
1.4 Relative Interior

Consider I = [0, 1] ⊂ R. Then the interior of I is (0,1). However, if we consider
I as a subset in R2, then the interior of I is empty. This motivates the following
definition.

Definition:(Relative Interior) Let C ⊂ Rn. We say that x is a relative
interior point of C if B(x; ε)∩ aff(C) ⊂ C, for some ε > 0. The set of all relative
interior point of C is called the relative interior of C, and is denoted by ri(C).
The relative boundary of C is equal to C\ri(C).

The following is the most fundamental result about relative interiors.
Proposition:(Line Segment Property) Let C be a nonempty convex set. If
x ∈ ri(C), x ∈ C, then λx+ (1− λ)x ∈ ri(C) for λ ∈ (0, 1].

Proof. Fix λ ∈ (0.1]. Consider xλ = λx+ (1− λ)x.
Let L be the subspace parallel to aff(C). Define B(0, ε) := {z ∈ L| ‖z‖ < ε}.
Since x ∈ C, for all ε > 0, we have x ∈ C +B(0, ε). Then

B(xλ; ε) ∩ aff(C) = {λx+ (1− λ)x}+B(0; ε)

⊂ {λx}+ (1− λ)C + (2− λ)B(0; ε)

= (1− λ)C + λ

[
x+B

(
0;

2− λ
λ

ε

)]

Since x ∈ ri(C), x+B

(
0; 2−λ

λ ε

)
⊂ C, for sufficiently small ε.

So B(xλ; ε)∩ aff(C) ⊂ λC + (1− λ)C = C (since C is convex). Therefore, xλ ∈
ri(C).

Proposition:(Prolongation Lemma) Let C be a nonempty convex set. Then
we have

x ∈ ri(C)⇐⇒ ∀x ∈ C, ∃γ > 0 such that x+ γ(x− x) ∈ C.

In other words, x is a relative interior point iff every line segment in C having
x as one of the endpoints can be prolonged beyond x without leaving C.

Proof. Suppose the condition holds for x. Let x ∈ ri(C). If x = x, then we are
done. So assume x 6= x. Then there exists γ > 0 such that y = x+γ(x−x) ∈ C.
Hence x = 1

1+γ y + γ
1+γx. Since x ∈ ri(C), y ∈ C, by the line segment property,

we have x ∈ ri(C). The other direction is clear from the fact that x ∈ ri(C).

Proposition: Let C be a nonempty convex set. Then

(a) C = ri(C).
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(b) ri(C) = ri(C).

(c) Let D be another nonempty convex set. Then the following are equivalent:

(i) C and D have the same relative interior.

(ii) C and D have the same closure.

(iii) ri(C) ⊆ D ⊆ C.

Proof. (a) ri(C) ⊂ C since ri(C) ⊂ C. Conversely, suppose x ∈ C.
Let x ∈ ri(C). Consider xk = 1

kx+ (1− 1
k )x. By the line segment property,

each xk ∈ ri(C). Also, xk → x. Therefore, x ∈ cl(ri(C)).

(b) Note that aff(C) = aff(C). Then by the definition of relative interior, ri(C) ⊆
ri(C). Now suppose x ∈ ri(C), we will show that x ∈ ri(C).
Pick x ∈ ri(C). We may assume x 6= x.
Then by the prolongation lemma, there exists γ > 0 such that

x+ γ(x− x) ∈ C

Then by the line segment property and the fact that x ∈ ri(C),

x =
γ

γ + 1
x+

1

γ + 1
(x+ γ(x− x) ∈ ri(C)

(c) Suppose ri(C)=ri(D), then ri(C) = ri(D). Hence C = D.
Suppose C = D, then ri(C)=ri(C)=ri(D)=ri(D).
Therefore (i) and (ii) are equivalent.
Suppose C = D, then

ri(C) = ri(D) ⊆ D ⊆ D = C

Suppose ri(C) ⊆ D ⊆ cl(C), then ri(C) ⊆ D ⊆ C.
Since ri(C) = C, ri(C) = D = ri(D).
Hence C = D and (ii),(iii) are equivalent.

1.5 Projection to Convex Sets

Given a set C ⊆ Rn, the distance of a point to C is defined by

d(x;C) := inf{||x− y|| | y ∈ C}

For closed convex sets, an important consequence is the following projection
property.
Proposition:(Projection Property) Let C be a nonempty, closed convex
subset of Rn. For each x ∈ Rn, there exists an unique w ∈ C such that

||x− w|| = d(x;C)

w is called the projection of x to C, and is denoted by PC(x).
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Proof. By definition of d(x;C), there exists wk ∈ C such that

d(x;C) ≤ ||x− wk|| < d(x;C) +
1

k

It follows that {wk} is a bounded sequence. Hence it has a converging subse-
quence {wkl} which converges to a point w. Since C is closed, w ∈ C.
Considering the limit of

d(x;C) ≤ ||x− wkl || < d(x;C) +
1

kl

Hence d(x;C) = ||x− w||.
Now suppose w1 6= w2 ∈ C satisfy

||x− w1|| = ||x− w2|| = d(x;C)

Then we have,

2||x− w1||2 = ||x− w1||2 + ||x− w2||2 = 2||x− w1 + w2

2
||2 +

||w1 − w2||2

2

Since C is convex, w1+w2

2 ∈ C. This gives,

||x− w1 + w2

2
||2 = ||x− w1||2 −

||w1 − w2||2

4
< ||x− w1||2 = d(x;C)2

But since C is convex, w1+w2

2 ∈ C, this is a contradiction.

Proposition: Let C be a nonempty, closed convex set, then w = PC(x) if and
only if

〈x− w, u− w〉 ≤ 0, ∀u ∈ C

Proof. Suppose w = PC(x).
Let u ∈ C, λ ∈ (0, 1). Since C is convex, λu+ (1− λ)w ∈ C. Then

||x−w||2 = d(x;C)2 ≤ ||x−w−λ(u−w)||2 = ||x−w||2−2λ〈x−w, u−w〉+λ2||u−w||2.

That is
2〈x− w, u− w〉 ≤ λ||u− w||2

Letting λ→ 0+, we have
〈x− w, u− w〉 ≤ 0

Conversely, suppose
〈x− w, u− w〉 ≤ 0, ∀u ∈ C

Then

||x− u||2 = ||x− w||2 + 2〈x− w,w − u〉+ ||w − u||2

≥ ||x− w||2 − 2〈x− w, u− w〉 ≥ ||x− w||2

Hence ||x− w|| ≤ ||x− u|| for all u ∈ C and w = PC(x).
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Figure 1: Projection to a convex set
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