A Standard material on convexity

Definition A.1 A set S in R" is said to be convez if for every z1,z9 € S the line
segment {Ax; + (1 — A)zz : 0 < A < 1} belongs to S.

For instance, a hyperplane S = {x € R" : p'z = a} oraball S = {z € R" : |x — x| <
B} are examples of convex sets. However, the sphere S = {z € R" : |z — x¢| = 5}
provides an example of a set that is not convex (8 > 0). It is easy to see that
arbitrary intersections of convex sets are again convex; also finite sums of convex sets
are convex again.

Theorem A.2 (strict point-set separation [1, Thm. 2.4.4]) Let .S be a nonempty
closed convex subset of R™ and let y € R"\S. Then there exists p € R", p # 0, such
that

sup p'z < ply.

zeS

PRrROOF. It is a standard result that there exists € S such that sup, g |y — s| =
|y — 2| (consider a suitable closed ball around y and apply the theorem of Weierstrass
[1, Thm. 2.3.1]). By convexity of S, this means that for every x € S and every
A€ (0,1]
ly = Az + (1= N)2)]* > |y —

Obviously, the expression on the left equals
ly =& = Mz —2)|* = [y — 2> = 2My — 2)"(z — &) + N|x — 2],
so the above inequality amounts to
2A(y — ) (x — &) < Mo — 2|

for every x € S and every A € (0, 1]. Dividing by A > 0 and letting A go to zero then
gives
(y—z)-(x—2)<0foralzeds.

Set p := y — &; then p # 0 (note that p = 0 would imply y € S). We clearly have
plz < p'z. Also, we have now p'Z > ply, for otherwise (y — 2)* (2 — y) > 0 would
imply y = & € S, which is impossible. QED

For our next result, recall that 95 := clS N cl(R™\S) = clS\int S denotes the
boundary of a set S C R™.

Theorem A.3 (supporting hyperplane [1, Thm. 2.4.7]) Let S be a nonempty
conver subset of R™ and let y € S. Then there exists ¢ € R™, q # 0, such that

sup ¢'r < q'y.

zecl S
In geometric terms, H := {x € R" : ¢'x = ¢'y} is said to be a supporting hyperplane
for S at y: the hyperplane H contains the point y and the set S (as well as ¢l S) is
contained the halfspace {x € R™ : p'x < p'y}.
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PROOF. Let Z :=cl S; then 9S C 97 (exercise). Of course, Z is closed and it is
easy to show that Z is convex (use limit arguments). So there exists a sequence (ys)
in R™\ Z such that y, — y. By Theorem A.2 there exists for every k a nonzero vector
pr € R™ such that

i t
Sup pr® < PrY-
reZ

Division by |pg| turns this into

t t
SUp G, < qpYk,
r€Z

where g, := pi/|px| belongs to the unit sphere of R™. This sphere is compact (Bolzano-
Weierstrass theorem), so we can suppose without loss of generality that (¢x) converges
to some ¢, |¢| =1 (so ¢ is nonzero). Now for every = € Z the inequality ¢tz < qLys,
which holds for all &k, implies

¢'v =lim gz <lim gy = q'y,
and the proof is finished. QED

Theorem A.4 (set-set separation [1, Thm. 2.4.8]) Let Sy, Sy be two nonempty
convex sets in R™ such that Sy N Sy = (. Then there exist p € R", p# 0, and o € R
such that

sup p'z < o < inf ply.

z€8) y€S2
In geometric terms, H := {x € R™ : p'z = a} is said to be a separating hyperplane
for S1 and Ss: each of the two convex sets is contained in precisely one of the two
halfspaces {x € R™ : p'x < a} and {x € R" : p'z > a}.

PROOF. It is easy to see that S := S; — S5 is convex. Now 0 & S, for otherwise
we get an immediate contradiction to Sy NSy = 0. W distinguish now two cases: (7)
0€eclSand (i) 0 €cl S.

In case (i) we have 0 € 0S5, so by Theorem A.3 we then have the existence of a
nonzero p € R™ such that

p'z <0 for every 2 € S = S; — Sy, (2)

ie., for every z =z —y, with € S and y € Sy. This gives p'z < ply for all z € S;
and y € S5, whence the result.

In case (i7) we apply Theorem A.2 to get immediately (2) as well. The result
follows just as in case (i). QED

Theorem A.5 (strong set-set separation [1, Thm. 2.4.10]) Let Sy, Sy be two
nonempty closed conver sets in R™ such that Sy NSy = () and such that Sy is bounded.
Then there exist p € R", p# 0, and o € R, 3 € R such that

sup p'r < o < B < inf ply.

z€S] yES2

PRrOOF. As in the previous proof, it is easy to see that S := S; — S5 is convex.

Now S is also seen to be closed (exercise). As in the previous proof, we have 0 & S.
We can now apply Theorem A.2 to get the desired result, just as in case (ii) of the
previous proof. QED
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Last time: gradient descent

Consider the problem
min f(z)

for f convex and differentiable, dom(f) = R™. Gradient descent:
choose initial (%) € R™, repeat

2®) = =0 _ g R k=1,2,3,...

Step sizes t; chosen to be fixed and small, or by backtracking line
search

If Vf Lipschitz, gradient descent has convergence rate O(1/¢)

Downsides:
e Requires f differentiable < next lecture

e Can be slow to converge < two lectures from now



Outline

Today: crucial mathematical underpinnings!

Subgradients

Examples

Subgradient rules

Optimality characterizations



Subgradients

Remember that for convex and differentiable f,
fy) > f(z)+ V(@) (y—=z) forall z,y
l.e., linear approximation always underestimates f
A subgradient of a convex function f at x is any g € R" such that

fly) > f@)+g"(y—=) forally

o Always exists
e If f differentiable at z, then g = V f(x) uniquely

e Actually, same definition works for nonconvex f (however,
subgradients need not exist)



Examples of subgradients

Consider f: R — R, f(x) = ||

f(x)

e For x # 0, unique subgradient g = sign(z)

e For x = 0, subgradient g is any element of [—1, 1]



|2ll2 < 1}

]l

Consider f: R" — R, f(x)
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e For x # 0, unique subgradient g = z/||x||2
e For x = 0, subgradient g is any element of {z
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e For x; = 0, ith component g; is any element of [—1,1]

sign

i ith component g;

, unique

e Forax; #0



Let f1, fo : R™ — R be convex and differentiable, and consider

f(z) = max{fi(z), fa(z)}

e For fi(z) > fa(x), unique subgradient g = V f1(x)
e For fo(z) > fi(z), unique subgradient g = V fa(z)
e For fi(z) = fa(z), subgradient g is any point on the line

segment between V fi(x) and V fa(z)



Subdifferential

Set of all subgradients of convex f is called the subdifferential:

Of(x) ={g € R": g is a subgradient of f at =}

Of(x) is closed and convex (even for nonconvex f)

Nonempty (can be empty for nonconvex f)
If f is differentiable at x, then 0f(z) = {V f(z)}
If 0f(z) = {g}, then f is differentiable at = and Vf(z) =g



Connection to convex geometry

Convex set C' C R"™, consider indicator function I : R™ — R,

0 ifzeC

Ic(x):I{xEC}:{OO frdC

For z € C, dIc(x) = Ne(z), the normal cone of C at z, recall

Ne(z) ={geR": g7z > gTy for any y € C}

Why? By definition of subgradient g,

Io(y) > Io(z) +¢" (y— ) forall y

e Fory¢ C, Ic(y) = o0
e For 3y € C, this means 0 > ¢ (y — )
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Subgradient calculus

Basic rules for convex functions:
e Scaling: d(af) =a-0f provided a > 0
e Addition: 9(f1 + f2) = 0f1 + 0f2
e Affine composition: if g(z) = f(Ax + b), then

dg(x) = ATOf(Az +b)
e Finite pointwise maximum: if f(z) = max;—1 __m fi(z), then
of(z) = conv< U 8fz(x)>
i:fi(x)=f(x)

the convex hull of union of subdifferentials of all active
functions at
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e General pointwise maximum: if f(x) = maxsecg fs(z), then

6f(a:)2cl{conv< U 8fs(a:)>}

s:fs(z)=f(z)

and under some regularity conditions (on S, fs), we get an
equality above

e Norms: important special case, f(x) = ||z|[,. Let ¢ be such
that 1/p+1/q = 1, then

x|, = max 27z

llzllq=<1
Hence

Of (z) = argmax 27z
l1zllg<1
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Why subgradients?

Subgradients are important for two reasons:

e Convex analysis: optimality characterization via subgradients,
monotonicity, relationship to duality

e Convex optimization: if you can compute subgradients, then
you can minimize (almost) any convex function
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Optimality condition

For any f (convex or not),

fe) = min f(z) = 0€df(a")

*

l.e., * is a minimizer if and only if 0 is a subgradient of f at x*.

This is called the subgradient optimality condition

Why? Easy: g = 0 being a subgradient means that for all y
fly) = fl@*) + 0" (y —a*) = f(a*)

Note the implication for a convex and differentiable function f,

with f(x) = {V f(z)}
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Derivation of first-order optimality

Example of the power of subgradients: we can use what we have
learned so far to derive the first-order optimality condition. Recall
that for f convex and differentiable, the problem

min f(z) subject to z € C
is solved at z if and only if
Vi) (y—x)>0 forall ycC

Intuitively says that gradient increases as we move away from zx.
How to see this? First recast problem as

min f(x)+ Ic(x)
Now apply subgradient optimality: 0 € 9(f(x) + Ic(x))
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But

0€d(f(z)+Ic

—

0€{Vf(2)}+Nc(z)

— Vf(z) € No(z)

—Vf() 'z >-Vfx)ly forall eC
Vi) '(y—z)>0forall yeC

z)
z)

(R

as desired

Note: the condition 0 € df(z) + Nc(x) is a fully general condition
for optimality in a convex problem. But this is not always easy to
work with (KKT conditions, later, are easier)
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Example: lasso optimality conditions

Given y € R", X € R™*P, lasso problem can be parametrized as:

1
in —|ly— X853+ A
min o fly = XBl2 + I8l

where A > 0. Subgradient optimality:

1 2
0 (5lly - XBI3 + N8l )
= 0e-X"(y—Xp)+29|Blh
— XT(y—Xp)=X
for some v € 9||G||1, i.e.,
{1} if B; >0

v, eq{-1} ifp <0, i=1,...p
[—1,1] if B;=0
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Write X7, ... X, for columns of X. Then subgradient optimality
reads:

X[y —XB)=X-sign(B) if B #0
X (y— XB)| <A if ;=0

Note: the subgradient optimality conditions do not directly lead to
an expression for a lasso solution ... however they do provide a way
to check lasso optimality

They are also helpful in understanding the lasso estimator; e.g., if
| X (y = XB)| < A, then ;=0
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Example: soft-thresholding

Simplfied lasso problem with X = I:

- A
nin o Ny B3+ MBl

This we can solve directly using subgradient optimality. Solution is
B = Sx(y), where Sy is the soft-thresholding operator:

yi—)\ ifyi>)\
[SA(¥)]i =10 if —A<y; <A, 1=1,...n
yi + A ity <=

Check: from last slide, subgradient optimality conditions are

yi — Bi = A-sign(B) if B; #0
lyi — Bil <A if B; =0
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Now plug in § = S\(y) and check these are satisfied:
e Wheny, >\, Bi=y; —A>0,s0y; —Bi=A=A-1
e When y; < —\, argument is similar
e When |y;| < A, 8; =0, and |y; — Bi| = [yi| < A

1.0

0.5

Soft-thresholding in
one variable:

0.0

-1.0

-1.0 -0.5 0.0 0.5 1.0
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Example: distance to a convex set

Recall the distance function to a convex set C:

dist(z,C) = min ||y — |2
yeC
This is a convex function. What are its subgradients?

Write dist(z, C') = ||x — Po(x)||2, where Po(z) is the projection of
x onto C. Then when dist(z, C) > 0,

x — Po(z) }

adist(z, C) = {Hx—Pc(x)Hg

Only has one element, so in fact dist(x, C) is differentiable and
this is its gradient
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We will only show one direction, i.e., that

x — Po(x)

T ¢ adist(x, C)
|z — Po(z)]2

Write u = Po(x). Then by first-order optimality conditions for a
projection,
(u—2)T(y—u) >0 forall yeC

Hence
CCH={y:(u—2)"(y—u)>0}

Claim: for any y,

(z —u)'(y—u)

dist(y,C) >
lz = ull2

Check: first, for y € H, the right-hand side is <0
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Now for y ¢ H, we have (z —u)” (y —u) = ||z — ul2|ly — u||2 cos @

where 0 is the angle between x — u and y — u. Thus

z—u)l(y—u : -
( Hx)— Etyb : = |ly — ull2 cos & = dist(y, H) < dist(y, C)
as desired

Using the claim, we have for any y

. (z—u)' -z +o—u)
dist(y, C) > [ — ul2
T
—H%“’?*(H — ull2 > v

Hence g = (x — u)/||z — u||2 is a subgradient of dist(z,C) at x
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