the left equals

|y − x̂ − λ(x − x̂)|2 = |y − x̂|2 − 2λ(y − x̂)t(x − x̂) + λ2|x − x̂|2,

so the above inequality amounts to

2λ(y − x̂)t(x − x̂) ≤ λ2|x − x̂|2

for every x ∈ S and every λ ∈ (0, 1]. Dividing by λ > 0 and letting λ go to zero then
gives

(y − x̂) · (x − x̂) ≤ 0 for all x ∈ S.

Set p := y − x̂; then p ̸= 0 (note that p = 0 would imply y ∈ S). We clearly have
ptx ≤ ptx̂. Also, we have now ptx̂ > pty, for otherwise (y − x̂)t(x̂ − y) ≥ 0 would
imply y = x̂ ∈ S, which is impossible. QED

For our next result, recall that ∂S := clS ∩ cl(Rn\S) = clS\int S denotes the
boundary of a set S ⊂ Rn.

Theorem A.3 (supporting hyperplane [1, Thm. 2.4.7]) Let S be a nonempty
convex subset of Rn and let y ∈ ∂S. Then there exists q ∈ Rn, q ̸= 0, such that

sup
x∈cl S

qtx ≤ qty.

In geometric terms, H := {x ∈ Rn : qtx = qty} is said to be a supporting hyperplane
for S at y: the hyperplane H contains the point y and the set S (as well as cl S) is
contained the halfspace {x ∈ Rn : ptx ≤ pty}.
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Proof. Let Z := cl S; then ∂S ⊂ ∂Z (exercise). Of course, Z is closed and it is
easy to show that Z is convex (use limit arguments). So there exists a sequence (yk)
in Rn\Z such that yk → y. By Theorem A.2 there exists for every k a nonzero vector
pk ∈ Rn such that

sup
x∈Z

pt
kx < pt

kyk.

Division by |pk| turns this into

sup
x∈Z

qt
kx < qt

kyk,

where qk := pk/|pk| belongs to the unit sphere of Rn. This sphere is compact (Bolzano-
Weierstrass theorem), so we can suppose without loss of generality that (qk) converges
to some q, |q| = 1 (so q is nonzero). Now for every x ∈ Z the inequality qt

kx < qt
kyk,

which holds for all k, implies

qtx = lim
k

qt
kx ≤ lim

k
qt
kyk = qty,

and the proof is finished. QED

Theorem A.4 (set-set separation [1, Thm. 2.4.8]) Let S1, S2 be two nonempty
convex sets in Rn such that S1 ∩ S2 = ∅. Then there exist p ∈ Rn, p ̸= 0, and α ∈ R
such that

sup
x∈S1

ptx ≤ α ≤ inf
y∈S2

pty.

In geometric terms, H := {x ∈ Rn : ptx = α} is said to be a separating hyperplane
for S1 and S2: each of the two convex sets is contained in precisely one of the two
halfspaces {x ∈ Rn : ptx ≤ α} and {x ∈ Rn : ptx ≥ α}.

Proof. It is easy to see that S := S1 − S2 is convex. Now 0 ̸∈ S, for otherwise
we get an immediate contradiction to S1 ∩ S2 = ∅. W distinguish now two cases: (i)
0 ∈ cl S and (ii) 0 ̸∈ cl S.

In case (i) we have 0 ∈ ∂S, so by Theorem A.3 we then have the existence of a
nonzero p ∈ Rn such that

ptz ≤ 0 for every z ∈ S = S1 − S2, (2)

i.e., for every z = x − y, with x ∈ S1 and y ∈ S2. This gives ptx ≤ pty for all x ∈ S1

and y ∈ S2, whence the result.
In case (ii) we apply Theorem A.2 to get immediately (2) as well. The result

follows just as in case (i). QED

Theorem A.5 (strong set-set separation [1, Thm. 2.4.10]) Let S1, S2 be two
nonempty closed convex sets in Rn such that S1∩S2 = ∅ and such that S1 is bounded.
Then there exist p ∈ Rn, p ̸= 0, and α ∈ R, β ∈ R such that

sup
x∈S1

ptx ≤ α < β ≤ inf
y∈S2

pty.

Proof. As in the previous proof, it is easy to see that S := S1 − S2 is convex.
Now S is also seen to be closed (exercise). As in the previous proof, we have 0 ̸∈ S.
We can now apply Theorem A.2 to get the desired result, just as in case (ii) of the
previous proof. QED
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Last time: gradient descent

Consider the problem
min
x

f(x)

for f convex and di↵erentiable, dom(f) = Rn. Gradient descent:
choose initial x(0) 2 Rn, repeat

x(k) = x(k�1) � tk ·rf(x(k�1)), k = 1, 2, 3, . . .

Step sizes tk chosen to be fixed and small, or by backtracking line
search

If rf Lipschitz, gradient descent has convergence rate O(1/✏)

Downsides:

• Requires f di↵erentiable  next lecture

• Can be slow to converge  two lectures from now
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Outline

Today: crucial mathematical underpinnings!

• Subgradients

• Examples

• Subgradient rules

• Optimality characterizations
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Subgradients

Remember that for convex and di↵erentiable f ,

f(y) � f(x) +rf(x)T (y � x) for all x, y

I.e., linear approximation always underestimates f

A subgradient of a convex function f at x is any g 2 Rn such that

f(y) � f(x) + gT (y � x) for all y

• Always exists

• If f di↵erentiable at x, then g = rf(x) uniquely
• Actually, same definition works for nonconvex f (however,
subgradients need not exist)
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Examples of subgradients

Consider f : R! R, f(x) = |x|

−2 −1 0 1 2
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0
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0

x

f(x
)

• For x 6= 0, unique subgradient g = sign(x)

• For x = 0, subgradient g is any element of [�1, 1]
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Consider f : Rn ! R, f(x) = kxk2

x1

x2

f(x)

• For x 6= 0, unique subgradient g = x/kxk2
• For x = 0, subgradient g is any element of {z : kzk2  1}
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Consider f : Rn ! R, f(x) = kxk1

x1

x2

f(x)

• For xi 6= 0, unique ith component gi = sign(xi)

• For xi = 0, ith component gi is any element of [�1, 1]
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Let f1, f2 : Rn ! R be convex and di↵erentiable, and consider
f(x) = max{f1(x), f2(x)}

−2 −1 0 1 2
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)

• For f1(x) > f2(x), unique subgradient g = rf1(x)
• For f2(x) > f1(x), unique subgradient g = rf2(x)
• For f1(x) = f2(x), subgradient g is any point on the line
segment between rf1(x) and rf2(x)
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Subdi↵erential

Set of all subgradients of convex f is called the subdi↵erential:

@f(x) = {g 2 Rn : g is a subgradient of f at x}

• @f(x) is closed and convex (even for nonconvex f)

• Nonempty (can be empty for nonconvex f)

• If f is di↵erentiable at x, then @f(x) = {rf(x)}
• If @f(x) = {g}, then f is di↵erentiable at x and rf(x) = g
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Connection to convex geometry

Convex set C ✓ Rn, consider indicator function IC : Rn ! R,

IC(x) = I{x 2 C} =

(
0 if x 2 C

1 if x /2 C

For x 2 C, @IC(x) = NC(x), the normal cone of C at x, recall

NC(x) = {g 2 Rn : gTx � gT y for any y 2 C}

Why? By definition of subgradient g,

IC(y) � IC(x) + gT (y � x) for all y

• For y /2 C, IC(y) =1
• For y 2 C, this means 0 � gT (y � x)
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Subgradient calculus

Basic rules for convex functions:

• Scaling: @(af) = a · @f provided a > 0

• Addition: @(f1 + f2) = @f1 + @f2
• A�ne composition: if g(x) = f(Ax+ b), then

@g(x) = AT@f(Ax+ b)

• Finite pointwise maximum: if f(x) = maxi=1,...m fi(x), then

@f(x) = conv

✓ [

i:fi(x)=f(x)

@fi(x)

◆

the convex hull of union of subdi↵erentials of all active
functions at x
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• General pointwise maximum: if f(x) = maxs2S fs(x), then

@f(x) ◆ cl

⇢
conv

✓ [

s:fs(x)=f(x)

@fs(x)

◆�

and under some regularity conditions (on S, fs), we get an
equality above

• Norms: important special case, f(x) = kxkp. Let q be such
that 1/p+ 1/q = 1, then

kxkp = max
kzkq1

zTx

Hence
@f(x) = argmax

kzkq1
zTx
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Why subgradients?

Subgradients are important for two reasons:

• Convex analysis: optimality characterization via subgradients,
monotonicity, relationship to duality

• Convex optimization: if you can compute subgradients, then
you can minimize (almost) any convex function
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Optimality condition

For any f (convex or not),

f(x?) = min
x

f(x) () 0 2 @f(x?)

I.e., x? is a minimizer if and only if 0 is a subgradient of f at x?.
This is called the subgradient optimality condition

Why? Easy: g = 0 being a subgradient means that for all y

f(y) � f(x?) + 0T (y � x?) = f(x?)

Note the implication for a convex and di↵erentiable function f ,
with @f(x) = {rf(x)}
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Derivation of first-order optimality

Example of the power of subgradients: we can use what we have
learned so far to derive the first-order optimality condition. Recall
that for f convex and di↵erentiable, the problem

min
x

f(x) subject to x 2 C

is solved at x if and only if

rf(x)T (y � x) � 0 for all y 2 C

Intuitively says that gradient increases as we move away from x.
How to see this? First recast problem as

min
x

f(x) + IC(x)

Now apply subgradient optimality: 0 2 @(f(x) + IC(x))
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But

0 2 @
�
f(x) + IC(x)

�

() 0 2 {rf(x)}+NC(x)

() �rf(x) 2 NC(x)

() �rf(x)Tx � �rf(x)T y for all 2 C

() rf(x)T (y � x) � 0 for all y 2 C

as desired

Note: the condition 0 2 @f(x) +NC(x) is a fully general condition
for optimality in a convex problem. But this is not always easy to
work with (KKT conditions, later, are easier)
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Example: lasso optimality conditions

Given y 2 Rn, X 2 Rn⇥p, lasso problem can be parametrized as:

min
�2Rp

1

2
ky �X�k22 + �k�k1

where � � 0. Subgradient optimality:

0 2 @
⇣1
2
ky �X�k22 + �k�k1

⌘

() 0 2 �XT (y �X�) + �@k�k1
() XT (y �X�) = �v

for some v 2 @k�k1, i.e.,

vi 2

8
><

>:

{1} if �i > 0

{�1} if �i < 0

[�1, 1] if �i = 0

, i = 1, . . . p
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Write X1, . . . Xp for columns of X. Then subgradient optimality
reads: (

XT
i (y �X�) = � · sign(�i) if �i 6= 0

|XT
i (y �X�)|  � if �i = 0

Note: the subgradient optimality conditions do not directly lead to
an expression for a lasso solution ... however they do provide a way
to check lasso optimality

They are also helpful in understanding the lasso estimator; e.g., if
|XT

i (y �X�)| < �, then �i = 0
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Example: soft-thresholding

Simplfied lasso problem with X = I:

min
�2Rn

1

2
ky � �k22 + �k�k1

This we can solve directly using subgradient optimality. Solution is
� = S�(y), where S� is the soft-thresholding operator:

[S�(y)]i =

8
><

>:

yi � � if yi > �

0 if � �  yi  �

yi + � if yi < ��
, i = 1, . . . n

Check: from last slide, subgradient optimality conditions are
(
yi � �i = � · sign(�i) if �i 6= 0

|yi � �i|  � if �i = 0

20



Now plug in � = S�(y) and check these are satisfied:

• When yi > �, �i = yi � � > 0, so yi � �i = � = � · 1
• When yi < ��, argument is similar

• When |yi|  �, �i = 0, and |yi � �i| = |yi|  �

Soft-thresholding in
one variable:

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0
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Example: distance to a convex set

Recall the distance function to a convex set C:

dist(x,C) = min
y2C

ky � xk2

This is a convex function. What are its subgradients?

Write dist(x,C) = kx�PC(x)k2, where PC(x) is the projection of
x onto C. Then when dist(x,C) > 0,

@dist(x,C) =

⇢
x� PC(x)

kx� PC(x)k2

�

Only has one element, so in fact dist(x,C) is di↵erentiable and
this is its gradient
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We will only show one direction, i.e., that

x� PC(x)

kx� PC(x)k2
2 @dist(x,C)

Write u = PC(x). Then by first-order optimality conditions for a
projection,

(u� x)T (y � u) � 0 for all y 2 C

Hence
C ✓ H = {y : (u� x)T (y � u) � 0}

Claim: for any y,

dist(y, C) � (x� u)T (y � u)

kx� uk2

Check: first, for y 2 H, the right-hand side is  0
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Now for y /2 H, we have (x� u)T (y� u) = kx� uk2ky� uk2 cos ✓
where ✓ is the angle between x� u and y � u. Thus

(x� u)T (y � u)

kx� uk2
= ky � uk2 cos ✓ = dist(y,H)  dist(y, C)

as desired

Using the claim, we have for any y

dist(y, C) � (x� u)T (y � x+ x� u)

kx� uk2

= kx� uk2 +
✓

x� u

kx� uk2

◆T

(y � x)

Hence g = (x� u)/kx� uk2 is a subgradient of dist(x,C) at x
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