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Math4230: Optimization Theory
Prerequisite Topics

This is meant to be a brief, informal refresher of some topics that will form building blocks in
this course. The content of the first two sections of this document is mainly taken from Appendix
A of B & V, with some supplemental information where needed. See the end for a list of potentially
helpful resources you can consult for further information.

1 Real Analysis and Calculus

1.1 Properties of Functions

Limits You should be comfortable with the notion of limits, not necessarily because you will have
to evaluate them, but because they are key to understanding other attributes of functions.
Informally, lim,_,, f(x) is the value that f approaches as x approaches the value a.

Continuity A function f(z) is continuous at a particular point 2’ if, as a sequence w1, s, ...
approaches ', the value f(x1), f(x2),... approaches f(z'). In limit notation: lim; ,~ f(z;) =
F(lim; o ;). f is continuous if it is continuous at all points z’ € domj.

Differentiability A function f : R™ — R is considered differentiable at x € int domf if there
exists a vector 7 f(z) that satisfies the following limit:

b W) = F@) = D@~ o)l

z€domf,z#x,z—x HZ — J}||2

=0

We refer to 57 f(x) as the derivative of f, and it is the transpose of the gradient.

Smoothness f is smooth if the derivatives of f are continuous over all of domf. We can describe
smoothness of a certain order if the derivatives of f are continuous up to a certain derivative.
It is also reasonable to talk about smoothness over a particular interval of the domain of f.

Lipschitz A function f is Lipschitz with Lipschitz constant L if ||f(z) — f(y)|| < L||z — y||
Vz,y € domf. If we refer to a function f as Lipschitz, we are making a stronger statement
about the continuity of f. A Lipschitz function is not only continuous, but it does not change
value very rapidly, either. This is obviously not unrelated to the smoothness of f, but a
function can be Lipschitz but not smooth.



Taylor Expansion The first order Taylor expansion of a function gives us an easy way to form a
linear approximation to that function:

fy) = f(z) +Vf()(y — =)

And equivalent form that is often useful is the following:

1
£0) = f@)+ [ telo = v) + )y - 2) e
0
For a quadratic approximation, we add another term:

Fl) = F@) + V@)~ 2)+ 5y~ ) V2 H @)y )

Often when doing convergence analysis we will upper bound the Hessian and use the quadratic
approximation to understand how well a technique does as a function of iterations.

1.2 Sets

Interior The interior intC of the set C is the set of all points x € C for which de¢ > 0 s.t.
{lly —zll2 < e} € C.

Closure The closure clC of a set C is the set of all z such that Ve > 0 Jy € C s.t. ||z — y||2 < e
The closure only makes sense for closed sets (see below), and can be considered the union of
the interior of C' and the boundary of C.

Boundary The boundary is the set of points bdC for which the following is true: Ve 3y € C,z ¢ C
st |y —z|l2 <eand ||z — x|z < e

Complement The complement of the set C' C R™ is denoted by R™
C'. It is the set of all points not in C

Open vs Closed A set C is open if intC' = C. A set is closed if its complement is open.

Equality You’ll notice that above we used a notion of equality for sets. To show formally that
sets A and B are equal, you must show A C B and B C A.

1.3 Norms

See B & V for a much more detailed treatment of this topic. I am going to list the most common
norms so that you are aware of the notation we will be using in this class:

Ly ||z|lo is the number of nonzero elements in . We often want to minimize this, but it is non-
convex (and actually, not a real norm), so we approximate it (you could say we relax it) to
other norms (e.g. ¢1).

by ||z||p = (Jz1|P 4 - - - + |z, |P) /P, where p > 1. Some common examples:

o [lzfly =320 fil
o [lzlla = /3o, 7



o [[z]loo = max; [a;
Spectral/Operator Norm || X||,, = 01(X), the largest singular value of X.

Trace Norm || X||; = >"._, 0,(X), the sum of all the singular values of X.

1.4 Linear/Affine Functions

In this course, a linear function will be a function f(z) = a”z. Affine functions are linear functions
with a nonzero intercept term: g(z) = a’z +b.

1.5 Derivatives of Functions

See B & V for some nice examples. Consider the following for a function f : R™ — R:

Gradient The i'h element of 7 f is the partial derivative of f w.r.t. the i*h dimension of the input

r: /f(z)i = agif)

Chain Rule Let h(z) = g(f(z)) for g : R = R. We have: vh(z) = ¢'(f(x)) v f(z)

Hessian In the world of optimization, we denote the Hessian matrix as /2 f(z) € R"*" (some of

you have maybe seen this symbol used as the Laplace operator in other courses). The ijth

2
entry of the Hessian is given by: v f(2):; = gmfé?
10T

Matrix Differentials In general we will not be using these too much in class. The major differ-
entials you need to know are:

e IXTX =X
° %tr(XA) = AT

2 Linear Algebra

2.1 Matrix Subspaces

Row Space The row space of a matrix A is the subspace spanned of the rows of A.
Column Space The column space of a matrix A is the subspace spanned of the columns of A.
Null Space The null space of a matrix A is the set of all x such that Az = 0.

Rank rankA is the number of linearly independent columns in A (or, equivalently, the number of
linearly independent rows). A matrix A € R™*™ is full rank if rankA = min{m, n}. Recall
that if A is square and full rank, it is invertible.

2.2 Orthogonal Subspaces

Two subspaces 51,5 € R™ are orthogonal if 8{32 =0V sy €851,8 €5.



2.3 Decomposition

Eigen Decomposition If A € S™ the set of real, symmetric, n x n matrices, then A can be
factored:

A=QAQT
Here @ is an orthogonal matrix, which means that Q7Q = I. A = diag(\1, A2, ..., A,,), where

the eigenvalues \; are ordered by decreasing value. Some useful facts about A that we can
ascertain from the eigen decomposition:

o [Al=Tl M
o trA = Z?:l Ai

e A is invertible iff (if and only if) all its eigenvalues are nonzero. Then A=! = QA~1QT
(note that I have used the fact that for orthogonal @, Q= = QT

e A is positive semidefinite if all its eigenvalues are nonnegative.
Singular Value Decomposition Any matrix A € R™*" with rank r can be factored as:
A=UxvT

Here U € R™*" has the property that UTU = I and V € R™*" likewise satisfies VIV = I.
Y. = diag(oy, 09, ...,0,) where the singular values o; are ordered by decreasing value. Some
useful facts that we can learn using this decomposition:

e The SVD of A has the following implication for the eigendecomposition of A% A:

%2 0

ATA = [VW] [O 0

|
W is the matrix such that [VW] is orthogonal.
e The condition number of A (an important concept for us in this course) is cond4 = 2+

Pseudoinverse The SVD of a singular matrix A yields the pseudoinverse AT = VX ~1UT,

3 Canonical ML Problems

3.1 Linear Regression

Linear regression is the problem of finding f : X — YV, where X € R"*P, Y is an n-dimensional
vector of real values and f is a linear function. Canonically, we find f by finding the vector 8 € RP
that minimizes the least squares objective:

f = argmin|| X8 - Y3
8

For Y € R"*4 the multiple linear regression problem, we find a matrix B that such that:

B = argmin || XB - Y|
B

Note that in its basic form, the linear regression problem can be solved in closed form.



3.2 Logistic Regression

Logistic regression is the problem of finding f : X — Y, where Y is an n-dimensional vector binary
values, and f has the form f(x) = logit(37 2). The logit function is defined as logit(a) = m.
We typically solve for 5 by maximizing the likelihood of the observed data, which results in the

following optimization problem:

3 = argmax Z[yzBTxi —log(1 + exp(—y; 7 z;)]
L

3.3 Support Vector Machines

Like logistic regression, SVMs attempt to find a function that linearly separates two classes. In this
case, the elements of Y are either 1 or —1. SVMs frame the problem as the following constrained
optimization problem (in primal form):

. 1
f = argmin §||5||§
B

s.t. yi(BTx) > 1 Vi=1,..,n

In its simplest form, the support vector machine seeks to find the hyperplane (parameterized
by ) that separates the classes (encoded in the constraint) and does so in a way that creates the
largest margin between the data points and the plane (encoded in the objective that is minimized).

3.4 Regularization/Penalization

Regularization (sometimes referred to as penalization) is a technique that can be applied to al-
most all machine learning problems. Most of the time, we regularize in an effort to simplify the
learned function, often by forcing the parameters to be “small” (either in absolute size or in rank)
and/or setting many of them to be zero. Regularization is also sometimes used to incorporate prior
knowledge about the problem.

We incorporate regularization by adding either constraints or penalties to the existing optimiza-
tion problem. This is easiest to see in the context of linear regression. Where previously we only
had least squares loss, we can add penalties to create the following two variations:

Ridge Regression By adding an {5 penalty, our objective to minimize becomes:

B = argéninHXﬂ = Y5+ AlIBll2

This will result in many elements of 8 being close to 0 (more so if X is larger).

Lasso Regression By adding an ¢; penalty, our objective to minimize becomes:

B= arg;ninllXﬁ — Y153+ A8l

This will result in many elements of 5 being 0 (more if X is larger).

The first example is nice because it still can be solved in closed form. Notice however that the /4
penalty creates issues not only for a closed-form solution, but also for standard first-order methods,
because it is not differentiable everywhere. We will study how to deal with this later in the course.



4 Further Resources

In addition to B & V, the following are good sources of information on these topics:

e Matrix Cookbook: https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdt

e Linear Algebra Lectures by Zico Kolter:rhttp:/7/www.cs . cmu.edu/~zkolter/course/

index.html
linalg/

e Functional Analysis/Matrix Calculus Lectures by Aaditya Ramdas: http://www.cs.cmu.
edu/~aramdas/videos.html


http://www.mit.edu/~wingated/stuff_i_use/matrix_cookbook.pdf
http://www.cs.cmu.edu/~zkolter/course/linalg/index.html
http://www.cs.cmu.edu/~zkolter/course/linalg/index.html
http://www.cs.cmu.edu/~aramdas/videos.html
http://www.cs.cmu.edu/~aramdas/videos.html
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Lecture 1

What is the Course About?

e A special class of optimization (includes Linear Programming)

Continuous Optimization

Linear

Optimization

Discrete Optimization

Convex Optimization 2



Lecture 1

Who Cares and Why?

e Who?
Anyone using or interested in computational aspects of optimization

e Why?
e To understand the underlying basic terminology, principles, and
methodology (to efficiently use the existing software tools)
e To develop ability to modify tools when needed

e To develop ability to design new algorithms or improve the efficiency
of the existing ones

Convex Optimization 3



Lecture 1

Course Objective

e The goal of this course is to provide you with working knowledge of
convex optimization

e In particular, to provide you with skills and knowledge to

e Recognize convex problems
e Model problems as convex

e Solve the problems

Convex Optimization 4



Lecture 1

Convex Optimization History

e Convexity Theory and Analysis have being studied for a long time, mostly
by mathematicians

e Until late 1980’s:

e Algorithmic development focused mainly on solving Linear Problems

7 Simplex Algorithm for linear programming (Dantzig, 1947)
- Ellipsoid Method (Shor, 1970)

- Interior-Point Methods for linear programming (Karmarkar, 1984)

e Applications in operations research and few in engineering

e Since late 1980's: A new interest in Convex Optimization emerges

Convex Optimization 5



Lecture 1

New Interest in the Topic

Recent developments stimulated a new interest in Convex Optimization

e The recognition that Interior-Point Methods can efficiently solve certain
classes of convex problems, including semi-definite programs and second-
order cone programs, almost as easily as linear programs

e The new technologies and their applications created a need for new
models (convex models are often suitable)

e Convex Problems are now prevalent in practice
e Automatic Control Systems
e Estimation, Signal and Image Processing
e Communication and Data Networks
e Data Analysis and Modeling

e Statistics and Finance

Convex Optimization 6



Lecture 1

Formal Introduction

e Mathematical Formulation of Optimization

e Some Examples

e Solving Optimization Problems

e Least-Squares
e Linear Optimization

e Convex Optimization

e Practical Example

e Ongoing Research in Convex Optimization

Convex Optimization 7



Lecture 1

Mathematical Formulation of Optimization Problem

minimize f(x)
subject to ¢g;(z) <0, i1=1,...,m
x e X

e Vector x = (x1,...,xy) represents optimization (decision) variables
e Function f : R™ — R is an objective function

e Functions g; : R — R, 4 = 1,...,m are constraint functions (represent
inequality constraints)

e Set X C R" is a constraint set

Optimal value: The smallest value of f among all vectors that satisfy the
set and the inequality constraints

Optimal solution: A vector that achieves the optimal value of f and
satisfies all the constraints

Convex Optimization 8



Lecture 1

Some Examples

Communication Networks

e Variables: communication rates for users
e Constraints: link capacities
e Objective: user cost

Portfolio Optimization

e Variables: amounts invested in different assets

e Constraints: available budget, maximum /minimum investment per asset,
minimum return, time constraints

e Objective: overall risk or return variance

Data Fitting

e Variables: model parameters
e Constraints: prior information, parameter limits
e Objective: measure of misfit or prediction error

Convex Optimization 9



Lecture 1

Solving Optimization Problems

General Optimization Problem
e Very difficult to solve

e Existing methods involve trade offs between “time” and “accuracy”, eg.,
very long computation time, or finding a sub-optimal solution

Exceptions: Certain problem classes can be solved efficiently and reliably

e Least-Squares Problems
e Linear Programming Problems

e Some classes of Convex Optimization Problems

Convex Optimization 10



Lecture 1

Least-Squares

minimize ||Az — b||? /

Solving Least-Squares Problems
e Analytical solution: z* = (ATA)"1A”b
e Reliable and efficient algorithms and software
e A mature technology
e Computation time proportional to n?k (A € R**"): less if structured

Using Least-Squares
e Least-squares problems are easy to recognize
e In regression analysis, optimal control, parameter estimation
e A few standard techniques increase its flexibility in applications (eg.,

including weights, regularization terms)

Convex Optimization 11



Linear Programming

S

0,1)

Lecture 1

20,2)

L ]
X =(2,2)
Optimal Point

minimize cdx X
subject to alx <b;, 1<i<m
Solving Linear Programs
e No analytical solution
e Reliable and efficient algorithms and software
e A mature technology

)

Convex Optimization

12



Lecture 1

Using Linear Programming
e Not as easy to recognize as least-squares problems (linear formulation
possible but not always obvious)

e A few standard tricks used to convert problems into linear programs
(eg., problems involving maximum norm, piecewise-linear functions)

Convex Optimization 13



Lecture 1

Convex Optimization Problems

minimize f(x)
subject to ¢g;(z) <0, i=1,...,m
x e X
e Objective and constraint functions are convex
e Constraint set is convex
e Includes least-squares problems and linear programs as special cases

Solving Convex Optimization Problems
e No analytical solution
e Reliable and efficient algorithms for some classes
e Computation time (roughly) proportional to max{n3,n?m, G}, where

(G is a cost of evaluating g;'s and their first and second derivatives
e Almost a technology

Using Convex Optimization
e Often difficult to recognize
e Many tricks for transforming problems into convex form
e Many practical problems can be modeled as convex optimization

Convex Optimization 14



Lecture 1

Practical Example

Image Reconstruction in PET-scan [Ben-Tal, 2005]

) (

e Maximum Likelihood Model results in convex optimization

m n
min = wiln| > pijz;
x>0, ez<1 =1 =1

e x is a decision vector
e y models measured data (by PET detectors)
e p;; probabilities modeling detections of emitted positrons

Convex Optimization 15



Lecture 1

Ongoing Research in Convex Optimization and Beyond
e Distributed computations for large scale (nonsmooth) convex problems
e Approximation schemes with rate and error estimates

e Extending the methodology to non-convex problems

Deep learning methods

Convex Optimization 16



Homework:

Download:

http://www.lix.polytechnique.fr/bigdata/mathbigdata/wp-
content/uploads/2014/10/Lnotes CvxAn FullEn.pdf

Read:

1. Chapter1
2. Chapter2


http://www.lix.polytechnique.fr/bigdata/mathbigdata/wp-content/uploads/2014/10/Lnotes_CvxAn_FullEn.pdf
http://www.lix.polytechnique.fr/bigdata/mathbigdata/wp-content/uploads/2014/10/Lnotes_CvxAn_FullEn.pdf

Introduction: Why Optimization?

Convex Optimization



Prerequisites: no formal ones, but class will be fairly fast paced

Assume working knowledge of /proficiency with:

Real analysis, calculus, linear algebra

Core problems in Machine Learning and Statistics

Programming (R, Python, Julia, your choice ...)

Data structures, computational complexity

Formal mathematical thinking

If you fall short on any one of these things, it's certainly possible to
catch up; but don't hesitate to talk to us



Optimization in Machine Learning and Statistics

Optimization problems underlie nearly everything we do in Machine
Learning and Statistics. In other courses, you learn how to:

translate ? into P : min f(z)
= z€D
Conceptual idea Optimization problem
Examples of this? Examples of the contrary?

This course: how to solve P, and why this is a good skill to have



Motivation: why do we bother?

Presumably, other people have already figured out how to solve

P gréilr)l fx)

So why bother? Many reasons. Here's three:

1. Different algorithms can perform better or worse for different
problems P (sometimes drastically so)

2. Studying P through an optimization lens can actually give you
a deeper understanding of the task/procedure at hand

3. Knowledge of optimization can actually help you create a new
problem P that is even more interesting/useful

Optimization moves quickly as a field. But there is still much room
for progress, especially its intersection with ML and Stats



Example: algorithms for linear trend filtering

Given observations y; € R, ¢ = 1,...,n corresponding to
underlying locations x; =4, i=1,...,n

10

Linear trend filtering
fits a piecewise linear
function, with adap-
tively chosen knots
(Steidl et al. 2006,
Kim et al. 2009)

Activation level

. ‘ 1 n n—2
How? By solving min B Z;(yz — Gi)z + A Z; |0; —20; 11 + 0;42]
1= 1=



-2

) 1 n ) n
Problem: Hleln 5 Z(yl — 01) + A Z |91 — 20,41+ 0i+2|

i=1 =1
s Interior point method,
20 iterations

:

T T T T T T

0 200 400 600 800 1000

Timepoint



n—2
Problem: HIOiH 5 Z(yZ — 01)2 + A Zl |l91 — 20,41+ 0i+2|

10

| Interior point method,
20 iterations

Proximal gradient de-
scent, 10K iterations

Activation level

0 200 400 600 800 1000

Timepoint



n

‘ 1 n—2
Problem: Hleln 5 Zl(yZ — 01)2 + A Zl |¢91 — 20,41+ 0i+2|

10

| Interior point method,
20 iterations

Proximal gradient de-
scent, 10K iterations

Activation level

Coordinate descent,
i 1000 cycles

T T T T T T
0 200 400 600 800 1000

Timepoint



‘ 1 n n—2
Problem: Hleln 5 Zl(yz - 02)2 + A Zl |¢91 — 20,41+ 0i+2|

10

| Interior point method,
20 iterations

Proximal gradient de-
scent, 10K iterations

Activation level

Coordinate descent,
1000 cycles

| | | | | | (all from the dual)

0 200 400 600 800 1000

Timepoint



What's the message here?

So what's the right conclusion here?

Is primal-dual interior point method simply a better method than
proximal gradient descent, coordinate descent? ... No

In fact, different algorithms will work better in different situations.
We'll learn details throughout the course

In the linear trend filtering problem:
e Primal-dual: fast (structured linear systems)
e Proximal gradient: slow (conditioning)

e Coordinate descent: slow (large active set)

10



Central concept: convexity

Historically, linear programs were the focus in optimization

Initially, it was thought that the important distinction was between
linear and nonlinear optimization problems. But some nonlinear
problems turned out to be much harder than others ...

Now it is widely recognized that the right distinction is between
convex and nonconvex problems

Your supplementary textbooks for the course:

Boyd and Vandenberghe H;Dm;;"tyg,f q Rockafellar
(2004) an (1970)

Analysis

16



Wisdom from Rockafellar (1993)

From Terry Rockafellar's 1993 SIAM Review survey paper:

a convex set every locally optimal solution is global. Also, first-order necessary condi-
tions for optimality turn out to be sufficient. A variety of other properties conducive to
computation and interpretation of solutions ride on convexity as well. In fact the great
watershed in optimization isn’t between linearity and nonlinearity, but convexity and
nonconvexity. Even for problems that aren’t themselves of convex type, convexity may
enter, for instance, in setting up subproblems as part of an iterative numerical scheme.

Credit to Nemirovski, Yudin, Nesterov, others for formalizing this
This view was dominant both within the optimization community

and in many application domains for many decades (... currently
being challenged by successes of neural networks?)

17



Convex sets and functions

Convex set: C' C R™ such that
z,yeC = te+(1—-t)yeC forall 0<t<1

O &

Convex function: f:R™ — R such that dom(f) C R™ convex, and
fz+ (1 —=t)y) <tf(x)+ (1 —1t)f(y) forall 0<t<1
and all z,y € dom(f)

(v, f(v))
(, f(x)

18



Convex optimization problems

Optimization problem:
min f(z)
subject to ¢g;(x) <0,i=1,....m
h](x) :O, j:1,...77'

Here D = dom(f) N2, dom(g;) N(;—, dom(h;), common
domain of all the functions

This is a convex optimization problem provided the functions f
and g;,i =1,...,m are convex, and h;,j = 1,...,p are affine:

hj(x):ajrx+bj, j=1,...,p

19



Local minima are global minima
For convex optimization problems, local minima are global minima

Formally, if x is feasible—x € D, and satisfies all constraints—and
minimizes f in a local neighborhood,

f(z) < f(y) for all feasible y, ||z —y|l2 < p,

then
f(x) < f(y) for all feasible y

'n
s

This is a very useful
fact and will save us
a lot of trouble!

Convex Nonconvex

20



Convexity I: Sets and Functions

Convex Optimization

See supplements for reviews of
e basic real analysis
e basic multivariate calculus

e basic linear algebra



Last time: why convexity?

Why convexity? Simply put: because we can broadly understand
and solve convex optimization problems

Nonconvex problems are mostly treated on a case by case basis

777

7
7

Reminder: a convex optimization problem is of
the form

min f(z)
subject to ¢;(z) <0,i=1,....,m
h](l‘) :0, jZl,...,T‘
where f and g;, ¢ = 1,..., m are all convex, and

hj, g = 1,...,r are affine. Special property:
any local minimizer is a global minimizer




Outline

Today:
e Convex sets
e Examples

o Key properties

Operations preserving convexity

Same, for convex functions



Convex sets

Convex set: C' C R™ such that
z,yeC = te+(1—-t)yeC forall 0<t<1

In words, line segment joining any two elements lies entirely in set

O &

Convex combination of x1,...,zr € R™: any linear combination
0121 + - + Oy

with 0; > 0,7 =1,...,k, and Zle 0; = 1. Convex hull of a set C,
conv(C), is all convex combinations of elements. Always convex



Examples of convex sets

Trivial ones: empty set, point, line

Norm ball: {z : ||x|| < r}, for given norm || - ||, radius r
Hyperplane: {x : a’x = b}, for given a,b

Halfspace: {z:a”x < b}

Affine space: {x : Az = b}, for given A, b



e Polyhedron: {z : Az < b}, where inequality < is interpreted
componentwise. Note: the set {x : Az < b,Cx = d} is also a
polyhedron (why?)

a
1 az

ag

ay

e Simplex: special case of polyhedra, given by
conv{xy, ..., x}, where these points are affinely independent.
The canonical example is the probability simplex,

convier,...,en} ={w:w>0,1Tw=1}



Cones

Cone: C C R" such that
re(C — texeC forallt>0
Convex cone: cone that is also convex, i.e.,

11,9 € C = ti1x1 +1taxe € C forall t1,19 >0

Conic combination of x1,...,xx € R™: any linear combination
011+ - + Oy,

with 8; > 0,4 =1,...,k. Conic hull collects all conic combinations



Examples of convex cones

e Norm cone: {(z,t) : ||z|| < t}, for a norm || - ||. Under the ¢,
norm || - ||2, called second-order cone

e Normal cone: given any set C and point x € C, we can define

Ne(x)={g: g7z > gly, forallyeC}

. This is always a convex cone,
regardless of C

e Positive semidefinite cone: ST = {X € S" : X » 0}, where
X > 0 means that X is positive semidefinite (and S™ is the
set of n X n symmetric matrices)



Key properties of convex sets

e Separating hyperplane theorem: two disjoint convex sets have
a separating between hyperplane them

Formally: if C, D are nonempty convex sets with C'N D = (),
then there exists a, b such that

C’g{x:aTrvgb}
Dg{x:aT:UZb}



e Supporting hyperplane theorem: a boundary point of a convex
set has a supporting hyperplane passing through it

Formally: if C'is a nonempty convex set, and xy € bd(C),
then there exists a such that

C Clx:a’s <alxy}

Both of the above theorems (separating and supporting hyperplane
theorems) have partial converses; see Section 2.5 of BV

10



Example: linear matrix inequality solution set

Given Ay, ..., Ax, B € S", a linear matrix inequality is of the form
x1 A1+ 20As+ -+ xp Ay 2 B

for a variable z € R”. Let's prove the set C' of points x that satisfy
the above inequality is convex

Approach 1: directly verify that 2,y € C =tz + (1 —t)y € C.
This follows by checking that, for any v,
k
vl (B - Z(t:z:l +(1- t)yi)Ai)v >0
i=1

Approach 2: let f: RF — S", f(z) = B — Zle z;A;. Note that
C = f~1(S%), affine preimage of convex set

12



Convex functions
Convex function: f : R™ — R such that dom(f) C R™ convex, and
flz+ (1 =t)y) <tf(z)+ (A -1)f(y) for 0<t<1

and all z,y € dom(f)

In words, function lies below the line segment joining f(x), f(y)
Concave function: opposite inequality above, so that

f concave <= —f convex

15



Important modifiers:

e Strictly convex: f(tz + (1 —t)y) <tf(z) + (1 —1t)f(y) for
x#yand 0 <t<1. Inwords, f is convex and has greater
curvature than a linear function

e Strongly convex with parameter m > 0: f — %[ z||3 is convex.

In words, f is at least as convex as a quadratic function

Note: strongly convex = strictly convex = convex

(Analogously for concave functions)

16



Examples of convex functions

Univariate functions:

v

Exponential function: e** is convex for any a over R
Power function: z® is convex for a > 1 or a < 0 over R
(nonnegative reals)

Power function: 2 is concave for 0 < a <1 over Ry
Logarithmic function: log z is concave over R, |

v

v

v

Affine function: a®z + b is both convex and concave

Quaderatic function: %xTQm + Tz + ¢ is convex provided that
Q@ = 0 (positive semidefinite)

Least squares loss: ||y — Az||3 is always convex (since AT A is
always positive semidefinite)

17



e Norm: |[z|| is convex for any norm; e.g., £, norms,

n 1/p
ux\p=<2\xiv@) for p=1, ol = max o,

=t/

and also operator (spectral) and trace (nuclear) norms,
T
1Xlop = o1(X), | X]ler = D on(X)
i=1

where 01(X) > ... > 0,(X) > 0 are the singular values of
the matrix X

18



e |ndicator function: if C is convex, then its indicator function

0 zeC

fe(w) = oo z¢C

is convex

e Support function: for any set C' (convex or not), its support

function
I (x) = max 2t
o(z) e Y

is convex

e Max function: f(z) = max{z1,...,z,} is convex

19



Key properties of convex functions

e A function is convex if and only if its restriction to any line is
convex

e Epigraph characterization: a function f is convex if and only
if its epigraph

epi(f) = {(z,t) € dom(f) x R: f(x) <t}
is a convex set
e Convex sublevel sets: if f is convex, then its sublevel sets
{z € dom(f) : () < t}

are convex, for all t € R. The converse is not true

20



e First-order characterization: if f is differentiable, then f is
convex if and only if dom(f) is convex, and

fy) 2 fz) + V()" (y - 2)

for all 2,y € dom(f). Therefore for a differentiable convex
function Vf(z) =0 <= x minimizes f

e Second-order characterization: if f is twice differentiable, then
f is convex if and only if dom(f) is convex, and V2f(z) = 0
for all x € dom(f)

e Jensen's inequality: if f is convex, and X is a random variable
supported on dom(f), then f(E[X]) < E[f(X)]

21



Operations preserving convexity

e Nonnegative linear combination: fi,..., f,, convex implies
a1f1+ -+ amfm convex for any a1,...,am >0

e Pointwise maximization: if fs is convex for any s € S, then
f(x) = maxseg fs(x) is convex. Note that the set S here
(number of functions fs) can be infinite

e Partial minimization: if g(x,y) is convex in x,y, and C'is
convex, then f(z) = minyec g(x,y) is convex

22



Example: distances to a set

Let C be an arbitrary set, and consider the maximum distance to
C' under an arbitrary norm || - ||:

= a. —_
Fla) = mas 1~ ]

Let's check convexity: f,(x) = ||z — y|| is convex in z for any fixed
Yy, so by pointwise maximization rule, f is convex

Now let C' be convex, and consider the minimum distance to C:
) =min ||z —
(o) = min [lo =yl

Let's check convexity: g(z,y) = || — y|| is convex in z,y jointly,
and C' is assumed convex, so apply partial minimization rule

23



More operations preserving convexity

e Affine composition: if f is convex, then g(x) = f(Az +b) is
convex

e General composition: suppose f = h o g, where g : R” — R,
h:R—=R, f:R"— R. Then:

>

>

>

>

f is convex if h is convex and nondecreasing, g is convex
f is convex if h is convex and nonincreasing, g is concave
f is concave if h is concave and nondecreasing, g concave
f is concave if h is concave and nonincreasing, g convex

How to remember these? Think of the chain rule when n = 1:

(@) = h"(g(@))g'(@)* + W (g(x))g" (x)

24



e Vector composition: suppose that

f(@) = h(g(x)) = h(g1(2), .., g(x))

where g : R* - R¥ h:R¥ 5 R, f:R® - R. Then:

» f is convex if h is convex and nondecreasing in each
argument, g is convex

» f is convex if h is convex and nonincreasing in each
argument, g is concave

» f is concave if h is concave and nondecreasing in each
argument, g is concave

» f is concave if h is concave and nonincreasing in each
argument, g is convex

25



Example: log-sum-exp function

Log-sum-exp function: g(x) = log(zl Le {70 for fixed aj, by,
i=1,...,k. Often called "soft max”, as it smoothly approximates

maxi:Lmk (a?$ + bl)

How to show convexity? First, note it suffices to prove convexity of
f(x) =log(> 1, ) (affine composition rule)

Now use second-order characterization. Calculate

eri

Ze 1690’Z
e 6

s =) -

Write V2f(z) = diag(z) — 227, where z; = €% /(3_}_, €%). This
matrix is diagonally dominant, hence positive semidefinite

Vif(x) =

Viif(a) =

26



References and further reading
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Optimization Theory: Reading materials Spring 2022

Lecture: Convex Functions — Jan 18-19, 2022

Overview In these two lectures, we will introduce the concept of convex functions, and provide several
ways to characterize convex functions, discuss some calculus that can be used to detect convexity of functions
and compute the subgradients of convex function.

3.1 Definitions

Definition 3.1 (Convex function) A function f(z) : R® — R is convez if

(i) dom(f) CR™ s a conver set;

(ii) Y,y € dom(f) and X € [0,1], f(Az + (1 = N)y) < Af(x) + (1= N)f(y).

Figure 3.1: Example of convex function

A function is called strictly convex if (ii) holds with strict sign, i.e. f(Az+ (1 —N)y) < Af(z) + (1 =) f(y).

A function is called a-strictly convex if f(z) — %[|z|3 is convex.

A function is called concave if —f(z) is convex.

For example, a linear function is both convex and concave. Any norm is convex.
Remark 1 (Extended value function). Conventionally, we can think of f as an extended value function
from R™ to RU {+o0} by setting f(x) = +o0o if 2 ¢ dom(f), the condition (ii) is equivalent as

Va,y, YA € [0,1], fQAz + (1 = Ny) < Af(z) + (1= A f(y).

3-1
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Remark 2. (Slope inequality) What does convexity really mean? Let z = Az + (1 — A)y, observe that
ly—z||:lly—=2|l: ]z —z|| =1:X: (1 —=A). Therefore

1) S M @)+ (1= N/ ()

()~ 1) f) - 1(2)

L < ) - po) < T
. @ -I@ -1 _ f6)- )

sl = ly=al =yl

\J

z z=Xr+(1=Ny Y

Figure 3.2: Slope PQ < Slope PR < Slope QR

3.2 Several Characterizations of Convex Functions

1. Epigraph characterization
Proposition 3.2 f is convex if and only if its epigraph

epi(f) == {(x,t) e R""': f(x) <t}

1S a conver set.

Proof: This can be verified by using the definition of convex function and convex set.

e (=) Suppose (x,t1), (y,t2) € epi(f), then f(x) < t1, f(y) < ta. Forany A € [0, 1], by convexity of
£ FQz+(1=Ny) < Af(z)+(1-=X)f(y) < Mt1+(1—A)to. Thiimplies that A-(x,t1)+(1—X)-(y, t2) €
epi(f). Hence, epi(f) is a convex set.

e (<) Let z,y € R", since (z, f(z)) and (y, f(y)) lie in epi(f), by convexity of epigraph set, we
have for any A € [0, 1], (Az+(1=X)y, A(z)+(1=X)f(y)) € epi(f). By definition, f(Az+(1-N)y) <
Af(z) + (1 = X)f(y). Hence, function f is convex.
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2. Level set characterization
Proposition 3.3 If f is convez, then the level set for anyt € R
Ci(f) ={z e dom(f) : f(z) <t}
18 a convex set.

For example, the unit norm ball {z : ||z| < 1} is a convex set since || - || is convex.
Remark. The reverse is not true. A function with convex level set is not always convex. In fact, it
is known as a quasi-convex function.

3. One-dimensional characterization

Proposition 3.4 f is convex if and only if its restriction on any line, i.e. function

o(t) = f(w + th)

is conver on the axis for any x and h.

Remark. Convexity is a one-dimensional property. In order to detect the convexity of a function, it
all boils down to check the convexity of a one-dimensional function on the axis. From basic calculus,
we already know that

@(t) is convex on (a,b)

B5) = 9(t) _ b(t2) = Bltr) _ 9lt2) = 6(5)

Va <t <s<ty<b (due to slope inequality)

<~ = >

S — tl tQ — tl t2 — S
= ¢'(t1) <P (t2),Va <ty <ty <b (if ¢ is differentiable)
— ¢"(t)>0,Va<t<b (if ¢ is twice-differentiable)

Hence, if f is differentiable or twice-differentiable, we can characterize it by based on its first-order or
second-order.

4. First-order characterization for differentiable convex functions

Proposition 3.5 Assume f is differentiable, then f is convex if and only if dom(f) is convex and for
any x,y,

£(2) 2 F5) + V) (@ - ). *
Proof:
o (=) If f is convex, letting z = (1—€)y+ex = y+e(x—y) with e € (0, 1), from the slop inequality,
e have F@) =10  FG) = f) _ f+ele—y) — f@)

lz =yl = lz—wll ellz —yl|
Hence, letting € — 0+, we have

f@) = fly) > tim LW HE=y) = /W)

e—0+ €

= Vi (x—y).

Therefore, f(y) > f(x) + Vf(2) (y — ).



Y
|
|
|
Y

Figure 3.3: First-order condition

o («=) If () holds, letting z = Az + (1 — \)y for any A € [0, 1], we have
f@) = f(2) + V()T (z —2)
F) = f(2) + V() (y—2)
Adding the two inequalities with scalings A and (1 — \), it follows that
M @)+ (L =N fy) = f(z) = fQz + (1= Ny).

Hence, f is convex.

5. Second-order characterization for twice-differentiable convex functions

Proposition 3.6 Assume f is twice-differentiable, then f is convex if and only if dom(f) is convex
and for any x € dom(f),
V2f(x) = 0. (%%)

Proof:

e (=) If f is convex, then for any x, h, ¢(t) = f(x+th) is convex on the axis. Hence, ¢ (t) > 0, Vt.
Particularly,
¢"(0) = hTV2f(z)h > 0.
This implies that V2 f(x) = 0.
e (<=) It suffices to show that every one-dimensional function ¢(t) := f(z +t(y — x)) is convex for
any x,y € dom(f). The latter is indeed true because ¢ (t) = (y— )T V2f(z+t(y—2))(y—x) >0
due to (x*).

6. Subgradient characterization for non-differentiable convex functions

Proposition 3.7 [ is convez if and only if Va € int(dom(f)), there exists g, such that
f@) = fly) + " (x —y)

i.e. the subdifferential set is non-empty.

To be discussed in Section 3.5.



3.3 Calculus of Convex Functions

The following operators preserve the convexity of functions, which can be easily verified based on the defi-
nition.

1. Taking conic combination: If f,(z),a € A are convex functions and {As}aeca > 0, then

> Aafal@)

acA
is also a convex function.

2. Taking affine composition If f(x) is convex on R", and A(y) : y — Ay + b is an affine mapping
from R* to R", then

9(y) = f(Ay +b)
is convex on RF.

The proofs are straightforward and hence omitted.
3. Taking superposition:

e If f is a convex function on R™ and F(-) is a convex and non-decreasing function on R, then
g(x) = F(f(z)) is convex.

e More generally, if f;(x),i = 1,...,m are convex on R"™ and F(y1,...,¥m) is convex and non-
decreasing (component-wise) on R™, then

9(x) = F(fi(x), ..., fm(2))
is convex.
Proof: By convexity of f;, we have
fidz + (1= XNy) < Mi(x) + (1 = N fi(y), Vi, VA € [0, 1].
Hence, we have for any X € [0, 1],

gz + (1= Ny) = F(fr(Az + (1 = Ny), ..., fm(Az + (1 = A)y))
<FAfi(z)+ Q=X fi(y),. .., Afm(z) + (1 =N fi(y)) ( by monotonicity of F)
SAF(fi(z),..., fm(2)) + (1 = NF(fi(z),..., fm(x)) ( by convexity of F)
=Adg(z) + (1= Ng(y) ( by definition of g)
|

4. Taking supremum: If f,(z),a € A are convex, then

sup fo(2)
acA
is convex.
Note that when A is finite, this can be considered as a special superposition with F(y1,...,ym) =

max(y1,...,Ym), which can be easily shown to be monotonic and convex.



Proof: We show that
epi(sup fo) = {(x,t) : sup fa(zx) <t}
acA acA

= {(mvt) : fa(x) <tVae A}
= Naea{(z,t) : fo(z) <t}

= maeAepi(fa)~
Since f, is convex, epi(fy) is therefore a convex set for any o € A. Their intersection remains convex,
i.e. epi(supyeq fo) is a convex set, i.e. sup,¢c 4 fo(2) is convex. [ |

. Partial minimization: If f(z,y) is convex in (x,y) € R™ and C is a convex set, then
= i f
g(x) = inf f(z,y)

is convex.

Proof: Given any x1, x3, by definition, for any € > 0,
Jy1 : fz1,y1) < glx1) +€/2
Jy2 ¢ fla2,y2) < g(x2) +€/2
For any A € [0,1], adding the two equations, we have
A (@1, y1) + (1= A) f(z2,12) < Ag(z1) + (1 = A)g(z2) + e
Invoking the convexity of f(z,y), this implies
FOzr+ (1= X2, Ayr + (1= Nya) < Ag(1) + (1 = N g(z2) + €.

Hence for any ¢ > 0, g(Ax1 + (1 — Nz2) < Ag(x1) + (1 — A)g(z2) + €. Letting € — 0 leads to the
convexity of g. ]

. Perspective function: If f(z) is convex , then the perspective of f

gla,t) == tf(x/t)

is convex on its domain dom(g) = {(z,t) : ¢/t € dom(f),t > 0}.

Proof: Observe that
(x,t,7) € epi(g) <= tf(x/t) < T <= f(z/t) < 7/t <= (z/t,T/t) € epi(f)
Define the perspective function P: R" x R4+ x R:—» R"” x R, (z,t,7) — (z/t,7/t), then
epi(g) = P~ (epi(f)).

Since f is convex, epi(f) is a convex set. To show g is convex, it suffices to show that the inverse image
of a convex set under the perspective function is convex.

Claim: If U is a convex set, then
P~YU) = {(u,t) : u/t € U,t >0}
is a convex set.
This is because if (u, t) € P~1(U) and (v, s) € P~Y(U), for any A € [0, 1],
Au+ (1= Ao
At+(1—MN)s
where u = m € [0,1]. Hence, A - (u,t) + (1 = X) - (v,s) € P~YU). |

u v
—u-—=4+(1=pn)-= €U
% t+( ) S €



3.4 Examples of Convex Functions

Example 1. Simple univariate functions:

x? 2t

e for any a
— log(x)

xlog(x)

Example 2. Multi-variate functions:

Il

%xTQx + b7z + ¢, when Q = 0
| Az — b]|3

max(af z +by,...,alx — by)

relative entropy function g(z,t) : R2 | — R, (z,t) — tlog(t) — tlog(x)
log(Xy e ")

Proof: It suffices to show that f(z) = log(} i, €¥i) is convex. Observe that any h, we have

_ et (e hi)?
hTVQf(x)h_ Zieg“ — (Ziemi)z .

Let p; = Zi =7, we have
hTV2 f( szh2 O piha) >szh2 Z Vpi)? Z Vpihi)? Zpth—l szh2—0

The first inequality is due to Cauchy-Schwarz inequality. Hence, V2 f(z) = 0. [ ]
—log(det(X))

Proof: Let f(X) = —log(det(X)), the domain dom(f) = S ,. Let X, H > 0, it is sufficient to show
that g(t) = f(X +tH) is convex on dom(g) = {t : X +tH > 0}. Since

g(t) = —log(det(X+tH)) = —log(det(X /> (I+tX 2 HX ~1/2)x1/?)) Zlog (14+tA;)—log(det(X))

where Aq,...,\, are the eigenvalues of X ~1/2H X ~1/2. Note that for each i, —log(1 + t);) is convex
in ¢, so g(t) is also convex. [ |

Example 3. Some distances:

maximum distance to any set C: d(z,C) := maxycc ||z — y|

minimum distance to a convex set C: d(z,C) : mingec ||z — y||



Example 4. Indicator and support functions:

e indicator function of a convex set C: Io(z) :=

0, ze€C
oo, z¢C

e support function of any set C' (convex or not): I¢(x) = sup,cc 'y
3.5 Subgradients of Convex Functions

Definition 3.8 (Subgradient) Let f be a convex function and x € dom(f), any vector g satisfying

f) > f@)+g"(y— =)

is called a subgradient of f at x.

The set of all subgradients of f at x is called the subdifferential, denoted as Of(x).

Example 1. If f is differentiable at = € dom(f), then V f(x) is the unique element of 9f(x).
Proof: Let g € 0f(x), by definition, w > g%d,,Vd. Let t — 0, we have Vf(z)Td > g'd,Vd, which
implies Vf(x) = g. [

Example 2. Let f(z) = |z|, then 9f(0) = [-1, 1].

Proof: This is because |z| > 0+ gz, Vg € [—1,1]. [ |
£ x#0
Example 3. Let f(z) = ||z||2, then Of(z :{ flll2) )
o= W= (g gl <13, 2 =0
Proof: This is because |z|2 > 0+ g7z, V||g|l» < 1. ]

Proposition 3.9 If T € int(dom(f)), then Of(Z) is nonempty, closed, bounded, and conver.

Proof:

o (Convexity and closedness): this is due to the fact that
af(z) = Nufg: f(2) 2 f(2) + ¢ (z — 2)}

is a infinite system of linear inequalities. The sub-differentiable set can be treated as the intersection
of halfspaces, hence is closed and convex.

e (Non-emptyness): applying the separation theorem on (Z, f(z)) and epi(f) = {(x,t) : f(z) < t}, we
have
Ja, B,s. t. a'z + Bf(z) < a’x + Bt,V(x,t) € epi(f).

Claim: 8 > 0. We can first rule out 8 # 0 since T € int(dom(f)). We then rule out 8 < 0 by setting
x =7z and t > f(I).
Therefore, defining g = 5~ 'a, we have f(z) > f(z) + g7 (x — ), i.e. g € I(f).



e (Boundedness): if 9f(Z) is unbounded, then there exist s; € f(Z), such that ||sk||cc — 00 as n — oc.
SInce Z € int(dom(f)), there exits € > 0, such that B(Z,e) = {z : ||x — Z|| < €} C dom(f). Hence,
letting yr, = T + em, we have y, € B(Z,¢€), and

Flur) = (@) + sE(yr — 2) = F(Z) + €||s]| — 00, as k — oo.

However, every convex function can be shown to be continuous on its interior; it is Lipschitz continuous
on any convex compact subset on the domain. This implies that f(x) is bounded on the compact ball
B(Z,€), which leads to a contradiction.

|
Remark. The reverse is also true. If Va € int(dom(f)), Of(x) is nonempty, then f is convex.
Proof: Let z,y € dom(f), z= Az + (1 — Ny € int(dom(f)), we have
fla) = f(z) +g" (z — 2)
F) =2 () +9" (v —2)
Hence, Af(z) + (1 = A)f(y) = f(2) = fAz + (1 = N)y). u

3.6 Calculus of Sub-differential

Determining the subdifferentiable set of a convex function at a given point is in general very difficult. That’s
why calculus of subdifferentiable sets is particularly important in convex analyis.

1. Taking conic combination: If h(z) = Af(z) + pg(z), where A\, u > 0 and f, g are both convex, then
Oh(z) = NOf(z) + pdg(x),Vo € int(dom(h)).
2. Taking affine composition: If h(z) = f(Ax 4+ b), where f is convex, then
Oh(z) = ATOf(Ax +b).
3. Taking supremum: If h(x) = sup,c 4 fo(x) and each f,(z) is convex, then
Oh(z) 2 conv{0fs(z)|a € a(x)}

where a(x) := {a: h(z) = fo(x)}.

4. Taking superposition: If h(z) = F(fi(z),..., fm(x)), where F(y1,...,ym) is non-decreasing and
convex, then

Oh(x) D {Zdiaf,-(x) S(dy, ... dy) € aF(yh...,ym)} :
i=1
Example 1. Let h(z) = maxj<i<n(al 2+b;), then a, € Oh(x) if k is some index such that h(z) = al z+by.

Example 2. Let h(z) = E[F(z,&)] be a convex function, then g(z) = [ G(z,&)p(£)dé € Oh(x) if G(x, &) €
OF (z,¢&) for each &.
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Example 3. Let h(z) = maxyec f(z,y) where f(z,y) is convex in x for any y and C is closed, then
Of (x,y«(x)) C Oh(z), where y.(x) = argmazyec f(z,y).

This is because if g € 0f(z, y.(x)), we have

h(z) > f(z,9.(2)) > f(@,9:(2)) + g7 (2 = ) = h(2) + g7 (2 - 2).

3.7 Other Properties of Convex Functions
Jensen’s inequality. Let f be a convex function, then
f(z Aiw;) < Z Aif ()

as long as \; > 0,Vi and >, \; = 1.

Moreover, let f be a convex function and X be a random variable, then

fEX]) <E[f(X)].

Example . The Kullback-Liebler distance between two distributions is nonnegative: i.e.

KL(pllq) = Zpi log (Z) >0
where p; > 0,¢; >0, pi=>.¢ =1.
Proof: Let f(x) = —log(zx), f is convex, so

—log(Zpixi) < - Zpi log(x;).

Plugging z; = ¢;/p;, this leads to

0= —log(z q) < Zpi log(pi/qi)-
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1 Preliminaries



Definition We define R to be the set of real numbers, and we define R™ to be the
set of ordered n-tuples, also called vectors. In other words it is the set of all
elements x = (z1, z5..., x,) where z; € R foreach? = 1, 2, ..., n The zero vector
is usually just denoted by ().

For x = (21, 29, ..., x,) E R"and y = (y1, y2, ..., yn) € R" we define the
operation of vector addition by x +y = (1 + 1, T2 + Y2, ..\, T + Yn)-

For \ € R, we define scalar multiplication by Az = (Ax1, Az, ..., Azy,).

Given r = (xy, z, ..., ¥,) € R"and y = (y1, ¥2, ..., ¥,) € R" we define the inner
product by (x, y) = x1y1 + Tay2 + ... + TnYn.

Proposition 1.1 Given z, y, z € R", the following hold:

(i) (z, ) > 0, furthermore (x, z) = 0if and only if + = 0.
(ii) (=, y) = (y, 2).

(iii) (Az, y) = A(z, y) forall X € R.

(iv) (z, y + 2) = (z, y) + (=, 2).

REPORT THIS AD



Proof The proof is left as an exercise.

Definition For any z € R" we define the norm
(https://en.wikipedia.org/wiki/Norm (mathematics)) to be

(x, r) = \/ ¥+ x5+ .+ 22,

lzll=
Proposition 1.2 For any z, y € R"the following hold:

(i) |z||> 0Oand||z||= 0if and only if 2 = (.
(i1) [[Az]|= |A| [|z| for all A € R.

(iii) ||z + y||< ||z||+] y|| (Triangle Inequality).

(iv) (z, y) < ||z| |ly]] (Cauchy-Schwartz Inequality).

Proof This proof is also left as a review exercise.



2 Convex Sets



Definition A subset () of R" is called convex
(https:/len.wikipedia.org/wiki/Convex_set) if Az + (1 — A)y € Qfor all z,y € 2 and
A e (0,1).

Given a, b € R", the line segment connecting ¢ and } is the set
[a,b] = {Aa+ (L= XN)b| A € [0,1]}.

It follows from the definition that () is convex if and only if [a, b] C 2 whenever
a,b e .



Proposition 2.1 If (), is a convex subset of R” and {1, is a convex subset of R™,
then the Cartesian product {); x (), is a convex subset of R" x R"

Proof Fix any (ay,as), (b1, bs) € Q) x Qyand A € (0, 1). Then aq. b, € Q7 and
ag. by € (s By the convexity of (2] and the convexity of (),, we have that
A({Il,ﬂ,g) + (1 - /\J(bl bz) = ()\(i-l + (1 - )\)bl: }LLLQ + (1 - )\)bz) & Q‘l X Qg.

Therefore, {}; x {)5is a convex subset of R" x R™. [



Definition A mapping B: R" — R™ is called an affine mapping
(https://en.wikipedia.org/wiki/Affine_transformation) if there exist a linear
mapping A: R® — R™ and an element b € R™ such that

B(z) = A(x) + b for all z € R™.

The following proposition gives a characterization for affine mappings.
Proposition 2.2 A mapping B: R" — R™ is an affine mapping if and only if
B(Azy + (1 = N)axa) = AB(21) + (1 — A\) B(x9) for all 21,z € R™.

Proof Suppose that B is an affine mapping. Then there exist a linear mapping
A: R"™ — R™ and an element b € R™ such that the equation above is satisfied.
Given any x1,z2 € R"and A\ € R, one has

= )\A(.’El) + (1 — )\)A(Iz) + )\331 + (1 — )\)332
= AA(zq) + 0] + (1 — A)[A(z2) + 0]

—AB(21) + (1 — \)B(a).



Thus, the equation is satisfied. []

In the proposition below, we show that the convexity of sets is preserved under
affine mappings.

Proposition 2.3 Let B: R™ — R’ be an affine mapping. Then the following are
true.

(i) If Qis a convex subset of R", then B({)is a convex subset of R™.

(ii) If @ is a convex subset of R™, then B~!(0)is a convex subset of R™.

Proof We only prove (i) and leave the proof of (ii) as an exercise. Fix any

a,be B(Q)and A € (0,1). Thena = B(z)and b = B(y) for z,y € L. By
Proposition 2.2,

Aa+ (1=XNb=AB(x)+ (1=N)B(y) = B(Ax+ (1 = N)y).

Since () is convex, Az + (1 — A)y € £, and hence Aa + (1 — \)b € B(f)), which
shows that B({2) is convex. [



For two subsets {); and (), of R” and )\ € R, define
MY ={\z |z €D}
N+ B={r+y|ze,ye

Corollary 2.4 Let {); and (2, be convex subsets of R" and let A € R. Then A{}; and
()1 + £), are convex subsets of R”.

Proof Define the mapping B: R* — R" by B(x) = Az for z € R™ Then B is an
affine mapping and B((),) = A(2;. By Proposition 2.3, the set B((}, ) is convex.

Similarly, define C': R"” x R* — R" by C(z,y) =  + 3. Then (' is an affine
mapping and C'(; x y) = Qy + Qy, justifying that ; + {25 is a convex subset
of R™. [J

Next we proceed with intersections of convex sets.

Proposition 2.5 Let {{), } .cs be a collection of convex subsets of R™. Then
Nacs 2a is also a convex subset of R™.

Proof Taking any a, b € (,.; 2, we get thata, b € (), foralla € I. The
convexity of each (), ensures that Aa + (1 — A)b € Q, for any A € (0, 1). Thus
Aa~+ (1 — A)b e N,e; 2o and the intersection [, ; {24 is convex. []



Definition (Convex Combination) A vector z € R" is called a convex combination
(https:/len.wikipedia.org/wiki/Convex_combination) of 1, . .., x, € R"if there exist
M. ..., Ay > Osuch that

¥

Yl Ai=land z =>", N,

Proposition 2.6 A subset () of R" is convex if and only if it contains all convex
combinations of its elements.

Proof If () contains all of its convex combinations then obviously it is convex. To
prove the other implication, we show by induction that any convex combination
z =", Aiw; of elements in () is an element of (). This conclusion follows
directly from the definition for m = 1, 2. Fix now a positive integer m > 2 and
suppose that every convex combination of m elements from () belongs to ().
Form the convex combination

y= ZEI Aiwi, ZTSI Ai=1, \>0

and observe thatif A\,,;1 = L, thenA\; = A= ... =\, =0,50y = w1 € QA In
the case where A,,,.; < 1 we get the representations



Ai
S Ai=1l—XA,q and Y ———— =1,
i= i 1— Am+1

which in turn implies the inclusion

Aj
z=5"

L ———w; € (L
=1 1 - )\m—H !

It yields therefore the relationships
Ai

m —_—
=1 1 — /\m+1

y= (1* )\erl) Z Wi+ Am1Wm+1 = (1*)\m+1)z+)\m+lwm+l c

and thus completes the proof of the proposition. []



Definition (Convex Hull) Let () be a subset of [R". The convex hull
(hitps://en.wikipedia.org/wiki/Convex_hull) of ) is defined by

co(Q) =N {C ‘ C' is convex and Q C O}.

Convex Hull

Proposition 2.7 The convex hull co({2) is the smallest convex set containing ).



Proof The convexity of the set co {2 O (2 follows from Proposition 2.5. On the
other hand, for any convex set C' C () we clearly have co({2) C C, which verifies
the conclusion. []

Proposition 2.8 For any subset () of R", its convex hull admits the representation

co(€2) = { D im1 Aili

Yo A=1X>0, q €, mEN}.

Proof Denoting by (' the right-hand side of the representation to prove, we
obviously have () C (. Let us check that the set ('is convex. Take any a, b € C
and get

NP N 3
a:=) oa;, b= Bb,

where a;,b; € Q, a;, 3; > O with >0, a; = ;?:1 B; =1, and p,q € N. It follows
easily that for every number ( € (0, 1), we have

Ca+(1—=Q)b= i;'):1 Caza; + Z§:1(1 — () B;b;.

Then the resulting equality



i Car + 220 (1= 0B =+ (1-¢) 25 8 =1

ensures that (a + (1 — ()b € C, and thus co(2) C C by the definition of co (2. Fix
now any = y .-, Nia; € C'witha; € 0 C co(Q2) fori = 1,...,m. Since the set
co(£?) is convex, we conclude by Proposition 2.6 that a € co({2) and thus

co(N) =C. O



Definitions (Interior and Closure of a Set) Let () ¢ R". We say thatw € int({2) (w
is in the interior of ()) if there exists an r > () such that the open ball
B(w;0) = {z € R": ||z — w||< r} is contained in ().

The closure of (), denoted {), is the smallest closed set containing ).
Alternatively, it is the intersection of all closed sets containing ().

Then j ¢ ) if and only if for all » > 0, B(b;7) N # 0.

Proposition 2.9 The interior int(£2) and closure () of a convex set () ¢ R" are also
convex.

Proof Fix a, b € int Qand A € (0, 1). Then find an open set V" such that
acV cCQ andso da+ (1—ANbe AV +(1—-X\)bcC Q.

Since AV + (1 — A)bis open, we get Aa + (1 — )b € int(£2), and thus the set
int(Q2) is convex.

To verify the convexity of (), we fix a, b € Q and A € (0, 1) and then find
sequences {ay} and {b;} in () converging to a and p, respectively. By the
convexity of (), the sequence { \a;. + (1 — \)by.} lies entirely in () and converges



to Aa + (1 — A)b. This ensures the inclusion \a + (1 — A)b € 2 and thus justifies
the convexity of the closure (). [

To proceed further, for any a, b € R", define the interval
[@,b) = {Aa+ (1= A)b| X e (0,1]}.
We can also define the intervals (a, b] and (a, b) in a similar way.

Lemma 2.10 For a convex set {2 ¢ R" with nonempty interior, take any
a € int(Q) and p ¢ Q. Then [a, b) C int(Q2).
Proof Since p € (), for any € > (), we have b € € + ¢B. Take now A € (0, 1] and let

xy = Aa + (1 — A)b. Choosing ¢ > (such thatq + ¢ B C () gives us

zy+eB=Mda+(1—A)b+eB
CAa+(1—XN)[Q+eB] +eB

=X+ (1-XNQ+(1—ANeB+eB

A

c)\[a+e B]Jr(l—)\)ﬂ



CAQ+(1-NQCQ.

This shows that z, € int({2) and thus verifies the inclusion [a, b) C int(£2). O

Now we establish relationships between the interior and closure of convex sets.

Proposition 2.11 Let ) € R" be a convex set with nonempty interior. Then we
have the following two properties:

(i) int(2) = Q. B
(ii) int(2) = int(2).
Proof (i) Obviously, int(Q) Q. For any j € ()and a € int(), define the sequence

{1} by

Ty 1= %a+(1%)b, ke N.

Lemma 3.2 ensures that z;, € int(2). Since z;, — b, we have b € int(Q2) and
thus we have that (i) holds.



(ii) Since the inclusion int () < int((2) is obvious, it remains to prove the
opposite inclusion int(Q) C int(Q).

To proceed, fix any b € int(Q?)and a € int(Q?). If ¢ > () is sufficiently small, then

F

C::b+e(b—a)€§andb:

1—|—EGJ+1—|—E

c € (a,c) C int(€2),

which verifies that int(€2) C int({2) and thus completes the proof. [



3 Convex Functions



Definitions We define the extended real line to be the set R := (—o0, oo] where
infinity is allowed as a value with the following conventions:

o+ o0 =oowhereq ¢ R
o - 00 = o0 where o > ()
0.00: o0

Let () ¢ R"be a convex set and let f : ) — R := (—o0, 00| be an extended-real-
valued function. Then the function f is said to be convex
(hitps://en.wikipedia.org/wiki/Convex_function) on () if

Sz +(1=XNy) <Af(z) +(L=X)f(y)forall z,y € Qand X € (0, 1).
If the inequality is strict for 2 # y, then f is said to be strictly convex on ().

The domain of a function is the set given by

dom(f)={z e R": f(z) < xx}.



the set given by

epi(f) = {(z,\) ;2 e R", A € R, A >=f(x)}.
Proposition 3.1 Let : R" — R be a function.

(i) If f is a convex function, then the domain of f is a convex subset of R™.
(ii) f is a convex function if and only if

JAz+ (1 =Ny) < Af(x)+ (1 =X f(y) forall z,y € dom(f),\ € (0, 1).
Proof (i) Let 2,y € dom(f)and let0 < A < 1. Then we have that f(z) < coand
f(y) < oo. Thus by the convexity of f we have that
F(Az+ (1= N)y) < Af(z) + (1 — A) f(y) which is less than oo,

(ii) is left as an exercise. O



The next theorem gives a geometric characterization of function convexity via
the convexity of the associated epigraphical set.

Theorem 3.2 A function f: R” — R is convex if and only if its epigraph epi( f) is
a convex subset of the product space R" x R.

Proof Assuming that f is convex, fix pairs (z1, 1), (22, t2) € epi(f) and a number

}

A € (0,1). Then we have f(x;) < ¢; for i« = 1, 2. Thus the convexity of f ensures
that

FOz+ (1= Nzg) <Af(z) + (1= A) f(z2) < My + (1= Nt
This implies that
Azy, 1) + (1= ) (22, 12)
= (Az1 + (1 = Naa, My + (1= A)ts) € epi(f),

and thus the epigraph epi( f) is a convex subset of R” x R.



Conversely, suppose that the set epi( f)is convex and fix 2|, z; € dom f and a
number A € (0, 1). Then (zy, f(x,)), (22, f(x2)) € epi(f). This tells us that

(Azy + (1= N)ag, Af(21) + (1= A) f(22))
= Azp, fl21)) + (1= A) (22, f(22)) € epi(f)
and thus we arrive at the inequality
FOz + (1= Nag) < A1) + (1= A) flas).
This proves the convexity of f. [

Theorem 3.3 (Jensen Inequality) A function f: R” — R is convex if and only if
for any numbers A; > Oasz=1,..., m with ;"1 A\; = land for any elements

r; €ER", withi =1,..., m, it holds that

£ h) < T M ()



Proof Since the inequality being satisfied immediately implies the convexity of f
, we only need to prove that any convex function f satisfies the Jensen
inequality. By Theorem 3.2, the set epi( f)is convex in R" x R. Fix z; € R" and

A >0fori=1,..., m with 3" A\; = 1. It suffices to consider the case where

! ¥

z; € dom(f)fori=1,...,m.Then(z;, f(z;)) € epi(f)foreveryi=1,...,m.

From Proposition 2.6, one has

D oimy Al f(mi) = (D00 N, D iy Aif (i) € epi(f),

This implies the Jensen inequality completing the proof. [J



Proposition 3.4 Let f,: R" — R be convex functions for all = 1,...,m. Then
the following functions are convex as well:

(i) The multiplication by scalars Af for any \ > 0.
(ii) The sum function ", f.

(iii) The maximum function Hax fi.
1<i<m

Proof The convexity of A f in (i) follows directly from the definition. It is
sufficient to prove (ii) and (iii) for yn = 2, since the general cases immediately
follow by induction.

(ii) Fix any z,y € R" and A € (0, 1). Then we have

(fi+ f2) Az + (1= Ny)

=fi ()\:C +(1— )\)y) + fg()\x +(1- )\)y)
< AMi(@) + (1= fiy) + Afa(z) + (1= A) f2(y)
=Afi + o) (@) + (1 =N (fi + f2) (),



which verifies the convexity of the sum function f; + fs.
(iii) Denote g := max{ f1, fo} and get for any ,y € R" and A € (0, 1) that
fildz + (1= Ny) < Mi(z) + (1 =N fily)
< Aglx) + (1= A)g(y)
for: = 1, 2. This directly implies that

g(Az+ (1= Ny) =max {fi(Az + (1 = AN)y), a(Adx + (1= N)y) } < Ag(a) +
(1=Ng(y),

which shows that the maximum function g(z) = max{ fi(x), fo(z)} is convex. [

The next result concerns the preservation of convexity under function
compositions.

Proposition 3.5 Suppose that f: R* — Ris convex and let¢ : R — R is
nondecreasing and convex on a convex set containing the range of the function f
. Then the composition ¢ o f is convex.



Proof Take any 1,22 € R" and A € (0, 1). Then we have by the convexity of f
that

A2y + (1= Nag) < Af(21) + (1= A) f(2).
By the nondecreasing convex properties of ¢,

(0o f)(Azy + (1 — N)as)

= o(f(Az1 + (1 — Na2))
< d(Af(21) + (1= A)f(22))
< Ad(f(x1)) + (1= No(f(a2))
= Moo f)(z1) + (1 = A)(¢o f)(z2),
which verifies the convexity of the composition ¢ o f. [

Now we consider the composition of a convex function and an affine mapping.



Proposition 3.6 Let B: R"® — [R? be an affine mapping between linear spaces and
let f : R? — R be a convex function. Then the composition f o B is convex.
Proof Taking any =,y € R"and A € (0, 1), we have

(foB)(Az+(1—AN)y)
= f(B(Az +(1— \)y)) = f(AB(z) + (1 — ) B(y))
<M (B(2)) + (1 =N f(B(y)) = Mf o B)(z) + (1= N (f o B)(y)

and thus we’ve shown the convexity of the composition f o 5. [J



Lemma 3.7 Let I C R be an interval in R and let the function f: I — R be
convex. Then for any a,b € [ such thata < b, and any z € R such thata < 2 < b
we have the following inequality:

J(@) = fla) _ J(b) — J(a)

Tr—a b—a —x

Proof Fix a,b € I and letq < z < b. This implies that 0 < z — a < b — a. If we let
t = $=¢ then you will notice that t € (0, 1). Then by the convexity of  we have
that

fl@)=flatz—a)=flati=(b—a))
= fla+tb—a)) = f(tb+ (1 —1t)a)
<tf(b) + (1 =1)f(a).

Thus we have that f(z) < tf(b) + (1 — t) f(a). By subtracting f(a) from both
sides we get



r—a

f(x) = fla) < H(F(b) = f(@) = T— (1) = f(@)).

Dividing both sides by & — a we get the first inequality, namely

fx) = fla) _ J(0) = J(@)

T —a b—a

We'll now prove the second inequality. From before we have that
flz) <tf(b)+ (1 —t)f(a). Subtracting f(b) from both sides gives us

F@) — £(0) < (6 = 1)(£() ~ F(@)
= (&2 - 1) (0) - f@) = (L) (f0)  f(a).

Notice that 2 — b < ( thus when we divide both sides by z — b, we get

f(z) = f(b) _ f(b) = fla)
r—0b - b—a

which gives us our second inequality completing the proof. []



Theorem 3.8 Let / C R be an open interval and let f: [ — R be a differentiable
function. Then f is convex if and only if f’ is nondecreasing on [.

(f'is said to be nondecreasing if whenever z < y for z, y € [ we have that

fiz) < f'(y).
Proof First we shall suppose f is convex on | and prove that f’ is nondecreasing.

Fix a,b € I witha < b. Then by Lemma 3.7 we have that

flz) = fla) _ f(b) — fla)

r—a - b—a

forall ¢ < = < b. Then

i L@ = F0) _ ) = fla)

z—at r—a b—a
But since f is differentiable by assumption, this is simply

, f(b) — fla)
f(a) < T4



Similarly we have that

fb) = fla) _ fOO) = fla) _ [z) = (D)
b—a - b—=x r—20b

forall ¢ < x < b. Then

[0 = o) o f0) = fa)

b—a z—b— —x
And again, by the differentiability of f, this gives us

Thus f’(a) < f’(b) making f’ nondecreasing.

Now we shall prove the other implication. We shall assume that f”is
nondecreasing on ], and show that f is convex on 7.



Fixz,y € Iand ¢ € (0, 1). If = ¥ then obviously

fltz + (1 —t)y) <tf(x)+ (1 —t)f(y) so assume the case where = < y. If we let
zy =tz + (1 — t)y, then we have that * < x; < ¥. By the Mean Value Theorem
there exists a €1, C2 such that * < ¢; < x; < ¢2 < y and also we have that

flae) = f(x) = flle)(ze — x) = [/(er)(1 = E)(y — z)
and
f(@) = fly) = )z —y) = ['(e2) (D) (z — ).

Multiplying both sides of the first equation by ¢ and both sides of the second
equation by (1 — ¢) and then adding the two equations together we get

fw) = tf(@) = (=) fly) = t1 = Oy = 2) (f(e2) = (er)).

But notice that because f’ is nondecreasing we have that f'(¢2) — f'(¢1) < 0 and
also we have that (1 — ¢)(y — z) > (. Thus we get the inequality

fla) —tf(x) — (1 —1)f(y) < 0.



Finally we get that f(tz + (1 —t)y) < tf(z) + (1 — t) f(y). Therefore f is
convex. []

Corollary 3.9 Let /] C R be an open interval and let the function f: I — R be
twice differentiable. Then f is convex on [ if and only if f”(x) > Oforall z € |
Proof By Theorem 3.8 f is convex on [ if and only if f” is nondecreasing on |.
And we have that f”is nondecreasing on [ if and only if /”(x) > O forallz € 1.

.



4 Distance Function



Definitions Let () € R" be a nonempty convex set. If x € R, then the distance
(hitps://en.wikipedia.org/wiki/Metric_(mathematics)) from x to () is given by the
function

d(x; Q) = inf{||z —y|: y € Q}.

Let A C R be nonempty. Then m € R is called a lower bound for A if z > m for all
re A

A is bounded below if there exists a lower bound, furthermore inf(A) is the
greatest lower bound.

Recall the following two properties.

Let A C R is nonempty and bounded below, and let & = inf{ A}. Then for every
¢ > (there existsan g € Asuchthata <a < a + .

Let () ¢ R™be a nonempty set. Then ; ¢ () if and only if there exists a sequence
{z,} C Qsuch that||z, — x| — 0asn — oc. We shall use these facts to prove the
next proposition.



Proposition 4.1 Let ) € R" be nonempty. Then
(i) d(z;Q?) = 0if and only if 3 € ().
(ii) |d(a; Q) — d(u; Q)| < || — || for all z,u € R.

Proof
(i) First assume d(z; ) = inf{||z — y||: v € Q} = 0. Then for each k& € N there
exists a ¥, C €2 such that.

0< ||z —yl[<0+1=1—0ask - x.

Now let ; ¢ () and we will show that d(z; 2) = 0. Since 5 ¢ () then there exists a
{yr} € Q such that ¥k converges to . Then

0<d(z;Q)=inf{||lz —yl|: y e Q} < |z —yl]|= Dask = .
This implies that d(a; €2) = 0.

(ii) Fix any , u € R"™. Then for any y € (2 we have that



d(z; Q) < [lz —yll=|lz — v +y — ul|< [Jz — ul[+]lu—yl.
Since this is true for all y € {2 we have that
d(z; Q) < ||z — u|+int{||u — y||: y € Q} = ||z — u||+d(u; Q).

Thus we have shown that d(z; Q) — d(u;?) < || — u|| and using the same
argument we can show that d(u; () — d(z; Q) < ||z — u/||. This completes the
proof of part (ii). [

Definition Let 2 € R"™ be nonempty and let & € R™. The Euclidean Projection from
x to () is the set defined by

(z) ={y € Q: d(z; Q) = [z — y||}.
It is the set of all elements in () on which the distance = from () is attained.

Proposition 4.2 Let ()  R" be a nonempty closed set. Then TI(z; (2) = O for all
r € R"™



Proof Notice that d(z; ) = inf{||z — y||: y € Q}. Then for each n € N there
exists a y, € {2 such that

d(x; Q) < [l = yoll< d(z; Q) + 5.
Using the triangle inequality we have that
lynll=ll=ll < llz = yall < ;) + % < d(@; Q) + 1.

Then we have that 0 < ||y, | < d(x;€) + ||2|/+1. Thus the sequence {y,, } is
bounded and there exists a convergent subsequence, we'll denote {y,,; } and we'll
let Yn; — V.

Subtracting the inequality from before by d(z; {1) and replacing ¥» with Yn; we
get

0 < |2 = yogll—d(2;9) < d(z; Q) — d(2;Q) + & = L.

n
Taking the 1y — 00 we get

0 < |z —yl[—d(x;Q) <0.



By the squeeze theorem we have that ||z — y||= d(z; (), therefore y € TI(xz; Q). O



Corollary 4.3 Let () C R" be a closed convex set. Then T1(z; () is a singleton for
allz € R™

Proof In Proposition 4.2 we showed that for any = € R" we have I1(z; §2) is
nonempty when Qis closed, so we simply need to prove there exists only one
element.

Fix # € R Suppose by contradiction that there exists w, wy € II(z; (1) with
wy 7 wo. Then by definition ||z — wy||= ||z — wy|

Recall that the parallelogram law gives us that
: (||a + 0>+ |la — b||2) = ||a||*+]|b||%. With this in mind, we have that

wy — ﬂ.’2||2)

2

2]l — wi|]*= [z — wy[|*+[lz — wi]

2 [l = |

= ||z —w| 2_%(|2$—(“-’1+H-‘2)||2+|

wp — W ||2> .

— (o — 2+



Then we have that

=l =l = 2522 4§y = sl
This implies that
le — #5222 = [l — wi]* = 3llwr — wolf?
<z — wy | = d(a; 2,

and by the convexity of () we have that “42%2 € (), but we just showed that
lo — 542 || < d(z; Q) which gives us our contradiction. Therefore II(z; {2) must
be a singleton. [J

Proposition 4.4 Let () ¢ R" be a nonempty convex set. Then the function given
by f(z) = d(x;Q)is a convex function.
Proof Fix x1, 25 € R"and let() <t < 1.

Let e > (. By definition, there exists a y; € Q such that|x; — y||< d(z1; Q) + €.



Similarly, there exists a ¢ € () such that|[z; — yo|| < d(z2; ) + . With this in
mind we have

H [ty + (1 = t)ay] — [tyr + (1 — t)y,] H
= Ht[xl —y] + (1 —t) [z — 3] H
<tller =yl + (1= D)}z — wall < t(dlw; Q)+ €) + (1= 1) (w2 D) + )

= td(.’l?l, Q) + (]_ — t)d(ﬂ?z, Q) +e= f(i]?l) + f(il?z) + €.
Since () is convex we have that ty; + (1 — t)y» € €L Thus

< || [ty + (= 2] — [t + (1 - )] |

<tf(a) + (L—1)f(zs) + e



Since this is true for any ¢ > () we then have that
fltxy + (1 —t)as) < tf(xy) + (1 —t)f(22). Thus f is a convex function. [J

Proposition 4.5 Let () be a nonempty convex subset of R”, and let ¢, € (3. Then
u € II(z; Q) for some ¢ € R"if and only if (x — u,v — u) < Oforally € Q.
Proof First assume that « € TI(z; §2). For any A € (0, 1) we have that

Av+ (1 — Nu=u+ AMv—u) € Qby the convexity of (). Then

|2 — ul|*= d(z;Q)? < ||z — (u+ Mo —u))|?

= ||z —u|?* = 2Xz —u,v — u) + X?[|v — ul|%.
This implies that 2{z — u,v — u) < A||v — u||*. And since this is true for all
A € (0,1) we have that (z — u,v —u) < 0.

The other implication we will leave as an exercise. [



Proposition 4.6 Let () C R” be a nonempty closed and convex set, and let

r1, 22 € R”. Then we have that||II(x;; Q) — II(29; Q)| < ||z — 22|

Proof Let I1(x;2) = wy and T1(z; €2) = wy. Then by Proposition 4.5 we have
that (x; — wy, wy —w;) < 0and also that (xy — wq, w; — wy) < 0. Adding these
two inequalities together we get

(wy — 1 + T — wp, wy — wy) < 0.
This implies that
—(x) — T, W — wo) + (W) — wy, wy — wa) <0,
Then using the Cauchy-Schwartz Inequality we get that
| — wsl|? < (2 — 2o,y — wo) < ||z — @a|[Jwn — wy|-

Thus we get that TI(21; Q) — T1(x5; Q) < |21 — 22||% O
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We describe an apparently novel way of constructing the subgradient of a convex function
defined on a finite dimensional vector space.
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The existence of subgradients for continuous convex functions plays a central
role in optimization theory [1, 3, 5-8]. Typically the existence of subgradients is
shown by some separation argument which itself relies on a substratum of
topology and calculus. In this note we describe an apparently novel construction
of the “max-formula” for subgradients which relies only on the definition of the
directional derivative and on linear algebra. This also makes the subgradient
immediately accessible for pedagogical purposes. As is well known, the existence
of subgradients is itself equivalent to all the other standard separation or duality
principles [3, 4]. Thus our result can be satisfactorily used to base most further
analysis.

A few preliminary definitions and notations (essentially as in [6]) need to be
reviewed. We let X be a finite dimensional real vector space and let X* denote
the linear functionals on X. Let f : X - ]— «, <] be a proper convex function. This
is to say that the effective domain of f, dom f :={x € X | f(x) <}, is non-empty
and that

tfO)+ Lf (3D = f(tx' + 1,x7) 6}
for all x,, x, in dom f and t,, t, = 0 with ¢, + t, = 1. If (1) holds for all non-negative

t; and t,, then f is said to be sublinear. Recall that the core of a convex set C,
denoted by core C, is the set of points x in C with the property that, for each y

* Research partially funded on NSERC grant A5116.
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in X, one can find 8 >0 with x +ty € C for 0 <t <3. Also, the directional
derivative (or minorant) of f at x, is defined by

h) — f(xo)

Vi(xgs by = ing L0 @

for each h in X. Now Vf(x; ‘) is always positively homogeneous and well
defined with values in [—, ©]. For completeness we include a self-contained
proof of the following proposition [6].

Proposition A. Let f: X — ], ©] be convex and proper. Let x, lie in core(dom f).
Then Vf(x; ) is an everywhere finite sublinear function.

Proof. Let r,(h) =t '[f(xo+ th) — f(x,)] for t non-zero in R. Then r, is a convex
function which (because f is convex) satisfies

ri(h) = ri(h) = r_;(h) = r_(h) (3)

for 0<s <t and h in X. Since x, lies in core(dom f) one can find ¢ with both
r_(h) and r,(h) finite. It follows from (3) that Vf(x,;; h) is always finite.
Moreover, if h, k lie in X one has (again because f is convex) that

Vi(xo; h + k) < ro(h + k) = ra(h) + 1y (k) < rp(h) + (k)

for 0 <s <t. Taking infima first with respect to s and then with respect to t
shows that Vf(xy; h+k)=Vf(xe; h)+ Vf(xo; k). Since Vf(x,;-) is positively
homogeneous, this shows that Vf(x,; -) is sublinear.

Now let us recall that the subgradient set of f at x; is defined by
af (xo) : = {x* € X*| x*(x — xo) < f(x) — f(x), for all x Edom f}.  (4)

We may now state and establish our result.

Theorem B. Let f: X —>]—m,x] be proper and convex. Let x, lie in core(dom f).
Then, for each h in X,

Vf(xo; h) = max{x*(h) | x* € 3f (xo)}. MAX FORMULA 3)

In particular df(x,) is non-empty.

Proof. Let us fix h in X. It is easily verified that Vf(xq; h) is an upper bound for
the right-hand side of (5). Thus it suffices to establish the existence of a
subgradient x* with Vf(x,; h) = x*(h). Let us consider a basis B :={¢, | 1<k <
n} for X with e, :=h. Recursively define

) po:= Vf(xe; ),

(ii) pi:= Vpii(e; ) (6)
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for 1=k < n. It follows from Proposition A that each p; is sublinear and finite.
Moreover, for x in X and 1<k <n,

Pa(X) = pi(x) = pi (s + X) — Pii(€) = Pr(x) = py(x). )
Now the definition of p, and (7) shows that, for I=k=m <n,

0 =pn(e)+ pm(—e) =prle) + p(—e) = pri(e) + (—pe—i(e)) =0, (8)

since each p,, is sublinear. Then (8) shows that p,(—e¢)=—p.(e) for 1=k=
m =< n, This implies that p,, being sublinear is actually linear on the span of
{e; | 1=k = m}. In particular p, must be linear. Set x* := p,. Now (7) shows that

x*(x — x0) = po(x — Xo) = f(x) — f(xo) )
for x in X; and so x* &€ 9f(x,). Finally (7) and (8) show that
—x*(h) = x*(—e)) =< p(—e;) = ~pole;) = —po(h). (10

This implies that x*(h) = Vf(x,; h) as required.

The same argument in combination with the appropriate maximality principle
can be used to establish Theorem B in arbitrary vector spaces or for convex
operators [2]. The basic iteration remains unchanged. One indexes a basis for X
by the ordinals preceding some cardinal 8§ and defines a ‘“sequence” of
sublinear operators (p,) by (i) using (6) for successor ordinals, and (ii) defining
p. :=inf{pg | B <a} when « is a limit ordinal. The proof is essentially un-
changed.

Geometrically the proof is very simple. Each directional derivative minorizes
the previous one and is guaranteed to be linear in at least one more direction.
After n steps we must produce an appropriate linear minorant. In general, many
fewer than n steps will be needed. After all f is differentiable almost everywhere
in core(dom f) [6]. At such points Vf(xy; -) is itself the appropriate function. The
following simple example shows that n iterations may be needed.

Example C. Let X := R". Let {§; | 1< j = n} be the usual basis and let f be defined
by f(x) := max{x; | I=j=n}. Letx,:=0and h := 3}, §;. Consider the iteration in
(6) with e:=377"8. Then po=f and p,:=max{x;|1=j=n—-k+1} for
I =k =n. This is easily established by induction. It follows that p, is linear, as
promised, but no previous p, is. Notice also that p, € 3f(0) and

1= p,(h) = po(h) = V{(xo; h),
as claimed by (5).

An immediate consequence of (5) is that df(x,) is singleton exactly when
Vf(xo; -) is linear (and f is Gateaux differentiable at x,).
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We leave an open question as to whether (6) has any possible utility in
making a numerical estimate of a subgradient of a convex function?
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5 Convex Separation



In the next proposition we will prove that any point outside of a closed
convex set can be separated from that set with a hyperplane
(https://en.wikipedia.org/wiki/Hyperplane).

Proposition 5.1 Let ) ¢ R™ be a nonempty closed convex set and let Z ¢ (0.

Then there exists a nonzero vector v € R" such that
sup{(v,z) | x € Q} < (v, 7).
Proof Denote w = 7(Z; (1), let v =  — w and fix any z € (). By Proposition
4.5,
(v,2 —w) = (T —w,x —w) <0.
It follows that
(vx—w)=(v,e—T+T—w) =(v,x—T+v) <O0.

The last inequality implies



Therefore, sup{ (v, z) | © € Q} < (v, x), which completes the proof. (]

The next theorem extends the result of Proposition 5.1 to the case of two
nonempty, closed, convex sets at least one of which is bounded.

Theorem 5.2 Let {2 and {1 be nonempty, closed, convex subsets of R" with
QN Qs = 0. If €24 is bounded or ()5, is bounded, then there is a nonzero
element v € R" such that

sup {(v,z) |z € Y} <inf {{v,y) |y € D}

Proof Denote (2 := (2; — (2. Then () is a nonempty, closed, convex set and
0 ¢ Q. Applying Proposition 5.1 to () and Z = (), we have

v :=sup {(v, x) |z € Q} <0=(v,7) with some 0#veR"

For any z € ; and y € Qy, we have (v,x — y) < =, and so (v, z) < v+ (v,y).
Therefore,

sup {(v,2) |z € M} <y +inf {{v,y) |y € D} <inf{(v,y) | y € Q},

which completes the proof of the theorem.



Convex Seperations - Pt 2

Remark 5.3 If () is a nonempty convex set in R" and z ¢ Q, applying
Proposition 5.1 for the convex set () gives a nonzero vector v € R” such that

sup{{v,z) |z € Q} <sup{(v,z) |z € Q} < (v, z).



The next property presents a separation property in a subspace of [R"
instead of in R™.

Proposition 5.4 Let [, be a subspace of R" and let () C [, be a nonempty
convex set with 7 € L and z ¢ ). Then there exists v € L, v # (, such that

sup{ (v, z) | x € Q} < (v, 7).
Proof By Proposition 5.1, there exists w € R such that
sup{(w,x) |z € Q} < (w,T).
It is well-known that R" can be represented as R = [, ¢ L1, where
L+ ={ueR"|{u,z) =0 forall z € L}.

Thus, we have the representation w = u + v, where , ¢ L and v € L. For
any z € () ¢ L, one has (u,r) = 0 and



(y,z) = (u,x) + (v,x) = (u+v,x) = (w,x)
<sup{{w,z) | x € Q} < (w,z) = (u+v,I)
= (u,z) + (v, ) = (v, T).

It follows that sup{ (v, z) | x € Q} < (v, Z), which also implies v # 0. [

We continue with another important separation property called proper
separation.



Definition We say that two nonempty convex sets €2, and €}, can be properly
separated (https://en.wikipedia.org/wiki/Hyperplane_separation_theorem)if
there exists a nonzero vector v € R"™ such that

SU.p{<’U: $> | xre Ql} g 111f{(’b"y> | /S QZ}
and
inf{(v,z) |z € 1 } <sup{(v,y) |y € Q}.

Definition (Affine Sets) A subset () of X is called affine
(hitps://en.wikipedia.org/wiki/Affine_space) if for any a, b € {2 we have

{Aa+(1-XNb|XeR}. CQ.

The affine hull (https://en.wikipedia.org/wiki/Affine_hull) of an arbitrary set
Q CR"is

aff(Q) :== N {C'| C is affine and Q C C}.



Proposition 5.5 The following assertions hold:

(i) A set Q) c R™is affine if and only if () contains all affine combinations of
its elements.

(ii) If 2, is an affine subset of R™ and (), is an affine subsets of R™, then
1 x )y is an affine subset of R" x R™.

(iii) Let B: R™ — R™ be an affine mapping. If () is an affine subset of R” and
O is an affine subset of R™, then the image B((})is an affine subset of R™
and the inverse image B~'(0)is an affine subset of R".

(iv) Let €, €24, and (), be affine subsets of R". Then the sum {2; + (2, and the
scalar product \() for any A € R are also affine subsets of R".

(v) Given Q) C R", its affine hull is the smallest affine set containing (). We
have

aff(0) = { Ty hw | T A =1, wi €@, me N},



(vi) A set () is a linear subspace of R" if and only if () is an affine set
containing the origin.

Proof The proof is similar to the proof for properties of convex hulls and is
left as an exercise. []

Definition (Relative Interior) Let () ¢ R be a convex set. We say that an
element ¢ ¢ () belongs to the relative interior
(https:/len.wikipedia.org/wiki/Relative_interior), ri(§2) of ), if there exists ¢ > ()
such that B(v;e) Naff(Q2) C Q.

set



A, = co{vi ‘ é:(),...,m}
is called an m=simplex (https://en.wikipedia.org/wiki/Simplex) in R with the
vertices v;, 1 = 0, ..., m.}

Proposition 5.6 Let A\, be an m-simplex in R” with some m > 1. Then

ri(A,) # 0.
Proof Consider the vertices Vo, - - - ; Um of the simplex A,,, and denote
1 m
=—> " .
m + 1 <=0

We prove the proposition by showing that v € ri A,,,. Define

L= span{vi—vo ‘ izl....,m}

and observe that [, is the /m-dimensional subspace of R" parallel to
aff A, = aff{v, ..., U, }. It is easy to see that for every x € L, thereis a

unique collection (A, ..., A,,) € R™ with



T =0 AV, Dimg i =0,

Consider the mapping A : L — R™ ", which maps  to the corresponding
coefficients (Mg, ..., A,n) € R™!as above. Then A is linear, and hence it is

continuous. Since A(0) = 0, we can choose § > () such that

[A(w)] <

whenever ||u|| < 6.
m +

Let us now show that (v 4+ dB) N aff A,,, C A,,, which means that v € ri A,,,.
To proceed, fix any = € (v + 0B) N aff A,, and get that 2 = v + u for some
u € §B. Since v,z € aff A, and u = x — v, we have u € L. Denoting

A(u) := (g, ..., o) gives us the representation u = Y\ a;v; with

> ", = 0and the estimate

1
il <||A <
il < AW < ——

Then implies in turn that



vt u=3 0 +oa)oi =3 0, pivi,

m-+1

1 . m .
where f1; 1= p— +a; > 0fori=0,...,m.Since >_.", jt; = 1, this ensures
m

that x € A,,. Thus (v + dB) Naff A,, C A,, and therefore v € ri A,,,. O

Lemma 5.7 Let () be a nonempty, convex set in R" of dimension m > 1. Then

Justifying it, we argue by contradiction and suppose that there exists w € ()
such that w ¢ K. Then a direct application of the definition of affine

subset of (), which is a contradiction. Thus K = aff (3, and hence we get
k=dmK =dimaff @ =dim=m. O



Theorem 5.8 Let () € R"™ be a nonempty, convex set. The following
assertions hold:

(1) We always have ri {2 # (.
(ii) We have [a,b) C riQ forany ¢ € riQ2and p ¢ ().

Proof (i) Let m be the dimension of ). Observe first that the case where
m = () is trivial since in this case () is a singleton and rj {) = (). Suppose that

We can show that aff A, = aff ). To complete the proof, take v € ri A, and
get for any small € > () that

B(v,e) Naff Q@ =B(v,e) Naff A, € A, C

This verifies that v € ri €2 by the definition of relative interior.



(ii) Let [, be the subspace of R" parallel to aff () and let i := dim L. Then
there is a bijective linear mapping A : [, — R such that both 4 and 4-1are
continuous. Fix z; € aff (2 and define the mapping f : aff (2 — R™ by

f(z) :== A(xz — x0). It is easy to check that f is a bijective affine mapping and
that both f and f~!are continuous. We also see that o € ri2if and only if
f(a) € int f(Q), and that p ¢ Qif and only if f(b) € f(Q). Then

[f(a), f(b)) C int f(€2). This shows that[a,b) C riQ). O

Theorem 5.9 Let (2;, {2, be nonempty convex subsets of R". Then we have
that

I"i(Ql — Qz) =ri Ql —ri QQ.
Proof We leave this proof as an exercise. []

Lemma 5.10 Let (3 be a nonempty convex subset of R™. Suppose that
0 € Q\ ri(Q). Then aff(2) is a subspace of R", and there exists a sequence
{1} C aff(Q)such that 1, ¢ Qforall; ¢ Nand 2, — 0ask — oo



Proof Suppose 0 € Q \ ri(Q2). By Theorem 5.7 (i), the relative interior of () is
nonempty, so there exists zy € ri(Q). Then —tz, ¢ Q) for all ¢ > (. Indeed, by
contradiction suppose that —¢;, € () for some ¢ > (. It follows from
Theorem 5.7 (ii) that

0= %HIO + ﬁ(*tﬂ?o) € Il(ﬂ)

This is a contradiction because 0 ¢ ri((2) by the assumption. Thus —tz, & Q2
forall t > (. Letx;, = —%%. Then z;, ¢ Q for every t and z;, — 0ask — oo.

Since () C aff(Q2) and aff((?) is closed, one has

0€ Q C aff(Q) = aff(Q).

Thus, aff(£2) is a subspace of R". This also implies that z;, € aff (Q2) for all
EeN. O



Reading materials: Proof of Theorem 5.9

1. Let B : R™ — RP be an affine mapping and let {2 be a convex subset of
R™. Prove the equality

B(ri Q) =r1i B(Q).

Proof. Let y € B(ri ), then there exits z € ri Q such that y = Bu.
By the prolongation lemma, for any & € 2, there exists v > 0 such
that o + y(z — z) € Q. Hence y + v(y — 3) = B(x + v(z — 7)) € B(),
where §y = BZ. Since T is arbitrary, by the prolongation lemma again,
y € ri B(Q2). Hence B(ri 2) C ri B(12).

To show the other direction, we first show that B(2) = B(ri ©2). Note
that Q = ri , hence we have

B(Q) C B(R2) = B(ri ) C B(ri ),
where the last inclusion follows from the continuity of B. This shows that
B() C B(ri Q). Since B(ri ) C B(f2), we have B(Q2) = B(ri Q).
Now since B(2) = B(ri ), ri B(Q2) = ri B(ri ) (see tutorial notes).
Hence

ri B(2) =ri B(ri Q) C B(ri ).
O
2. Let Q1, Q9 be convex subsets of R™. Show that ri(Q; —Qs) = ri Q1 —ri Qo.

Proof. Consider B : R™ x R" — R" given by B(z,y) = = —y. Then
Q1 — Qg = B(Q1 x Q9). The equality can then be obtained by applying
the previous result to B and 2 = 1 x . O

Exercise 1.27 (i) Let B : R” — R” be an affine mapping and let £2 be a convex subset of R”.

Prove the equality
B(ri§2) = ri B(£2).

(ii) Let £2; and £2, be convex subsets of R”. Show that ri (£2; — £2,) = ri 2| — ri £2>.



Lemma 5.11 A nonempty subset () of R" is affine if and only if () — yisa
subspace of R" for any w € (2.

Proof Suppose that a nonempty set ()  R" is affine. It follows from
Proposition 5.5 (v) that () — w is a subspace for any w € ). Conversely, fix
w € () and suppose that () — w is a subspace denoted by [.. Then the set
() = w + Lis obviously affine. [J

Proposition 5.12 Let () be a nonempty convex set. Suppose that T € ri(2)
and 7 € (. Then there exists ¢ > () such that

I+t(Z—7) €
Proof Choose a number v > (0 such that
B(z;y) naff(Q) C Q
and note that T + t(Z — ) = (1 + 1) + (—t)y € aff () for allt € R asitis an

affine combination of z and ¥. Select ¢t > () small enough that
T +t(Z —7) € B(Z;v). Then we have T + t(Z — ) € B(z;v) Naff () C 2.0



Proposition 5.13 Let () be a nonempty convex set in R" Then 0 ¢ ri(2) if and
only if the sets () and {0} can be properly separated, i.e., there exists v € R",
v # 0, such that

sup{(v,z) |z € Q} <0
and
inf{(v,z) |z € Q} <0,
Proof We consider two cases.

Case 1: First suppose() ¢ ). By Remark 5.3 with z = (), there exists v # 0
such that

sup{(v,z) |z € Q} < (v,z) =0,

It follows that () and {0} can be properly separated.



Case 2: Now suppose () € Q \ ri(Q2). Let L = aff({2). By Lemma 5.10, [.is a
subspace of R, and there exists a sequence {z;} C L with z;, ¢ () for every

kand z;, — 0 as k — oo. By Proposition 5.4, there exists a sequence {v,} C L
with vy, # 0 for all k£ and

sup{ (vg, ) | © € Q} < (vk, vg).

Let Wk = 7,57 and observe that|

wy|| = 1forall £ € N. Then
(wr, ) < (wg, z) for all z € Q.

We can assume without loss of generality that w, — v € L with|[v|| = 1as
k — oco. Letting &k — oo in the inequality above with the observation that
[{wr, )| < [lwl[l|zx]] = [|zx]] — 0, one has

sup{(v,z) | x € 2} < 0.



To show that the condition inf{ (v, z) | z € 1} < (is satisfied, it suffices to
show that there exists z € Q with (v, ) < 0. Suppose by contradiction that
(v,2) > 0forall z € Q. Since sup{ (v, z) | z € Q} <0, it follows that

(v,x) =0forall z € () Since v € L = aff(Q2), we can write v = > \w;,
where > | \; = land w; € Qforeachi=1,..., m. Then

[o]]* = {v,v) = 3234 Aidv, wi) = 0.

This is a contradiction because ||v|| = 1. Thus, () and {0} can be properly
separated.

Now suppose that (2 and {0} can be properly separated. Then there exists
0 # v € R" such that

sup{{v,z) | x € Q} <0,

and there exists 2 € Q) with (v, Z) < 0. Suppose by contradiction that
0 € ri(Q?). By Proposition 5.11, 0 + t(0 — &) = —tZ € Q) for some ¢ > 0.
This implies

(v, —tz) < sup{({v,z) | z € Q} <0.

Then (v, z) > 0, which is a contradiction. Therefore, 0 ¢ ri(2). [J



Theorem 5.14 Let (), and (), be two nonempty convex subsets of R". Then
(1, and £}, can be properly separated if and only if ri(£2;) Nri(€2y) = 0.

Proof Define (2 = 2; — (2 and note that ri(£2;) Nri(£22) = 0 if and only if
0 §é I‘i(Ql — Qz) = I](Ql) — I](Qz)

First, suppose that ri(€3;) Nri(2s) = 0. Then 0 & ri(y — Q) = ri(2). By

Proposition 5.13, the sets () and {0} can be properly separated, so there

exists v € R™ such that (v, ) < () for all € (), and there exists y € ) such

that (v,y) < 0. For any wy € €} and wy € (), one has z = wy — wy € ), and
hence

(v, w) —wy) = (v, z) < 0.

This implies (v, wy) < (v, ws). Choose w, € Q and w;y € ), such that
Yy = Wy, — Wo. Then

(v, —Wy) = (v, y) <0,

which implies that (v, w,) < (v, w,). Therefore, {); and {2, can be properly
separated.



Next, suppose that {1, and {}, can be properly separated. It follows that
() =) — )y and {0} can be properly separated. Applying Proposition 5.13
again yields

0 % II(Q) = I’J..(Ql - ..Qg) = II(QL) — II(QQ)
Therefore, ri(2;) Nri($}y) = 0.

The proof is now complete. (]



Math4230: Optimization Theory
(for reading)
Handout: Separating hyperplane theorem

Strict separation

For z,y € R™, we write d(z,y) = ||z — y||. For subsets A, B C R", we de-
fine d(A,z) = d(x,A) = inf,cad(z,a) and d(A, B) = inf,capep d(a,b). Let
diam A = sup, ,c4 d(z,y). For A C R" and x € R", we define (A4, z) = {(a, ) :
a € A}. In Euclidean space R", the term compact set refers to any set that is
closed and bounded.

Theorem 1 (Separating hyperplane theorem, strict case). Let C, K C R™ be
nonempty convex sets with C N K = @. If C is closed and K compact, then
there exists 1 € R™ with

inf (C, 1) > sup (K, ).

Proof. The strategy of the proof is illustrated in Figure 1. We start by proving
the existence of a pair of closest points x* and y*, where x € C and y € K.
We then show that the hyperplane with normal vector ¥ = x* — y* separates
the two convex sets. Details follow.

Claim 2. There exist * € C and y* € K such that d(z*,y*) = d(C, K).

Proof. For this, pick an arbitrary point zy € C' and define r = 2d(x, K) +
diam K. By the triangle inequality, d(x, zo) < d(z, K) + diam K + d(z, K). It
follows that any point x with d(z,z¢) > r satisfies

d(z,K) > d(z,z9) — diam K — d(z, K)
> d(l’o,K)

As a result, the compact set C' = C N {x : d(z,z9) < r} obeys d(C,K) =
d(C', K). Since d(-, ) is a continuous function on the compact C’ x K, it must

attain its infimum on C’ x K i.e., there must exist (z*,y*) € €' x K with
d(z*,y*) =d(C",K) = d(C, K). O

In the remainder of the proof, fix x* and y* as in Claim 2, and define
Y =" -y
Claim 3. inf (C,¢) > (z*, ).



Figure 1: Separating two convex sets by a hyperplane.

Proof. For the sake of contradiction, suppose that (z,) < (z* 1) for some
x € C. This is equivalent to

(x —ax", 2" —y") <O. (1)
For € € (0,1), the point z. = (1 — ¢)a* + ex is contained in C' by convexity.
However,
o "I = (0" — " +ele —a%), 0"~y + ez —a%)
= [la" =y [1* + 2¢ (& — 2", 2" — y") ¥ |o — 27|

<0 by (1)
Hence d(z.,y*) < d(z*,y*) for € > 0 small enough, contradicting d(z*,y*) =
d(C, K). O
Claim 4. (z*,¢) > (y*, ).
Proof. We have (z* — y*, ) = ||z* — y*||* > 0, where the last step uses the
fact that x* # y* by the disjointness of C' and K. O
Claim 5. (y*,v) > sup (K, ).

Proof. The proof is analogous to Claim 3. Specifically, suppose for the sake of
contradiction that (y,v) > (y*, 1) for some y € K. This is equivalent to

(y" —y, 2" —y") <O. (2)
For € € (0,1), the point y. = (1 — €)y* 4 €y is contained in K by convexity.
However,
lo* = yell* = (@ —y" +ely” —y). 2" —y" +ely” —y))
= [la* =y I+ 2¢ (" =yt —y) <2y -yl

(. J

<0 by (2)




Hence d(z*,y.) < d(z*,y*) for € > 0 small enough, contradicting d(z*, y*)
d(C, K).

o ol

By Claims 3-5, the proof is complete.

Nonstrict separation

The proofs below use the following property of compact sets K C R™: given
any sequence i, Ta,...,Tn,... € I, there is a subsequence z;,, x;,, ..., %;,, ...
and some z* € K such that z;, — 2" as n — oo. In other words, every
sequence in a compact set has a convergent subsequence. The closure of a
set A C R"™ is a superset of A defined by clA = {z € R" : d(z, A) = 0}. Put
differently, cl A is the smallest closed set that contains A. A point x is called an
interior point of A if there exists ¢ > 0 such that {y € R" : d(z,y) < e} C A.
The set of all interior points of A is denoted int A.

Lemma 6. Let M € R™ ™D be given by

(1 0 0 0 —1]
010 0 —1
M=10 01 0 —1
O | . |
0 0 0 1 —1]

Let { My} be a sequence with My, — M. Then for some k, there exists a vector
A € (0,00)" " with M\ = 0.

Proof. Since the nullspace of every M, is nonempty, we can fix a sequence
{A\x} of unit vectors with M\, = 0. By passing to a subsequence if necessary,
we may assume that Ay — A*. But then \* is a unit vector with MA* = 0,
which forces

1

Vo +1 1

Vn+1 |

1
In particular, for all k£ large enough, the components of A, are either all positive
or all negative, so that either Ay or —\; is the desired vector. ]

Theorem 7 (Separating hyperplane theorem, nonstrict case). Let X, Y C R"
be nonempty convex subsets. If XNY = @&, then there exists a nonzero i» € R™
with

inf (X, 1) > sup (Y, ¢).



Vil e

Figure 2: Separating 0 from B by a hyperplane.

Proof. Consider the convex set A=X —Y ={r—y:2z € X,y € Y}. Then
0 ¢ A, and our objective is to find a nonzero ¢ € R" with inf (A4, ) > 0. Let
B = cl A be the closure of A.

First of all, we claim that 0 ¢ int B. For the sake of contradiction, suppose
otherwise. Then for € > 0 small enough, B contains the ball {v : ||v]|, < €}.
In particular, B contains vy, €vs, . .., €v,41, Where v; is the ¢th column of the
matrix M in Lemma 6. Recall that each v; is the limit of a sequence in A.
By Lemma 6, it follows that some 0y, 0s,...,0,11 € A obey > A\v; = 0 for
some positive coefficients Ay, Ao, ..., A\,41. Since A is convex, we conclude that
0 € A, a contradiction. Hence 0 ¢ int B, as claimed.

The remainder of the proof is illustrated in Figure 2. By the claim just
settled, we can fix a sequence of points {z;} outside of B with z; — 0. By the
strict version of the separating hyperplane theorem, for each k there exists a
unit vector ¢, with

inf <B, ¢k> > <Zk, %) (3)

Passing to a subsequence if necessary, we may assume that 1, — 1 for some
unit vector 1. We now claim that inf (B, ) > 0. Indeed, for every v € B,

(v,9) = Jim (v, Yr) since ¢ —
—00
> lim (2, ) by (3)
k—o00
=0 since ||[¢x|| = 1 and 2z, — 0. O



6 Normal Cones to Convex Sets



Definition (Normal Cone) Let {2 © R" be a convex set with z € (). The
normal cone (https://en.wikipedia.org/wiki/Normal (geometry)) to () at T is

N(z;Q) = {a" € R"| (2", 2 —2) <0 forall z€ Q}.
By convention, we let N(z; () := () for z ¢ Q.

Definition A set ()} ¢ R"is called a cone if \x € QQ whenever x € Qand A > (
. If Q) is convex, then it is called a convex cone
(https://en.wikipedia.org/wiki/ Convex_cone).

Proposition 6.1 Let () C IR" be a convex set and let € 2. Then N(Z;{2)is a
closed convex cone.

Proof First we'll prove that N (z;(2)is a cone. Fix v € N(z; ) and let A > (.
By the definition of normal cone, we have that (v,z — Z) < 0 for any z € ().
Then we have that A(v,z — Z) = (Av,z — Z) < 0for any z ¢ (). Thus we
have that \v € N (7; ) whenever v € N(z;Q)and A > 0.



Now we will show that the normal cone is convex. Let vy, v5 € N(7; ) and
0 < A < 1. Then we have that (v;,z — Z) < 0 and (v, 2 — Z) < 0 for any
x € (). Then if we take

(Avy + (1 = Nvg,z — %) = Mvp, 2 —Z) + (1 = N){vg,z —Z) <0

for any z € () Thus it follows that Advy + (1 — A)ve € N(7; Q) and therefore
the normal cone is convex.

We leave closure as an exercise. [J

Proposition 6.2 Let 2 C R" be convex and let z € int (2. Then we have that
N(z; Q) = {0}.

Proof Because 7 ¢ int () then there exists a § > () such that the ball centered
at z with radius § is contained in (), so we have B(z, §) C €.



Let v € N(z;2). Then we have that (v, — z) < (forall z € ). Letz € )
and let t > () be small enough such that = 4tz € B(z, ). Then by
the definition of normal cone we have that

(v, T +tex — ) = t{v,r) < Ofor allz € Q.

Thus (v,v) = ||v||*< 0 which implies that v = 0. O



Lemma Let C'; and Cs be nonempty convex sets. We have
1i(C1) N1i(Cs) C1i(C1 N Cy), C1NCy € Cp N Co.
Furthermore, if ri(Cy) Nri(C2) # 0, then
1i(C1) N1i(Co) = 1i(C1 N Cy), C1 N Cy = C1 N Cs.

Proof. Let z € ri(Cy) Nri(Cy), y € C1NCy. By the prolongation lemma, the
line segment connecting x and y can be prolonged beyond x without leaving
Cq and Cs. Hence, by the prolongation lemma again, = € ri(Cq N Ca).
Since C; N Cy C C1 N Cs, which is closed, we have C; N Cy C C; N Cs.
Now suppose 1i(C1) N1i(Cs) # 0 and let = € 1i(C1) Nri(Cy) and y € C1 N Cs.
Consider a, — 0 and yr = axz + (1 — ag)y, then y, — y. By the line
segment property, yx € ri(Cq) Nri(C2). Hence y € ri(Cy) Nri(Cs). Then

aﬂﬁg C ri(Cl) ﬁri(C’Q) C 1 NCy.

Hence C; N Cy = C1 N Cy. Moreover, the closure of 1i(C1) N 1i(Cs) and
C1 Ny are the same. Hence, they have the same relative interior. Then

ri(Ch N Cq) = ri(ri(C1) Nri(Cy)) C ri(C1) Nri(Cy).

Lemma If f : R" — (—o0,o0] is a convex function then we have that
rifepi f) = {(z,\) e R" xR : z €ri(dom f), A > f(z)}.
Proof. Let P be the projection on the x component, i.e. P(x,\) = 2. Then

P(epi f) =dom f. Since P is linear, by previous proposition, P(ri(epi f)) =
ri P(epi f) =ri(dom f). Let Fy := {(z,A) : A € R}. Then

ri(epi f) = U (F, Nri(epi f)).
z€ri(dom f)

Note that ri F,, = F, and F, Nri(epi f) # () for € ri(dom f), by the above
lemma, we have

F, Nri(epi f) =ri Fy Nri(epi f) =ri(Fy Nepi f) =ri (epi f)a,
where (epi f)z :={A: (z,A) €epi f} ={A: A > f(z)}. Hence
ri(epi f) = U {(z,A\): A €ri (epi f)z}.
z€ri(dom f)

One can easily observe that the relative interior of the set (epi f)z is {\ :
A > f(x)}. Hence

ri(fepi f) ={(z,\) e R"" xR : z €ri(dom f), A > f(x)}.



Theorem 6.3 Let ()1, )y C R" be convex sets satisfying the relative interior
condition

ri(€2) Nri(§) # 0,

If z € Q; N, then we have the intersection rule

N(az; QN Qg)) — N(%:Q)) + N (7 Q).

Proof First we will prove that N(Z; ) + N(Z; ) C N(Z;€ N Q). Fix
v € N(z; Q1) + N(Z; ). Then there exists v; € N(z; Q) and vy € N(z; Q)
such that v = v1 + vo. Let # € () N {1y be arbitrary. Then we have that

(v, —T) = (L1 + v, 8 = T) = (V1,7 = T) + (v, — T).



However, since v; € N(z;€))and = € ) N2y C €2y, we have that

(v, — T) < 0and similarly we have that (vo, 2 — T) < 0. Thus we have that
(v,z — ) < 0and since this is true for any = € 2; N ), then we have

v e N(x; QN

Now we will show that N(Z; €2 N €y) C N(Z; ) + N(Z;(2). To do this
recall the following two facts.

If f:R" — (—o0, 00]is a convex function then we have that
ri(epi f) = {(z,A) € R" x R: x € ri(dom f), A > 0}.

Also recall that two convex sets can be properly separated if and only if
ri(€}) Nri(£22) = 0. We will now begin the proof of the second inclusion.

Fixing z € (4 Ny and v € N(z; € N€)y), we get by the normal cone
definition that



(v,x —Z) <0 for all x €y NLs.
Denote the sets
Oy := x [0, 00)
and
Oy :={(z,\) |z €y, A< (v,2—17)}.
It follows that ri(0;) = ri(£2;) x (0, 00) and
ri(0;) = {(z,A) | z €1i(), A < (v,z — 1) }.

We will now show by contradiction, that ri(©;) Nri(©y) = (. Suppose there

exists an (z, A) € ri(01) Nri(O,). Then we have that z € ri(2;)and () < ),
and we also have that z € ri({);) and A < (v, — 7). But then we have



reNihand0 < A < (v, — Z) < 0 which is a contradiction. Therefore
ri(©1) Nri(O2) = 0.

Then applying the Proper Separation Theorem gives us (w,y) € R” x R
such that

(w,x) + A1y < {w,y) + Aoy forall (z,A1) € Oy, (y,A2) € Oa.
Moreover, there are (7, 5\1) € 0, and (7, 5\2) € O, satisfying
(w, &) + Ay < (w, §) + M.

Observe that v < 0. Notice that (z, 1) € ©;and (z,0) € O3 and using the
inequality above we have that

(10, 7) + (1) < (w, ) +(0).

Solving for 7 we get that v < 0.



Let us now show that v < (. Again arguing by contradiction, suppose that
v = 0. Then we get (w, z) < (w,y)forallz € 1, y € Oy and (w, 2) < (w,7)
with & € €, § € ). This means that the sets {2, and (), can be properly
separated, which in turn implies that ri(2;) N ri(€);) = ). This gives us a
contradiction, thus vy < 0.

To proceed further, notice that (x,0) € O, for any = € {2, and and that
(Z,0) € O, Thus we have the inequality

(w,z) < (w,x) for all z € Q.

This gives us that (w, z — ) for all z € ), and therefore w € N(z; ;)

w _
. Because N(;(2;)is a cone and —y > 0 we have that — € N(z;€),

U

We also get that since (z,0) € ©;and (y,\) € Oz forall y € Qs and
A = (v,y — T), we have



(w,z) < (w,y) +v(v,y — T) whenever y € Q.
Dividing both sides by 7, we get the inequality

<$+’U,y—f> <0 forall y e ),

¥
|

w
and thus — + v € N(7;(2). This gives us

w
V& — + lV(if, Qz)

1

w _ w _
However as we have shown — € N(Z; () and v + — € N(Z; (), thus we

— i’
!

w w
have that v = (b + ?) +—¢€ N(Z; ) + N(Z; ).

completing the proof. [



7/ Subgradients of Convex Functions



Definition Let f: R” — R be a convex function with Z € dom(f). An
element 2* € R" is called a subgradient of [ at 7 if

(x*,x —Z) < f(z) — f(Z) for all z € R".

The collection of all the subgradients of f at z is called the subdifferential
(https://en.wikipedia.org/wiki/Subderivative# The_subgradient) of the function at z
and is denoted by 9 f(z).




Definition A function f: R" — R is said to be differentiable
(https://en.wikipedia.org/wiki/Differentiable_function) at 7 if there exists a v € R"
such that

i L@ = @) = (2 = @)

o2 [l — ]

= 0.

Any such v is called the gradient of f and is denoted by V f.

Proposition 7.1 Let f: R™ — R be convex, with f differentiable at 7. Then
we have that

(Vf(z),r —x) < f(z) — f(z) for all z € R™.

Proof Let ) < ¢ < 1. Using the fact that f is convex, we have that



f(@ +ta—2) - f(@) - (Vf(2),1(z — 7))
[t(z —2)]|

(A =0T+ ta)) — [(7) — (V[(T), Uz — 7))
[t(z —2)|

< A =0f@) +tf(z) - f(2) - (V@) Hz - T))
B [t(z — z)]|

(@) 1@ = (V1@). (= - 7))

- e -]

(f(@) = f(2) = (V(2). (z — 2)))
[eRel |




Since this is true for all 0 < ¢ < 1, taking the limit as ¢ approaches () we get,
by the definition of differentiability that

f(@+tx—7) — (@) — (V) tz - 7))

lim

0 [t =2l
(f(2) - f(@) — (VF(2), (= - 2)))
U= [Z=E] '

Thus we have that (V f(Z),z — ) < f(z) — f(Z) as desired. []

Lemma 7.2 Let § > (and ¢ > (. Suppose that (v, k) < €||h|| whenever
Ilh|| < 6. Then||v|| < e.

6 v
Proof Let h = 3 m Then we have that



This implies that

Thus we have that ||v[| < e O

Proposition 7.3 Let f: R™ — R be a convex function. If f is differentiable at
T € R" then we have that 9f(z) = {Vf(z)}.

Proof By Proposition 7.1 we have that V f(Z) € df(Z), so we only need to
show the opposite conclusion.

Letv € 9f(z) then (v, — &) < f(x) — f(z). Since f is differentiable at 7,
we have that



]imf(x) — f(z) = (Vf(2),r —T)

=2 [l — ]

= 0.

Thus for any ¢ > () there exists a § > () such that
f(z) — f(z) = (V[(2), 2 — )

=z

< € whenever ||z — Z|| < 4.

Multiplying both sides by ||z — Z|| and then adding both sides by
(Vf(T),x — T)we get

flz) — f(Z) < (Vf(Z),z — T) — ¢|]|]r — Z|| whenever ||z — Z|| < 4.
But then using the inequality we obtained above, we have that

(v,x —7) < f(z) — f(&) < (Vf(Z),z —T) —¢||x — Z| whenever ||z —Z|| < 4.



Rearranging we get

(v —Vf(x),r —x) <e|z— x| whenever ||z — x| <.

By Lemma 7.2 we get that ||v — V f(Z)|| < e. Since this is true for any ¢ > ()
we have that||v — V f(z)|| = 0. Thus we arrive at the conclusion that

v = V f(x), and since this is true for all v € df(x) then the conclusion holds.
O



8 The Subdifferential Sum Rule



Proposition 8.1 Let f : R" — (—o0, oo| be a convex function, and let
z € dom( f). Then we have

Of(7) = {v e R" | (v, =1) € N((z, f(Z));epi(f))}.

Proof Fix any subgradient v € J f(z) and then get from the definition of the
subdifferential that

(v, —z) < f(x) — f(z) for all z € R™

To show that (v, 1) € N((z, £(2); epi(f)), fix any (z, \) € epi( f)and
observe that due to A > f(x) we have the relationships

((,=1), (2, N) = (7 £(2))) = (v, = &) + (- (A = f(2))
= (a7 = (A= f(2) < (0,2 = 7) — (f(z) - [(2)) <0,



To verify the opposite inclusion, take (v, —1) € N((z, f(Z));epi(f)) and fix
any z € dom(f). Then(z, f(x)) € epi(f) and hence

((v.=1). (@, fl2) = (& f(@)) <0,

which in turn implies the inequality

(v, 2 —1) = (f(z) = f(2)) <0.

Thus v € Jf(Z), which completes the proof of the proposition. [



Proposition 2.11 (i) Lez 2, and §2, be nonempty, convex subsets of R" and R”, respectively. For
(fl, fz) S Ql X Qz, we have

N((f],fz); .Ql X Qg) = N(JE[ZQ]) X N(fg',.f?z).
(i1) Lez 821 and $22 be convex subsets of R" with x; € §2; fori = 1,2. Then

N(JE] +f2;91 —|—Qz) = N(f]LQ])ﬂN(J?z;.Qz).

Proof. To verify (i), fix (vy,v2) € N((X1,X2): §21 x £25) and get by the definition that
((vi,v2), (x1,x2) — (X1, X2)) = (v, x1 — X1) + (v2,x2 —X2) <0 (2.5)
whenever (x1,x2) € £2; x §2,. Putting x» := X, in (2.5) gives us
(vi,x; —X1) <0 forall x; € 2y,

which means that v; € N(x;: £2,). Similarly, we obtain v, € N(X;: £2,) and thus justity the in-
clusion “C” in (2.5). The opposite inclusion is obvious.

Let us now verity (ii). Fix v € N(x, + X,: §2; + £27) and get by the definition that
(v.x] + x5 — (X1 + X)) <0 whenever x| € 2, x5 € £25.

Putting there x| := ¥, and x5 := ¥, givesusv € N(x;:£2,) N N(x2: £2;). The opposite inclusion
in (ii) is also straightforward. O



Now we are ready to deduce the following subdifferential sum rule for
convex functions from the intersection rule of Theorem 6.3 for normal cones.

Theorem 8.2 Let fy, fo: R" — (—oc, o], be extended-real-valued convex
functions satisfying the relative interior qualification condition

ri(dom f) Nri(dom f) # (.
Then for all € dom( f1) N dom( f2) we have the sum rule
O(fi+12) (@) = 01 (@) + 0L2().
Proof Observing that the inclusion “2” above directly follows from the

subdifferential definition, we proceed with the proof of the opposite
inclusion. Pick any v € 9(fi + f2)(Z). Then we have

(v,x —Z) < (f1 + fo)(x) — (fi + f2)(T) for all z € R™



Define the following convex subsets of R"+2 by
Qpi={(z, A\, ) e R" xR xR | A\ > fi(z)} = epi(f1) x R,
Qo :={(z, A\, M) ER"XR xR | Ay > fo(2)}.
We can easily verify by the normal cone definition that
(v, =1, 1) € N((Z, /1(T), f2(T)); 1 N €Dy).

To apply Theorem 6.3 (Normal Cone Intersection Rule) to these sets, let us
check that ri(€2;) Nri(€);) # 0. Indeed, we get

ri(Q) = {(z, A\, A2) e R" x R xR | 2z € ri(dom(f1)), A\ > fi(z)}
= ri(epi(fi) x R,

ri(Qs) = {(z, A, A2) € R" x R x R | z € ri(dom(f2)), A2 > fa(z)}



by Proposition 8.1. Then choosing z € ri(dom(f1)) N ri(dom( f3)), it is not
hard to see that

(2 i(2) +1, fo(2) + 1) €7i(Q0) N1i(0) £ 0.
Applying now Theorem 6.3 to the above set intersection gives us
N((Z, fi(2), £2(7)); 10) = N((Z, 1(7), fo(2)); ) +N (7, [1(T), £2(7)); Qa).
It follows from how we defined the sets {2, and (), that
(v, =1, =1) = (v1, =7, 0) + (02,0, =)
with (v1, 1) € N((@ f1(7));epi(f1)) and (12, —7) € N((Z, fo(F)); epi(f2))
Thus
v=u1+v, N=7%=1
and we have by Proposition 8.1 thatv, € 9, () and vy € 0 f(z). This

ensures the inclusion d( f; + f2)(z) C 2f1(z) + Jf2(z) and hence completes
the proof. [J



9 The Subdifferential Chain Rule



Lemma 9.1 Let B : R® — RPbe an affine mapping given by B(z) := Ax +
where 4isa p X nmatrix and ¢ RP. Then for any (z, ) € gph(B)we have

N((z,9):gph(B)) = {(u,v) ER" x R? | u=—-ATv}.

Proof It is clear that gph(B)is convex and (u,v) € N((z,y) gph(B))if and
only if

(u,z —7) + (v, B(z) — B(z)) <0 for all z € R".
It follows directly from the definitions that

=(u,x -2+ {(A'v,z —T) = (u+ A'v,z — T).



This implies that (u,v) € N ((z,7); gph(B)) is equivalent to
(u+ATv,z —7) < 0forall z € R?, and so we have y, — — AT¢. O

Proposition 9.2 Let f: R? — (—o0, oc] be a convex function, and let

B :R" — RPbe given by B(x) := Az + b, where 4 is a P X 7 matrix and
b € Rr.Fix & € R” such that B(z) € dom( f). Denote y := B(z). Then we
have that

(foB)(x) > AT(Of(y) ={ATv|vedf(y}
REPORT THIS AD

Proof Fix u € A" 9f(y). By definition we have that there existsav € df(y)
such that y = AT¢. Then we have that

(w,z — ) = (ATv, 2 — T)

= (v, Aw — AT) = (v, B(z) — B(T))

¥



and because v € df(y) and y = B(Z) then we have that
(u, — 1) < f(B(2)) — f(B(2)) = (f o B)(z) = (f o B)(2).

Thus we have that u € 9(f o B)(Z). O



We will now prove the main result of this section.

Theorem 9.3 Let f: R? — (—o0, 0o} be a convex function, and let

B :R™ — RPbe given by B(x) := Az + b, where 4 is a P X 7 matrix and

b € RP. Fix z € R" such that B(Z) € dom( f). Denote § := B(Z) and assume
that the range of 3 contains a point of ri(dom( f)). Then we have that

a(foB)(z) = AT(0f(y)) = {ATv |ve df(®)}.

Proof The first inclusion was proved in Proposition 9.2, so we only need to
prove that

o(f o B)(x) C AT(9f())-

Fix v € 9(f o B)(Z) and form the subsets of R* x R” x R by



() :=gph(B) xR and €y :=R" x epi(f).
Then we clearly get the relationships
ri(£2) = ) = gph(B) x R,
ri(§h) = {(z,y,A) |z € R, y € ri(dom(f)), A > f(y)},
and thus the assumption of the theorem tells us that ri(€;) Nri(£2) # 0.

Further, it follows from the definitions of the subdifferential and of the
normal cone that (v,0, —1) € N((Z, 7, 2); 4 N Qy), where Z := f(7). Indeed,
for any (z,y,A) € 4 N2y we have y = B(x)and A > f(y), and so

A > f(B(x)). Thus

(0,2 =2) +0(y = §) + (=)A= 2) < {v,x —7) = [f(B(z)) - f(B(2))] < 0.
Employing the intersection rule of Theorem 6.3 to the above sets gives us
(v,0,—1) € N((2.7,2): %) + N((2.7.2); L),

which tells us that (v, 0, —1) = (v,—w,0) + (0, w, —1) with
(v, —w) € N((x,9);gph(B))and (w, —1) € N((y, z); epi(f)). Then we get
v=A"w and w € df(y)

which implies that v € AT (8f(y)) and hence verifies the inclusion “C*. []



10 The Subdifferential Maximum Rule



Let f;: R" — (—o00, 0] with ¢ = 1, ..., m be a collection of convex functions.
Define f(x) = max{ fi(z);71 =1,...,m}.

Given z € R", we define the active index set of x € R" by

I(z) ={i=1,...m; fi(x) = f(z)}.

In this section we will ultimately prove that if f; is continuous at 7 for each
1 =1,...,m, then 0f(z) = CO{EEEL)@fi(iE) }. In the next proposition we will
prove the first inclusion.

Proposition 10.1 For any € dom( f) we have that

9f(z) > cof U 9fi()}.

1eI(T)

Proof First, notice that 0f(7) is a convex set. Fix any i € I(z) and v € Jf;(x)
. Then



(v,x —7) < fi(x) — fi(Z) for all z € R™.

Since i € I(z), then f;(z) = f(Z)and furthermore f;(z) < f(x)for all z € R™
It follows that

(v,o —Z) < fi(x) — fi(Z) < f(z) — f(Z) for all z € R™.
Thus iegfl;c)@f i(7) C Of(7) ang by the convexity of 9 f(z) we have that
w{ U 05(@)} < 0/@). o

Lemma 10.2
(i) Let () be a convex set in R™ Then int (£2) = ri(2) provided that int (©2) # ()
. Moreover, we have that N(7;2) = {0} whenever Z € int(£2).



(ii) Let f: R™ — (—o0, oo] be a convex function, which is continuous at
z € dom(f). Then we have z € int(dom( f)) with the implication

(v,=A) € N((Z, f(Z));epi(f)) = [A >0 and v € N\If(Z)].
Proof (i) Suppose that int(£2) # () and check that aff(2) = R"™. Indeed,
picking z € int({2) and fixing z € R", find ¢ > () with
tr+(1 -8z =7+ t(zx —z) € int(Q2) C aff(). It yields
r=131(tx+(1-1)z)+ (1 - 1) € aff(Q),

which justifies the claimed statement due to the definition of relative
interior.

To verify the second statement in (i), take v € N(7; Q) with Z € int(2) and
get

(v, — ) <0 forall z el



Choosing § > (0 such that 7 + tv € B(z;0) C € for t > () sufficiently small,
gives us

(v,z +tv— ) =t||v]]? <0,

which implies v = () and thus completes the proof of the second assertion in
part (i).

(ii) The continuity of f allows us to find § > () such that

|f(z) — f(Z)| <1 whenever z € B(Z;9).
This yields B(Z; d) C dom( f) and shows therefore that 7 € int(dom(f)).
Now suppose that (v, —A) € N((z, f(Z));epi(f)). Then

(v, —x) — ANt — f(2)) <0 whenever (a,1) € epi(f).



Employing this inequality with z = 2 and ¢ = f(z) + 1yields A > 0.

If \ > 0, we readily get (v/\, —1) € N((z, f(z));epi(f)). It follows from
Proposition 8.1 that v/A € df(Z), and hence v € AJf(Z). In the case where
A\ = 0, we deduce that v € N(z; (dom(f)) = {0}, and so the inclusion

v € \df(x)is also valid. [



Theorem 10.3 Let f;: R" — (—o0, <], 7 = 1,...,m, be convex functions, and

let € ;- domf; be such that each f; is continuous at z. Then we have the
maximum rule:

0(max f)(7) = co (Uieso) 05:(T))

Proof Let [ be the maximum function defined by f(z) = max(f;(x)) for
which we obviously have

epi(f) = iy epil/fi).

Employing Lemma 10.2 (i) give us the equalities

ri(epi(f;)) = {(z, A) | z € ri(dom(f;)), A > fi(z)}
= {(z,\) | z € int(dom(f;)), A > fi(z)},

which implies that



(7. f(2) + 1) € M2 int(epi(fi)) = M7 ri(epi(fi).

Furthermore, since f;(Z) < f(Z) = aforany ¢ ¢ I(Z), there exists a
neighborhood 7 of 7 and v > 0 such that f;(z) < o whenever

(x,a) € U x (& — 7, + 7). It follows that (z, @) € int(epi(f;)), and so
N((Z,a);epi(fi)) = {(0,0)} for such indices ;. Thus the normal cone
intersection rule tells us that

N((@, f(2);epi(f)) = 20 N (@, a)sepi(fi) = Xicr N (@, fi(2)); epi(fi)).

Picking v € df(Z), we have that(v, —1) € N((Z, f(Z));epif), which allows
us to find (v;, —A;) € N((Z, f;(Z));epif;) for i € I(Z)such that

(v, —1) = Ziei(f)(viz —Ai).
This yields Eie‘r(j} Ai=L\N>00= Z‘{E‘,m v;, and v; € N D f;(z) by

Lemma 10.2 (ii). Thus v = Zae!(.;:) Aitt;, where u; € df;(x)and Ezef(ﬁ A =1,
This verifies that

v E o (Useffz-} (‘?ﬁ_(iﬁ)) .
The opposite inclusion in the maximum rule follows from

dfi(x) Cc Of(x) for all i € I(x),

which in turn follows directly from the definitions. ]
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Lagrangian Duality

@ Given a nonlinear programming problem, known as the primal
problem, there exists another nonlinear programming
problem, closely related to it, that receives the name of the
Lagrangian dual problem.

@ Under certain convexity assumptions and suitable constraint
qualifications, the primal and dual problems have equal
optimal objective values.



The Primal Problem

Consider the following nonlinear programming problem:

Primal Problem P

minimise f(x), 1)
subject to:

gi(x) <0 fori=1,...,m,

hi(x)=0 fori=1,...,¢,

X € X.



The Dual Problem

Then the Lagrangian dual problem is defined as the following
nonlinear programming problem.

Lagrangian Dual Problem D

maximise 6(u, v), ()
subject to:
u>o,

where,

m 14
O(u, v) = inf{f(x) + Z uigi(x) + Z vihi(x) : x € X}, 3
i=1 i=1

is the Lagrangian dual function.



The Dual Problem

@ In the dual problem (2)—(3), the vectors u and v have as their
components the Lagrange multipliers u; fori=1,..., m, and
vifori=1,...,¢.

@ Note that the Lagrange multipliers uj, corresponding to the
inequality constraints gij(x) < 0, are restricted to be
nonnegative, whereas the Lagrange multipliers v;,
corresponding to the equality constraints h;j(x) = 0, are
unrestricted in sign.

@ Given the primal problem P (1), several Lagrangian dual
problems D of the form of (2)—(3) can be devised, depending
on which constraints are handled as gj(x) < 0 and h;(x) = 0,
and which constraints are handled by the set X. (An
appropriate selection of the set X must be made, depending
on the nature of the problem.)



Geometric Interpretation

Consider the following primal problem P:

Primal Problem P 7

minimise f(x),
subject to: &
g(x) <0,

X € X,

where f: R" — R and
g:R" >R y

Define the following set in R?:
G ={(y,2):y = g(x), z = f(x) for some x € X},

that is, G is the image of X under the (g, f) map.



Geometric Interpretation

G={(y,2):y=9(x),z= f(x) for some x € X},

Primal Problem P

minimise f(x),
subject to:
g(x) <0,

X € X.

Then, the primal problem consists in finding a point in G with y <0
that has minimum ordinate z.

Obviously this point is (v, z).



Geometric Interpretation

Lagrangian Dual
Problem D

maximise 6(u),
subject to:
u=>0,

where (Lagrangian dual
subproblem):

o(u) = inf{f(x)+ug(x) : x € X}.

Given u > 0, the Lagrangian dual subproblem is equivalent to
minimise z + uy over points (y, z) in G. Note that z + uy = «a is the
equation of a straight line with slope —u that intercepts the z-axis
at a.



Geometric Interpretation

Lagrangian Dual
Problem D

maximise 6(u),
subject to:
ux=0,

where (Lagrangian dual
subproblem):

0(u) = inf{f(x)+ug(x) : x € X}.

In order to minimise z + uy over G we need to move the line

Z + uy = « parallel to itself as far down as possible, whilst it
remains in contact with G. The last intercept on the z-axis thus
obtained is the value of §(u) corresponding to the given u > 0.



Geometric Interpretation

Lagrangian Dual
Problem D

maximise 6(u),

subject to:
u>o0,
. "~~-_ Slope —u
where (Lagrangian dual ) oS
i / Z+Huy=a
subproblem): 6(u) \\Slope -u
y
\

0(u) = inf{f(x)+ug(x) : x € X}.

Finally, to solve the dual problem, we have to find the line with
slope —u (u > 0) such that the last intercept on the z-axis, 6(u), is
maximal. Such a line has slope —u and supports the set G at the
point (y, Z). Thus, the solution to the dual problem is u, and the
optimal dual objective value is z.



Geometric Interpretation

@ The solution of the Primal problem is z, and the solution of the
Dual problem is also z.

@ It can be seen that, in the example illustrated, the optimal
primal and dual objective values are equal. In such cases, it is
said that there is no duality gap (strong duality).



Weak Duality

The following result shows that the objective value of any feasible
solution to the dual problem constitutes a lower bound for the
objective value of any feasible solution to the primal problem.

Theorem (Weak Duality Theorem)

Consider the primal problem P given by (1) and its Lagrangian dual
problem D given by (2). Let x be a feasible solution to P; that is,

x € X, g(x) <0, and h(x) = 0. Also, let (u, v) be a feasible solution
to D; that is, u > 0. Then:

f(x) > 6(u, v).

.




Weak Duality

We use the definition of 6 given in (3), and the facts that x € X,
u >0, g(x) <0and h(x) = 0. We then have

O(u, v) = inf{f(X) + u"g(x) + v'h(x) : X € X}
< f(x) + u'g(x) + v h(x) < f(x),

and the result follows. O

N




Weak Duality

We then have, as a corollary of the previous theorem, the following
result.

inf{f(x) : x € X, g(x) < 0, h(x) = 0} > sup{f(u, v) : u > 0}.

Note from the corollary that the optimal objective value of the
primal problem is greater than or equal to the optimal objective
value of the dual problem.

If the inequality holds as a strict inequality, then it is said that there
exists a duality gap.



Weak Duality

The figure shows an example of the geometric interpretation of the
primal and dual problems.

Notice that, in the

case shown in the

figure, there exists

Duality gap } a duality gap due to

Optimal prir;al_o_bj;c;v; 7 the nonconvexity of
the set G.

Optimal dual objective N

We will see, in the Strong Duality Theorem, that if some suitable
convexity conditions are satisfied, then there is no duality gap
between the primal and dual optimisation problems.



Strong Duality

Before stating the conditions that guarantee the absence of a
duality gap, we need the following result.

Let X be a nonempty convex setinR". Leta : R" —» R and

g : R" - R™ be (componentwise) convex, and h : R" — R be
affine (that is, assume h is of the form h(x) = Ax — b). Also, let ugy
be a scalar, u € R™ and v € R¢. Consider the following two
systems:

System 1:  a(x) <0, g(x)<0, h(x)=0 forsome x € X.

System 2:  uga(x) + u"g(x) + vTh(x) > 0 for some
(uo, u, v) # (0,0,0), (ug, u) > (0,0) and for all x € X.
If System 1 has no solution x, then System 2 has a solution

(uo, u, v). Conversely, if System 2 has a solution (ug, u, v) with
ug > 0, then System 1 has no solution.

.




Proof of the Lemma

Outline of the proof:

Assume first that

System 1:  «a(x) <0, g(x)<0, h(x)=0 forsome x € X,
has no solution.

Define the set:
S={(p,q,r):p>a(x),qg=g(x),r=h(x) forsome x e X}.

The set S is convex, since X, @ and g are convex and h is affine.
Since System 1 has no solution, we have that (0,0,0) ¢ S.



Proof of the Lemma (Ctd.)

h
Consider the functions: 3L ) h(0 X e X)
o) = (x— 172~ &, —
h(x) =2x -1,
and the set

X={xeR:|xl <2}




Proof of the Lemma (Ctd.)

a(x) = (x - 1)° - &,
h(x) =2x -1,
X={xeR:|xl <2}

S={(p,r):p>alx),r=h(x) forsomexe X}




Proof of the Lemma (Ctd.)

Continuing with the proof of the Lemma, we have the convex set:
S={(p,q,r):p>a(x),qg=g(x),r=h(x) forsome x e X},

and that (0,0,0) ¢ S.

Recall the following corollary of the Supporting Hyperplane
Theorem:

Let S be a nonempty convex setin R" and x ¢ int S. Then there is
a nonzero vector p such that p'(x — x) < 0 for each x € cl S.




Proof of the Lemma (Ctd.)

We then have, from the above corollary, that there exists a nonzero
vector (ug, U, v) such that

(uo, u, v)'[(p,g,r) = (0,0,0)] = upp + u'q+ v'r >0, 4)

for each (p,q,r) e cl S.

Now, fix an x € X. Noticing, from the definition of S, that p and g
can be made arbitrarily large, we have that in order to satisfy (4),
we must have ug > 0 and u > 0.



Proof of the Lemma (Ctd.)

a(x) = (x-1)* - 3,
h(x) =2x -1,

X={xeR:|xl <2}

We can see that ug cannot be ug < 0 and satisfy:

(UO’ V)T[(p’ r) - (O’ O)] = (UO’ V)T(p’ r) = Upp + v'r 2 O’

for each (p,q,r) e cl S.




Proof of the Lemma (Ctd.)

o) = (x - 1)° - 3,
h(x) =2x -1,

X={xeR:|xl <2}

We conclude that ug > 0 and

(to, v)'[(p. r) = (0,0)] = (to, v)"(p. 1) = top + v'r > 0,

for each (p,q,r) e cl S.




Proof of the Lemma (Ctd.)

We have that there exists a nonzero vector (up, u, v) with
(uo, u) = (0, 0) such that

(Uo, u,v)'[(p,q.r) = (0,0,0)] = upp + U'q + v'r 2 0,
for each (p,qg,r) e cl S.

Also, note that [a(x), g(x), h(x)] € cl S and we have from the above
inequality that
upa(x) + u'g(x) + v'h(x) > 0.

Since the above inequality is true for each x € X, we conclude that

System 2:  upa(x) + u'g(x) + v'h(x) > 0 for some
(uo, u, v) # (0,0,0), (up, u) > (0,0) and for all x € X.

has a solution.



Proof of the Lemma (Ctd.)

To prove the converse, assume that

System 2:  uga(x) + u'g(x) + v'h(x) > 0 for some
(uo, u, v) # (0, 0,0), (ug, u) > (0,0) and for all x € X,

has a solution (ug, u, v) such that ug > O.
Suppose that x € X is such that g(x) < 0 and h(x) = 0.

From the previous inequality we conclude that
upa(x) > —u'g(x) > 0, since u > 0 and g(x) < 0. But, since up > 0,
we must then have that a(x) > 0.

Hence,

System 1:  a(x) <0, g(x)<0, h(x)=0 forsome x € X.

has no solution and this completes the proof. O



Proof of the Lemma (Ctd.)

\ d {a(x), h(x) : x € X}
\ 3

\\‘
a(x) = (x - 1)? - 3, \\ (Lo, v)
h(x) =2x -1, N @

\
X={xeR:|xl <2} \\
_ \
o) I .
\.

If{ System 2: upa(x) + v'h(x) > 0 for some (up, v) # (0,0), ug = 0

and for all x € X {, has a solution such that ug > 0, and x € X is
such that h(x) = 0, we can see that a(x) must be a(x) > 0, and
hence System 1 has no solution.

.




Strong Duality

The following result, known as the strong duality theorem, shows
that, under suitable convexity assumptions and under a constraint
qualification, there is no duality gap between the primal and dual
optimal objective function values.

Theorem (Strong Duality Theorem)

Let X be a nonempty convex setinR". Letf : R" — R and

g :R" = R™ be convex, and h : R" — R’ be affine. Suppose that
the following constraint qualification is satisfied. There exists an
X € X such that g(x) < 0 and h(x) = 0, and 0 € int h(X), where
h(X) = {h(x) : x € X}. Then,

inf{f(x) : x € X, g(x) <0,h(x) =0} =sup{(u,v):u>0}, (5)
where 6(u, v) = inf{f(x) + u"g(x) + v"h(x) : x € X}. Furthermore, if

the inf is finite, then sup{6(u, v) : u > 0} is achieved at (u, v) with
u > 0. If the inf is achieved at x, then u"g(x) = 0.




Proof of the Strong Duality Theorem

Let y = inf{f(x) : x € X, g(x) < 0, h(x) = 0}.

By assumption there exists a feasible solution X for the primal
problem and hence y < oo.

If v = —c0, we then conclude from the corollary of the Weak
Duality Theorem that sup{f(u, v) : u > 0} = — and, hence, (5) is
satisfied.

Thus, suppose that vy is finite, and consider the following system:
f(x) —y <0, g(x) <0 h(x) =0, forsome x € X.

By the definition of y, this system has no solution. Hence, from the
previous lemma, there exists a nonzero vector (up, u, v) with
(uo, u) = (0, 0) such that

u[f(x) —y]l +u"g(x) + vh(x) >0  forall x € X. (6)



Proof of the Strong Duality Theorem (Ctd.)

We will next show that ug > 0. Suppose, by contradiction that
up = 0.

By assumption, there exists an x € X such that g(x) < 0 and

h(x) = 0. Substituting in (6) we obtain u"g(X) > 0. But, since

g(x) <0and u >0, u"g(x) > 0 is only possible if u = 0.

From (6), Up = 0 and u = 0 imply that v'h(x) > 0 for all x € X. But,
since 0 € int h(X), we can choose an x € X such that h(x) = —-Av,
where 1 > 0. Therefore, 0 < v'h(x) = —A||v||?, which implies that
v =0.

Thus, it has been shown that ug = 0 implies that
(uo, u, v) = (0,0, 0), which is a contradiction. We conclude, then,
that ug > 0.



Proof of the Strong Duality Theorem (Ctd.)

Dividing (6) by up and denoting u = u/up and v = v/up, we obtain
f(x)+u'g(x)+v'h(x) >y forall x € X. (7)

This implies that 6(u, v) = inf{f(x) + u"g(x) + v'h(x) : x € X} > y.

We then conclude, from the Weak Duality Theorem, that
6(u, v) = y. And, from the corollary of the Weak Duality Theorem,
we conclude that (u, v) solves the dual problem.

Finally, to complete the proof, assume that x is an optimal solution
to the primal problem; that is, x € X, g(x) < 0, h(x) = 0 and

f(x) = .

From (7), letting x = x, we get u'g(x) > 0. Since u > 0 and

g(x) <0, we get u'g(x) = 0.

This completes the proof. O



Example of Strong Duality

Consider the following optimisation problem:

Primal Problem P

minimise (x — 1)2,
Subject to:

2x—1=0,
XeX={xeR:|xl <2}

It is clear that the optimal value of the objective function is equal to

2

2
1 1 1
(— - 1) = since the feasible set is the singleton {5}




Example of Strong Duality

Example (Ctd.)
Lagrangian Dual Problem D
maximise 6(v),

where the Lagrangian dual function is,
O(v) = inf{(x — 1)% + v(2x — 1) : |x| < 2}.
Differentiating w.r.t. x and equating to zero, we get that the

optimiser of the dual Lagrangian subproblem is x* = —v + 1 (if
-1<v<3).

Hence 6(v) = (-v+1-12 +v(-2v+2-1) = —v? + v.
Differentiating w.r.t. v and equating to zero, we get that the

1
optimiser of the dual problem is v* = > and the optimal value of

1
the dual problem is —v*2 + v* = 1 Thus, there is no duality gap.




Example of Strong Duality

Example (Ctd.)

—
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11 Continuity of Convex Functions



A function f: R" — (—00, 0| be an extended-real-valued function. We say

that f is continuous at xy € dom(f) := {z € R" | f(z) < o} if for any e > (),
there exists § > () such that

|f(x) — f(x0)| < € whenever ||z — x| < 4.

It follows directly from the definition that if f is continuous at zy € dom(f),
then 2, € int(dom(f)).

Lemma 11.1 If a convex function f: R" — (—o0, ool is bounded above on
B(Z; 0) for some element 7 € dom(f) and number § > (), then f is bounded
on B(z; §).

Proof Denote m := f(z)and take M > (0 with f(z) < M for all z € B(z; ).
Picking any u € B(7; 0), consider the element x := 27 — u. Then x € B(Z; 0)
and

m= @) = F(C3Y) < 2f @) + 5fw)




which shows that f(u) > 2m — f(z) > 2m — M and thus f is bounded on
B(z;6). O

Definition We say that f : R" — (—o0, o0|is Lipschitz_continuous
(https://en.wikipedia.org/wiki/Lipschitz_continuity) on 2 C dom( f) if there exists
0 > 0and ¢ > 0 such that

|f(z) — f(u)| < {||x — u| whenever z,u € (2.

We say that f is locally Lipschitz continuous around z, € dom( f) if there
exists § > () and ¢ > ( such that

|f(x) — f(u)| < ||z — u| whenever z,u € B(z¢;6).

Theorem 11.2 Let f: R” — (—o0, oc] be convex with Z € dom(f). If f is
bounded above on B(Z; §) for some § > (), then f is Lipschitz continuous on

B(z;6/2).



Proof Fix z,y € B(z;d/2) with 2 # y and we define the element u by

2|z -y
. o —Y
Since € 1= € b, we have
[l =yl
) o 5
t£=$+§€€f+§ﬂ3+§BCf+(ﬂB.
If we denote @ := D this gives us u = « + a(r — y), and thus
1 o

$:a+1it+a+1y.

It follows from the convexity of f that



1 o
< - — _
fla) € ==+ =22 f(y).
which implies in turn the inequalities

F@) = 1) £ =) — f() < 2M—~

2|z — AM
LTS

—2M <
§ + 2|z — y||

with M := sup{|f(z)| | z € B(F; )} < ooby Lemma 11.2. Interchanging the
role of x and ¥ above, we arrive at the estimate

fle) - 1) < e~y

and thus verify the Lipschitz continuity of f on B(z;4/2). O



Lemma 11.3 Let {e; | i = 1,. ... n} be the standard orthonormal basis of R™.
Denote

A::{fieei‘izl....,n}, e > 0.

¥

Then the following properties hold:

<eandi=1,...,n.

}

(i) + ve; € coAfor
(ii) B(Z; ¢/n) C co A.

~
!

Proof (i) For|y| <, find t € [0, 1]withy = t(—¢) + (1 — t)e. Then
T +ee; € Agivesus

~
!

T +ye; =t(x —ee;) + (1 —1)(z+ ee;) € co A,

(ii) For = € B(Z; ¢/n), we have = T + (¢/n)u with [|u|| < 1. Represent u via
{ei} by



n
u =73 i A€,

where [\;| < /> " | A7 = |Ju|| < 1for every ;. This gives us

€ B 0 €A a1/
rT=2I+ —u=17 +> i = Yo E(I + e)\iei).
Denoting 7; := €A, yields |y;| < e. It follows from (i) that
I+ eNe; =T+ ve; € coA, and thus z € co A since it is a convex
combination of elements in ¢o 4. [

L
Ik

Theorem 11.4 Let f : R™ — (—o0, 0o] be a convex function such that
int(domf) # 0. Then f is locally Lipschitz continuous on in the interior of
its domain int(dom f).

Proof Pick Z € int(domf) and choose ¢ > () such that  + ee; € dom f for
every . Considering the set 4 from Lemma 11.3 (ii), we get B(Z;¢/n) C co A
. Denote M := max{f(a) | @ € A} < oo over the finite set 4. Using the
representation



=3 Na; with A, >0 Y2 =1, a,€A4
for any = € B(Z; ¢/n) which shows that
fla) < 32 Aifai) < 3005, AM = M,

and so f is bounded above on B(Z; ¢/n). Then Theorem 11.2 tells us that f is
Lipschitz continuous on B(Z; ¢/2n) and thus it is locally Lipschitz
continuous on int (dom f). OJ

It immediately follows that any finite convex function on R" is always
locally Lipschitz continuous on the whole space.

Corollary 11.5 If f: R" — R is convey, it is locally Lipschitz continuous on
R™
The next corollary is also a direct consequence of Theorem 11.4.

Corollary 11.6 Let [ : R® — (—00, oo| be a convex function and let
« € dom([f). Then the following properties are equivalent.

(i) f is continuous at 7.
(ii) z € int(dom(f)).

(iii) f is locally Lipschitz continuous around z.



12 Fenchel Conjugates



Definition Given a function f: R" — (—oc, oo (not necessarily convex), its
Fenchel conjugate (https://en.wikipedia.org/wiki/ Convex_conjugate),
f*: R® — [—o00, ] is given by

fr(v) == sup{(v,x) — f(z) |z e R"}.

The proposition below shows that the Fenchel conjugate of a proper
function f (f is proper if it has nonempty domain), is a convex function
even if [ is nonconvex.

Proposition 12.1 Let f: R" — (—o0, oc] be a function with dom( f) # (), or
equivalently there exists an 7 € R™ such that f(Z) < oc. Then

[*: R™ — (—o00, 0] is a convex function.

Proof Fix 7 € dom(f)so that f(z) € R. For any v € R" we have that,

f*(v) = sup{(v,a:) —flz) : z € R"} > (0,2) — f(Z) > —o0.

Observe that (v, z) — f(z) = —oc0if 2 ¢ dom(f), and so



fr(v) =sup{(v,x) — f(z) : € R"} =sup{(v,z) — f(x) : x € dom(f)}
= sup{o,(v) : 2 € dom(f)},

where ¢, (v) := (v,2) — f(z). Then f* is convex on R" as it is the supremum
of a family of convex functions defined on R". ]

Proposition 12.2 Let f, g: R" — (—oc, o] be such that f(x) < g(x) for all
x € R™ Then we have f*(v) > g*(v)for allv € R™

Proof For any fixed v € R, it follows from the assumption that f(x) < g(x)
for all x € R™ that

This readily implies the relationships

f*(v) =sup{(v,z) — f(z) |z € R"} > sup{(v,z) — g(z) | z e R"} = g*(v).



Since this is true for all v € R, then f* > g*on R™ [

Proposition 12.3 Let f, g: R" — (—o00, oo] with dom( f) # 0. Then

(v,z) < f(z) + f*(v) for all z € R"and v € R™

Proof Observe first that if f(2) = oo the conclusion follows. If x € dom f, we
get from the definition of Fenchel conjugates that

() = (v, z) — f(x).

The conclusion follows when we add f(x) to both sides. [



Definition Let f : R" — (—o0, o] be a function with dom( f) # 0. Then for
z € R" we have the function f**(z) = (f*)*(z) given by

[ (2) = sup{(z,v) = [*(v) | v € R"},
Then f** : R" — [—00, ool is called the second order Fenchel conjugate of f.

Proposition 12.4 Let f : R" — (—o0, 0o]. Then for all z € R™ we have that

f*(z) < f(x).

Proof Fix any v,z € R". Then from Proposition 12.3 we have
{v,2) < f(z) + f*(v).

When we subtract both sides by f*(v) we get the inequality

sup{(v,z) — f*(v) | v € R"} < f(x),



and since this is true for any v,z € R" then the proof is complete. []

The following important result reveals a close relationship between
subgradients and Fenchel conjugates of convex functions.

Proposition 12.5 For any convex function f: R" — (—o00, 00| and any
T € dom(f), we have that v € Jf(Z) if and only if

f(Z) + f(v) = (v,7).

Proof Taking any v € Jf(Z)and using the definition of the
subdifferential we get

f(z)+ (v,x) — f(x) < (v,z) forall z € R".
This readily implies the inequality

[(@)+ [*(0) = [(2) + [*(v) = sup{(v,2) — f(2) : 2 €R"} < (v, ).



Since the opposite inequality holds by Proposition 12.4, we arrive at the
equation,

f(Z)+ f(v) = (v, 7).

Conversely, suppose that f(Z) + f*(v) = (v, Z). Applying Proposition 12.3,
we get the estimate f*(v) > (v, z) — f(z) for every x € R™ Then

f(@)+ f*(v) = (v,z) = f(Z) + (v, z) — f(x) for all z € R"™.
This shows that v € df(z). O

Proposition 12. 6 Let f: R™ — (—o00, oo] and let T € dom( f). Suppose that
df(x) # 0. Then we have the equality [**(z) = f(Z).

Proof Proposition 12.4 gives us the first inequality thus it suffices to verify
the opposite inequality. Fix v € df(z) and get (v,Z) = f(Z) + f*(v) by the
preceding theorem. This shows that

F(@) = (v,3) = f*(v) < sup{(z.0) — f*(v) [v € R} = (),

which completes the proof of this proposition. ]



13 Directional Derivatives of
Convex Functions



Definition Let f: R" — (—o0, oo] with € dom( f). The directional derivative
(https://en.wikipedia.org/wiki/Directional_derivative) of the function f at the
point 7 in the direction € R" is given by

F(@sd) = tim LI = 1@

t—0+ i

If this limit exists as a real number or 4-o¢, then it is called the right
directional derivative. We can similarly define the left directional derivative as
T td) — f(E
f(z;d) := lim flz+td) - J(7) :

t—0— t

It is easy to see from the definitions that
f(z;d) = — f'(z; —d) for all d e R",

Lemma 13.1 Given a convex function f: R" — (—o0, oc] with Z € dom(f)
and given { € R", define



f(z + td) — f(7)
t

o(t) = , t>0.
Then the function ¢ is nondecreasing on (0, o).

REPORT THIS AD
Proof Fix any numbers 0 < {; < {3 and get the representation
i L
T+ td = —1(:?:+t2d) + (1— —1)5:.
tQ ti’
It follows from the convexity of f that

f(Z+td) < z—;f(a_?+t2d) + (1 — %)f(i),

2

which implies in turn the inequality



f@+td) — (&) _ f(@+td) - f(2)

o(ty) =
b(t) - -

= ¢(t2).

This shows us that ¢ is nondecreasing on (0, oc). [J

Proposition 13.2 For any convex function f: R" — (—00, 00| and any

T € dom( f), the directional derivative f'(Z; d) exists for every direction

d € R™ Furthermore, if € int(domf) then f'(Z; d)is a real number for
every d € R™

Proof From what we showed in Lemma 13.1, we have that the function e) is
nondecreasing. Thus we have

flad) = tim LEDZI@ sy — o).

t—0+ t 0+ t>0

thus f'(Z; d) is either a real number or +oc.



Now let z € int(dom f). This implies that f is locally Lipschitz around z.
Thus there exists an ¢ > () and a § > () such that

[ (z) = fy)| <tz =yl

whenever z,y € B(Z; ). Then for ¢ sufficiently small we have

|f(z +td) - f(z)] < ¢t]|d].

Dividing both sides by ¢ gives us that for sufficiently small ¢,

flz+td) — f(z
t

)| <t

Thus when we take the limit as ¢t — 0%, we get

f'(@:d) < ¢l|d]|.



Thus the directional derivative is a real number as desired. [

Lemma 13.3 Let f: R" — (—o0, 00| be a convex function with Z € dom( f).
Then we have

f(z;d) < f(z +d) — f(¥) whenever d € R™.

Proof Using Lemma 13.1, we have for the function ¢ defined in the
lemma that

o(t) < ¢(1) = f(Z +d) — f(z) forall te€(0,1),

which justifies the claimed property due to the fact that
f'(#;d) = info(t) < 6(1). O

Theorem 13.4 Let f: R™ — (—o00, oo] be convex with z € dom( f). The
following are equivalent:



(vedf(z)
(ii) (v, d) < f'(Z;d) for all d € RY
(iii) f (7;d) < (v,d) < f/(Z;d) for all deR™

Proof

(i) = (ii) Picking any v € 9f(Z) and ¢t > (), we get

(v,td) < f(T +td) — f(Z) whenever d € R™
By taking the limit as t — 0+ we arrive at our desired result.

(i) = (i) Assuming now that assertion (ii) holds, we get by the previous
lemma that

(v.d) < f/(z;d) < f(z+d) - f(z) forall deR™



It ensures by the definition of the subdifferential that v € Jf(z), and thus
assertions (i) and (ii) are equivalent. It is obvious that (iii) implies (ii), so we
will only prove the reverse implication.

(ii) = (iii) Assume that (ii) is satisfied, then for d € R™ we have
(v, =d) < ['(z;—d),
and thus
f(z;d) = — f'(z; —d) < (v,d) for any d € R".

This justifies the validity of (iii) and completes the proof of the theorem. ]



We will now prove some properties of the directional derivative as a
function of the direction.

Proposition 13.5 Let f: R" — (—o00, o] be a convex function with
z € dom( f), we define the function ©/: R" — (—o0, 00| by ¥(d) := f'(z;d),
which satisfies the following properties:

(1) ¥(dy + do) < 9p(dy) + (ds) for all dy, dy € R™.
(ii) ¥ (ad) = a(d) whenever d € R"and o > (.
(i) 0/ () = 6(0).

Proof (i) Fix d;, dy € R"™ Then we have that

¥(dy 4 dy) = lim f@ +Ud +dy)) = f(7)

t—0+ t




T+ 2td, + 7 + 2td,

Nz ! ) £2)
= lim
t—0+ 1
T dy) — f(z . T+ 2tdy) — f(T
< Jig PG g PR vt + vt

(ii) Now fix &« > 0 and d € R™. Then using the definition of directional
derivative we get

(ad) = tEI[I)}Ff(E i t(af)) — [(T)

i o E £ (ad)d) — [(7)

t—0t (at)

— avp(d).

(iii) Recall from Theorem 13.4 that v € 9 f(Z)if and only if

(v,d) < f'(Z,d) = ¥(d) for all d € R".



It can be easily shown that 1/(0) = 0, thus we have that the inequality
above is equivalent to

(v,d —0) <1(d) —1(0) for all d € R".

Applying the definition of the subdifferential to the above inequality tells us
that v € 94(0). Thus we have shown that v € df(z)if and only if v € 9v(0),
which completes the proof. []

Lemma 13.6 Let the function ¢: R™ — IR be subadditive and positively
homogeneous. Then

P*(v) = 0q(v) for all v € R™, where 2 := 9(0).

Proof First we will show that ¢/*(v) = 0 for all v € {2 = 94(0). Fixing v € Q,
we have



0(v) = sup{ (v,d) — 6(d) | d € B"} > (v,0) — ¥(0) = .
We also have
(v,d) = (v,d —0) <(d) —(0) =(d), for all d € R"
which gives us that
P (v) = sup{ (v, d) — p(d) | d € R*} <0
and so ensures the validity of *(v) = 0 for any v € d¢(0).

It remains to verify that 1/*(v) = ocif v ¢ 9¢(0). For such an element v, find
dy € R"with (v,do) > 1(dp). Since 1 is positively homogeneous by
assumption, it follows that

*(v) = sup{ (v, d) —9(d) | d € R"} > sup({v, tdy) — t(tdo))



= t;ligt((v,do) — ¥(dy)) = o0.

Thus we have shown that ¢*(v) = dq(v) for any v € R". O

The next theorem gives us a characterization for the directional derivative in
terms of the subdifferential.

Theorem 13.5 Let f: R" — (—o00, oc] be a convex function and let
z € int(dom f. Then

['(&; d) = sup{(v,d): v € Of ()}
=max{{v,d): v e df(z)}.

Proof Consider 1: R" — R given by 1 (d) = f(z; d). Then v is subadditive
and positively homogeneous. Furthermore we have shown that
df(z) = 9¢(0) and from the previous lemma we have that ©* = d, where

Q = 9f(z). Then given any ( ¢ R", we have
Y(d) = & (d) = " (d)
— sup{ (v, d) — do(v): v € R}
— sup{(v,d): v € Q}
= sup{(v.d): v € O/ (7))
— max{{v,d): v € If(Z))}.

Thus we have proved that 1)(d) = f'(z;d) = max{(t', dy: v e df(:?:)} as
desired. ]



14 Subdifferential Characterization for
Differentiability



Definition Let f: R" — (—o00, oc] be a function and let Z € int(dom f). We
say that f is Gdteaux differentiable
(https://en.wikipedia.org/wiki/G%C3%A2teaux_derivative) at T if there exists a
v € R"™such that

1imf(j +td) — f(x) — t{v,d)

t—0 i

=0 for all d € R™.

If fis Gateaux differentiable at z, then the element v is unique and is called
the Gateaux derivative, which we denote by f’(Z).

Proposition 14.1 Let f: R" — (—o0, oc] be a function and let 7 € int(dom f).
Then [ is Gateaux differentiable at z if and only if the directional derivative
f'(Z; d) exists and

f'(z;d) = (v,d) for all d € R"

where v = f/.(Z).



Proof First assume that v = ['(Z) exists. Then from the definition we have
that

(v,d) = limf(j i t? — J(@) for all d € R".

t—0

If the limit exists, then it is equivalent to taking the limit from the right, so
we have

for all d € R™.

(v,d) = lim flz+td) - /(2)

t—0t t

From the definition of directional derivatives, this shows us that f'(7; d)
exists for all € R and that (v,d) = f'(z; d).



To prove the other implication, suppose that f'(z; d) exists and that
['(z;d) = (v, d). Notice that f'(z; —d) = (v, —d) for all 4 € R", which implies
that — f'(z; —d) = f_'(z;d) = (v, d) for all d € R". Thus we have

(v,d) = lim [z +id) = J(@)

t—0+ t

for all d € R™,

and we also get

(v,d) = lim fla+id) = fz)

t—0— 1

for all d € R™.

Therefore we have shown that the limit from both the right and the left are
equivalent and thus the Gateaux derivative exists, completing the proof. [J

Definition Let f: R" — (—00, 00| be a function and let z € int(dom f). f is
said to be Eréchet differentiable
(https://en.wikipedia.org/wiki/Fr%C3%A9chet_derivative) at 7 if there exists




a v € R™such that

i £E 0 — F(@) = 0.1)

= 0.
h—0 gl

The element v is called the Fréchet derivative of [ at z, and it is denoted by
f(z).

In general Gateaux differentiability is not in general equivalent to Fréchet
differentiability, however under certain conditions it is as we shall see in the
next theorem.

Theorem 14.2 Let f: R” — (—o00, oc] and let = € int(dom f). If f is Fréchet
differentiable at 7 then it is also Gateaux differentiable at 7. Furthermore if f
is convex then the converse is also true.

Proof Suppose that f is Fréchet differentiable at 7 and let v = f'(Z). Then



@) = f(@) = (o, h)

= 0.
h—0 IRl

Fix any 0 # d € R™ and let i = td. Then we have that
_ f(Z+td) - [(Z) —t{v,d)
lim

t—0 1

@t td) — f(2) — (v, td)
= lim( tlldl Il =o.

Thus we have that f is Gateaux differentiable.

Now suppose that f: R” — (—o0, oo]is convex and Gateaux differentiable
with v = f;" and we shall prove that f is Fréchet differentiable. Suppose by
contradiction that f is not Fréchet differentiable. Then there exists a ¢g > 0
and a sequence { h;.} with h, — 0 such that



F(Z + hie) = F(Z) = (v, )|
7] |

€ >

hy.
Define t), = ||h;| and let dj, = ﬁ Then you will notice that ¢, — 0 as
k
k — oo and also that||d,|| = 1for all & € N. Thus {d}} is a bounded
sequence which implies it has a convergent subsequence. Without loss of

generality suppose that d, — d as k — oc. Rewriting the inequality above
we get

@) - f@) — b
'= [Tl

7@+ el ) = 1) = (o, i)
sl




@+ ) = 1(2) = (0, b))
b

- £(Z+ tedy) — [T+ td) + F(T + tyd) — [(Z) — (v, tedi) + (v, td) — (v, td)|
Ly,

f(Z+tydy) — f(Z+td)| (T +1d) — F(T) = (v,rd] (v, trdr) — (v, txD))]
< i + I + 0

(1)

Now, because Z € int(dom f), then f is locally Lipchitz continuous around z
. Thus there exists a ¢ > (0 and a § > () such that

|f(z) = f(u)] < €|z —ul| for all z,u € B(Z;u).

Applying this fact and the Cauchy-Schwarz inequality to (1) gives us



o < (2 +tdy) — (7 + tkd)|\+ (@ + ted) — f(Z) — (v, tkd‘+||ﬂ|\||tkdk — 1.d|

- tr. tr tr

f(@ + tid) — f(Z) — (v, tad
tr

= (|| (d — d)|| + + llvllllde = dll. (2)

Using the Gateaux differentiability of f at z on the middle term we can see
that (2) goes to () as & — oc. But this contradicts that fact that (2) was greater
than €o for all & € N. Thus we have completed the proof. []



Theorem 14.4 Let f: R"™ — (—o00, oc] be a convex function and let
z € int(dom f). Then the following are equivalent:

(i) f is Fréchet differentiable at 7.
(ii) f is Gateaux differentiable at .
(iii) 9f(Z) is a singleton.

Proof (i) <= (ii) was shown in the last theorem so we only need to show
that (ii) <= (iii).

((ii) = (iii)) Suppose that f is Gateaux differentiable at 7 and let
v = f'«(Z). Then

f(Z;d) = (v,d) = [’ (Z;d) for all d € R".

Fix any w € 9f(Z). Then



f(7;d) < (w,d) < f'(Z;d), for all d € R™.
Thus for any d € R™ we have that (v,d) = (w, d). This implies that
(v —w,d) =0, for all d € R™.

Choosing d = v — w gives us||w — v||? = 0 which implies that v = w.
Therefore 9 f(z) = {v} and thus is a singleton.

((iii) = (ii)) Suppose that f(Z) = {v}. Then we have that
['(Z;d) = max{(w,d): w € 9f (z)} = (v, d), for all d € R".

By the relationship between Gateaux differentiability and directional
differentiability established in Lemma 1.1 we can see that [ is Gateaux
differentiable and that f'-(z) = v. O



15 Lower Semicontinuity and the
Existence of Minimizers



Definition Let f: R" — (—o0, oc] be a function. We say that [ is lower
semicontinuous (https://en.wikipedia.org/wiki/Semi-continuity), or l.s.c., at T if for
any A < f(z), there exists a § > () such that

A < f(z) for all x € B(Z; 4).
If fisls.c. atall T € R", then we say that f is Ls.c.

Proposition 15.1 Let f: R" — (—o0, oc] be a function and let € dom( f).
Then f is l.s.c. at Z if and only if for any ¢ > (), there exists a § > () such that

f(z) —e< f(x) for all x € B(z;9).
Proof First assume that f is L.s.c. at z. Then, letting ¢ > (), we have that

A= f(T) —e < f(T).



By the definition of lower semicontinuity there exists a § > () such that
A= f(Z) —e < f(z) for all x € B(Z;9),
which proves the first implication. Now suppose that for any ¢ > ( there
exists a § > () such that
f(Z) —e < f(x) for all x € B(Z;9).

Take A < f(Z). We can choose a ¢ > ()such that A < f(Z) — e. Then there
exists a § > () such that

A< f(Z) —e < f(z) for all x € B(7;9).
Thus we have that [ is Ls.c. [J

Proposition 15.2 Let f: R" — (—00, oc] be a function. Then f is Ls.c. if and
only if for any \ > 0, the set £ is closed where



Ly:={zeR": f(x) <A}

Proof First suppose that f is Ls.c. and fix \ ¢ R". We will show that £, is
closed by proving that the compliment, (£,)¢, is open. Take any = € (£,)°¢,
then by definition we have that A\ < f(Z). Because f is L.s.c at 7, there exists a
& > ( such that

A < f(z) for all x € B(T;6).

Thus B(z; ) C (£,)¢, and since this is true for any z € (£,)° we have
verified that (£ )¢ is open which in turn implies that £, is closed.

To prove the other implication, suppose that £, is closed for any \ € R",
and we will show that f is lower semicontinuous. Let z ¢ R" and let

A < f(Z). Then we have that T € (£,). But by assumption (£ )¢ is open so
there must exists a § > () such that B(z; ) C (£,)“ Thus we have

A< f(z) for all x € B(Z;6).

This shows us that 1isl.s.c. as desired.



Proposition 15.3 Let f: R" — (—o0, oo]be a function. Then fis l.s.c. if and
only if epi(f)is closed.

Proof First assume that fis L.s.c. and we will show that epi( f)is closed by
showing that (epi(f ))Cis open. Take any (z, A) € (epi(f ))C Then from the
definition of the epigraph, we get that A < f(Z) Choose ¢ > ()small enough
such that A + ¢ < f(Z) By the lower semicontinuity of f, there existsa § > ()
such that

A+ e < f(x) for all x € B(Z;9).
Then it can easily be seen that
B(Z;0) x (A—¢,A+¢) C (epl(f))C

Since such an open ball exists for any (z, A) € (epi(f))’, then we have that
(epi(f ))Cis open, which proves that epi( f)is closed.



To prove the converse we assume that epi( f) is closed. Taking any \ € R we
will show that

Ly = {z eR": f(z) <A}

is closed, which by Proposition 15.2 will give us the lower semicontinuity of
f. Fix any sequence {x } in £ that converges to some point z € R™. Then
f(z) < Xfor all k which shows us that (z, A) € epi(f)and we also have
that (24, A\) — (2, A\) as k — oc. By the closure of epi( f) we have that

(Z,A) € epi(f). Thus f(Z) < Awhich gives us that z € £,. Thus we have
completed the proof. [J

Proposition 15.4 Let f: R” — (—o0, oc| be a function. Then f is Ls.c. at 7 if
and only if for any sequence in R", {2} } with 2, — Z, we have that

liminf f(z) > £(7).



Proof Suppose that f is .s.c. at  and take any sequence such that z;, — Z as
k — oo- Fixany A < f(Z). Then there exists § > () such that

A < f(z) for all x € B(T;6).

Since 7 — T then there exists a k, € N such that z;, € B(z; ) for all kb > k.
Then A < f(a3) for all k > ko, which in turn gives us that

A < liminf f(zy),
k—oc
and since this is true for all A < f(z), then we have that
f(z) < lign inf f(xg).

To prove the converse let hgl_gonf f(zx) = f(Z) for any sequence {z}.} which

converges to x. Suppose by contradiction that l.s.c. at z. Then there exists a
A < f(Z) such that for any § > (), there exists a x5 € B(Z;d) with A > f(x;).



Therefore letting 6 = %, we have that there exists a sequence z; € B(Z;

such that A > f(x). Thus 2 — = and

li}:n inf f(zr) < A< f(z).

This contradicts our previous assumption completing the proof. [J

=



Definition Let f : R" — (—00, oo]be a function with nonempty domain. An
element T € dom(f)is called an absolute minimizer of fif

f(@) < f(z) for all z € R

Theorem 15.5 Let f : R™ — (—o0, oc]be lower semicontinuous with
dom( f) # () Suppose that for any )\ € R the sublevel set

L= {weR": f(r) <A}
is bounded. Then fhas an absolute minimizer.

Proof Let @ = Iiégnf () Because the domain of fis nonempty, we have that

a < oc Then there exists a sequence {z,,} C R"such that

lim f(z,) =«



So there exists a \ € R and %, € N such that

flzg) < Xforall k > k.

Then z;, € £, for all £ > k. Since £ is bounded then the sequence {z;} is a
bounded sequence and thus has a convergent subsequence, {xy; }, which
converges to some point, 7 € R". Thus we have

f(@) < lilm inf f(xy) = llimf(o:kg)

=« = inf f(z)

TcR™”
< f(z) for all z € R™.

Thus 7 is an absolute minimizer. [



Next we will examine the Constrained Optimization Problem. Let
f:R™ — R and let ) be a nonempty subset of R". Consider the problem:

Minimize f(z) (iP)
Subject to 2 € (2
Any T € (), is called a feasible solution of (fP) Any 7 € ()such that

f(@) < f(x) for all x € Qis called a global optimal solution of (T)

Theorem 15.6 Consider the problem (?) Suppose () is a compact set and f

is l.s.c., then (3’) has a global optimal solution.
Proof Let g : R™ — (—o0, 00| defined by

g(z) = f(z) + 0(z; Q)



where § is the indicator function. Then ¢ is lower semicontinuous.
Moreover, for any \ € R, the set

LIy :={x e R": g(x) <A}
_ON(z e R () < M)
=ML

Since () is compact then L7, is bounded. Then g has an absolute minimizer
denote by 7. Then we have

9(x) = f(T) +6(7;2)
< f(z) +6(z; Q) for all z € R™

Let ¢ € ), then



9(T) = f(T) + 0(7; Q)
fu) +0(u; Q) = flu) < occ.

Thus T € Q) and we have that f(T) < f(u) for all « € Q) which proves that T
is a global optimal solution. (]

Remark It follows from the previous theorem, that = < 2 is a global optimal
solution if and only if 7 is an absolute minimizer for the function
g R" = (—o0, 0| given by

g(z) = f(z) + 0(z; Q).

Corollary 15.7 Let f : R" — R be a Ls.c. function. Suppose that

H:}'Elmf (2) = 0O Then f has an absolute minimizer.

Proof To prove this we only need to show that the sublevel set is bounded
for any A € R. Fix A € R. Since jﬁg}mf(i) = & there exists an 7 > () such
that

re R, ||| > r} — [f(’;] > )\].

Then
LyC{zeR": |z| <r}=DB0;r).

This proves that £ is bounded which completes the proof. .



16 Optimality Conditions and the
Methods of Lagrange Multipliers



Theorem 16.1 Let f : R* — (—o0, oc] be a convex function and let

T € dom(f). Then f has an absolute minimum at T if and only if f has a
local minimum at 7.

Proof Notice that if 7 is an absolute minimum then it is a local minimum so
we only need to prove the opposite implication. Let f have a local minimum
at T. Then by the definition of local minimum there exists a § > () such that

f(T) < f(z) for all z € B(T; ).
Fix any u € R”. Then we can find a 0 < ¢ < 1 such that
vi=F+tu—T) =tut (1— )T € B(T;0).
Then we have
f(@) < flz) = f(tu+ (1 -1)7)
<tf(u)+(1-1)f(T) = f(@) +t(f(u) - £(T))



Subtracting both sides of the inequality by f(T) gives us

0 <t(f(u)— f(T)).

Dividing both sides by ¢ we get,
0< flu) = f(2).

Thus we get that f(Z) < f(u«)and since this is true for any v € R” then 7 is
an absolute minimum for f. [

Recall the Constrained Optimization Problem from the last section. Namely,
letting f : R™ — R and () be a nonempty subset of R"

Minimize f(z) (?)

Subject to z € €.



Theorem 16.2 Consider the problem (fp) where f is a convex function and )
is a nonempty convex set. Then T is an optimal solution of (ZP) if and only if
0€df(T) + N(7;0Q).

Proof We proved in the last section that 7 is an optimal solution of (iP) if

and only if T is an absolute minimizer of g(z) where
g(@) = f(x) + o(z; Q).
This is true if and only if ) € Jg(T). Then we have that
0 € 99(T)

=0f(T) + 0(6(7;QY)) = 0f(T) + N(T; Q).



Thus T is an optimal solution of (ZP) O

Corollary 16.3 Consider the problem (fP) in which f is a convex function

and
Q={zeR": Ax = b},

where A4 is an m x n matrix and p € R™ Let 7 € (). Then 7 is an optimal
solution of (?) if and only if

0€df(T) + AT (R™).

Proof It is easy to show that

N@T:Q) = AT(R™) = {ATA: A e R™}. O



Consider the problem,
Minimize f(z) (?)
Subject to g;(z) <0 forall:=1,...,m and x € €.

where f, gy, ..., gm : R” — R are convex functions and () is a nonempty
convex subset of R™.

We say that 7 € R" is a feasible solution of (’P) ifz € Qand g;(7) < 0forall
t=1,...,m.ForT € R" define

AT ={i=1,...m: ¢g(T) =0}.

Theorem 16.4 Consider the problem (fP) Suppose that 7 € R" is an optimal

solution of (‘J’) Then there exists multipliers Ao, A, ..., A,,, with at least one
i€ {1,...,m} that has \; # (, such that



D€ 2D (T) + (i Ndou(T)) + N ),

Ai > Oforallz =0, ...,m, and furthermore \;g;(T) = O forallz = 1, ..., m.

Proof Let 7 be an optimal solution of ('P) Define the function ¢ : R — R
by

o(z) = max {f(z) - f(@), gi(2)}.
Observe that ¢(7) = 0, and T is an optimal solution of the problem,
Minimize ¢(z)

Subject to = € Q.

Equivalently, ¢(T) < ¢(z) for all € Q. By the optimality condition,



0 € 96(T) + N(T; Q)

Define go(z) = f(z) — f(Z). Then for 2 € R” we have ¢(z) = 32%{91(@}
Recall from the section on the subdifferential maximum rule the definition
of the index set,

I@) = {i=0,..m: gi(z) = ¢(z) = 0} = {0} U A(T).

By the subdifferential formula for the maximum function, we have

OEmQMﬂU[USMﬂb+N®m

i€EA(T)

_mwﬂ@u[uaM@D+N@Qy

iEA(T)

Then there exists a Ay > 0and \; > Ofori € A(T) with Ao + 3 ;c 4y Ai =1
and



0 € ANIf(T) + [ T )\zﬁgz(f)] + N(TQ).

i€ A(T)

Set \; = 0ifi ¢ A(T)fori € {1,...,m}. Then \;g;(T) = Oforalli =1, ...,m.
Then

0 € MOf(T) + | ity Mdgi(3)| + N(T: ),
where \;g;(T) = 0 for all i = 1, ..., m, thus completing the proof. []

Definition We say that the Slater condition is satisfied for the problem (iP) if
there exists a ¢ € () such that

gi(u) <0 foralle=1,.. m.



Theorem 16.5 Consider problem (ZP) and let T be a feasible solution of (fP)

Then 7 is an optimal solution if and only if there exists multipliers
A1y ooy Ay = 0 such that

0 € Of(T)+ | DIt Mogi(@)| + N(T:92),

A; > Oforallz =0, ...,m, and furthermore \;g;(T) = O forallz = 1, ..., m.



Proof of Theorem 16.5 First assume that 7 is an optimal solution. It suffices
to prove that A\ # (. By contradiction assume that Ay = 0. Thus there exists
Aigi(T)fori =1, ...,mand v € N(7; ) such that

0=>" Avi + v,
with \; > 0and \;¢,(7)for alli = 1, ...,m. Then
0,u—7)= O Avi+v,u—T) =0
where u € () satisfies the Slaters condition, i.e. g;(u) < Oforalli =1, ..., m.
Thus
0=>" N{v,u —T) + (v,u —T)

< 2R Ai(gi(w) — gi(@) + (v, u —T)



=S Ngi(u) + (v,u —T) <0
which gives us our contradiction.
To prove the other implication assume that
0 € df(T) + X% Xidgi(T) + N(T; ),

where \; > 0 and \;g;(T) = O forallz = 1, ..., m, and furthermore assume
that 7 is a feasible solution. We will show that 7 is an optimal solution of

(?). Fix any feasible solution 2z € R™. Then there exists vy € Jf(T),
v; € 0g;(T)fori =1, ...,mand v € N(T; ) such that

0= Vg + Z:il )\{Uz‘ + .
Thus we have that

0=1(0,2 —7)



= (vo + >ty Aiv; + v, — )
= (V0,2 —T) + Y oy N{vp, e —T) + (v, — T
< (f@) = @) + 2 A (9i(2) — 0:(@)) + (0.2 = 7)
= J(@) = (@) + it Agi() + (v,2 ~ )
< J(@) - I (@).

Thus we have shown that f(7) < f(z). O

Consider the problem
Minimize f(z) (Q)

Subjectto gi(z) < Oforallt=1,..,m and z €



where f, gy, ..., g2 : R — R are differentiable convex functions.

Theorem 16.6 Consider the problem (Q) and let & be a feasible solution of
(Q). Suppose that {¢;(Z) : i € A(T)} is a linearly independent set. Then T is
an optimal solution of (Q) if and only if there exists Ay, ..., A,;, > 0 such that
V@) + 2 AiVei(T) = 0

with \;¢;(T) = Oforalli = 1,...,m.
Proof From the previous proof we have that

0=2Vf(@)+ 205 AiVa(T)

MV () + Xicam AiV4i(T).

Assume by contradiction that A\g = 0. Then

Z-Le,ﬂ.(f) AiVg(T) =0

and by the linear independence of {¢,(T) : ¢ € A(T)} we have that \; = () for
all< € A(T). This gives us a contradiction because by assumption there exists

a); > Oforsomeie {I,...,m}. [



KKT Example

Consider
min x§ + x3
s.t. x1 +x0 =1,
X2 S «,
where (x1,x) € R?, a € R,
The Lagrangian function is
L(x1,x2, M\, 1) = X2 + 533 + M1 — x1 — x2) + p(x0 — ).

KKT conditions are

g)ﬁi:o, i=1,2,
x1+x =1,

xo —a <0,

p =0,

pu(xe —a) = 0.



KKT Example

Setting the partial derivatives zero, we get

oL oL
— =21 —A=0, — =2x — A =0.
o, X1 " D% X2 + @
Therefore, x; = %, Xp = /\g—“ Substituting into the equality
constraint:
X1+X2:)\—§:1.

SoA=5+1. We get

N

Combining with the inequality constraint, we get —4 +
that is > 2 — 4. We consider 3 cases.



KKT Example

> 2 — 4q satisfies all the
is a strictly feasible solution

> o> %: We can check that © =

KKT conditions. So x{ = x5 =

and the minimum value is %

0
1
2

is a

N

» a=1: Similartocase 1, p =0=2—4da. x{ = x5 =

boundary solution and the minimum value is %

> a< %: In this case y =2 —4a > 0. Then
xi =1—a, x; = a. The minimum value is (1 — «)? + o?.



Computation of KK'T Points
There seems to be confusion on how one computes KKT points. In general this is a hard problem. The
problems I give you to do by hand are not necessarily easy, but they are doable. The basic is idea is to
make some reasonable guesses and then to use elimination techniques. I will illustrate this with the following
homework problem.

Problem: Locate all of the KKT points for the following problem. Are these points local solutions? Are
they global solutions?
minimize  z% + z3 — 4o — 49
subject to % < @9
T1+x0 < 2.

Solution: First write the problem in the standard form required for the application of the KKT theory:
minimize  fp(x)
subject to  fi(xz) <0, i=1,2,...,s
filx) =0, i=s+1,s+2,...,m.

In our example there are no equality constraints, so s = m = 2 and we have

fo(xl,.%'g) = $%—|—x%—4$1 —4dxy = (.7}1 —2)24-(:62—2)2—8
filz1,m2) = 2] — a9
fo(z1,22) = x1+x2—2.

Note that we can ignore the constant term in the objective function since it does not effect the optimal
solution, so henceforth fo(z1,22) = o1 —2)? + (22 — 2)%. At this point it is often helpful to graph the solution
set if possible, as it is in this case. It is a slice of a parabola.

Since all of these functions are convex, this is an example of a convex programming problem and so the KKT
conditions are both necessary and sufficient for global optimality. Hence, if we locate a KKT point we know
that it is necessarily a globally optimal solution.

The Lagrangian for this problem is
L((z1,22), (u1,u2)) = (21 — 2)* + (22 — 2)? + ug (2§ — 22) +ua(21 + 22 — 2) .
Let us now write the KKT conditions for this problem.
1. (Primal Feasibility) 22 < z9 and x1 + 22 < 2
2. (Dual Feasibility) 0 < u; and 0 < ug
3. (Complementarity) uy (2?2 — z2) = 0 and uz(z1 + 12 —2) = 0
(

4. (Stationarity of the Lagrangian)

2(x1 — 2) + 2uix1 +u
0= VmL((-Tl,.%Q), (ulaUQ)) = < (2<1a:2 —)2) — ull }FUQ ’ >

or equivalently

4 = 2I1+2U1$1+U2
4 = 2x9—up+ us.



Next observe that the global minimizer for the objective function is (z1,2z2) = (2,2). Thus, if this point
are feasible, it would be the global solution and the multipliers would both be zero. But it is not feasible.
Indeed, both constraints are violated by this point. Hence, we conjecture that both constraints are active at
the solution. In this case, the KKT pair ((x1,x2), (u1,u2)) must satisfy the following 4 key equations

Ty = 3

2=x1+ x9
4 =2x1 + 2uir] + U2

4:2$2—U1+UQ.

This is 4 equations in 4 unknowns that we can try to solve by elimination. Using the first equation to eliminate
9 from the second equation, we see that 1 must satisfy

0=a?4z—2=(x1+2)(x; — 1),

so x1 = —2 or x1 = 1. Thus, either (x1,z2) = (—2,4) or (z1,22) = (1,1). Since (1,1) is closer the global
minimizer of the objective fy, let us first investigate (z1,22) = (1,1) to see if it is a KKT point. For this we
must find the KKT multipliers (uq, uz).

By plugging (z1,z2) = (1, 1) into the second of the key equations given above, we get
2=2u; +us and 2= —uj + ug .

By subtracting these two equations, we get 0 = 3u; so u; = 0 and us = 2. Since both of these values
are non-negative, we have found a KKT pair for the original problem. Hence, by convexity we know that
(z1,22) = (1,1) is the global solution to the problem.
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Convergence of gradient descent

Here we will prove convergence guarantees for gradient descent,
where we find a minimizer® of

minitnize f(x)

using our generic iterative algorithm choosing the direction to move
as

resulting in the update rule

Tp1 =X — V[ (x).

Our goal is to establish the convergence rate of gradient descent. This
can be measured in many different ways. One way is to establish

f(xr) — f(x*) < some function that decreases to 0 as k — oo
= g(k)

This established convergence of the function values to the minimum.
With a result like this in hand, you can ask

How many iterations do we need to be within € of a solution?
and the answer is

k > g '(e) iterations will suffice.

Tn this section, we will always assume that a minimizer exists.
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For example, if we establish

then we know that

k202 5 fle)- e <

€

Note that the g(k) we derive will in general be monotonically de-
creasing and hence invertible.

[f we know that there is a unique solution &*, we might also bound

|z, — || < some function that decreases to 0 as k — oo.

The bounds we develop will depend on the structural properties of
the function f. In the mathematical optimization literature, there
are results for all different kinds of structure on f. In this set of
notes, we will consider two cases: convex differentiable f that

1. have an L-Lipschitz gradient map, i.e.

V() =V iyl < Lz -yl foralezy;

2. have an L-Lipschitz gradient and in addition are p-strongly
convex, 1.e.

y) = f@)+(y -2, V(@) + lly—al} forallz,y.

We will see that the additional structure added in the second case
makes a dramatic difference in convergence rate.
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Convergence of gradient descent: f smooth

As we have discussed before, having an L-Lipschitz gradient is akin
to the function being smooth: if the derivative changes in a controlled
manner as we move from point to point, the function itself will be
very well-behaved.

On the homework, you showed that

IVf(x) =V iy)lz < Lilz -yl (1)
means that we have the pointwise quadratic upper bound
L
fly) < @)+ {y — 2, V@) + Sy — x| (2)

This provides some intuition for what kind of structure the Lipschitz
gradient condition imposes on f. Recall that for any convex function,

we have
fly) = fl@)+(y — =z, V().

So if f is convex, then at any point & we can bound f from below by a
linear approximation. If in addition, if f has a Lipschitz gradient, (2)
we can also bound it from above using a quadratic approximation.
We will often refer to functions that obey (1) as L-smooth.

Now, let’s consider running gradient descent on such a function with
a fixed step size’ a;, = 1/L. Recall that the central gradient
descent iteration is just

1
Lpr1 = L — —Vf(iﬂk;)-
L
>This requires that you know L, which may not be possible in practice. In
fact, if a < 1/L you will still get convergence, it will simply be slower.
Moreover, it is not too hard to extend this approach to get a similar
guarantee when using a backtracking line search.
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From our assumption that f is L-smooth, we know that f satis-
fies (2), and thus plugging in y = @, 1, we obtain

2

Fl@) < f@) + (~ 7 V@), V@) + 5 |7Vt
= Jl@) ~ IV @ + 5V (@)
= flwe) — 5 IV f @) 3)

Note that (3) shows that f(xy,1) < f(=x;) as long as we are not
already at the solution, so we are at least guaranteed to make some
progress at each iteration. In fact, it says a bit more, giving us

a guarantee regarding how much progress we are making, namely
that

fla) — flain) = oIV f@)l

so that if the gradient is large we are guaranteed to make a large
amount of progress.

In the Technical Details section at the end of these notes, we show
that by combining this result with the definition of convexity and
doing some clever manipulations, we can get a guarantee of the form

L

fla) = f(@) < llwo - @'l

Thus, for L-smooth functions, we can guarantee that the error is
O(1/k) after k iterations. Another way to put this is to say that we
can guarantee accuracy

flxr) — flx") < e
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as long as
k> ollwo — *Hz
T 5.
=2 2

Note that if € is very small, this says we can expect to need a very
large number of iterations.

Convergence of gradient descent: smooth and strongly
convex

We will now show that the convergence rate is much faster if f is
strongly convex in addition to being smooth. Recall that for a u-
strongly convex function, we have

fy) = fa) + - Vi@)+ Sy —alh @
for all x, y.

We will use the same fixed step size a;, = 1/ L, and begin our analysis
in the same way as before, in which we derived the intermediate result
(3) that the L-smoothness of f implies

1
f(@ri1) < fl@n) = o7V (@05
We can now use strong convexity to obtain a lower bound on ||V f()][3.

We can obtain a simpler lower bound for f(y) by determining the
smallest value that the right-hand side of (4) could ever take over
all possible choices of y. To do this, we simply minimize this lower
bound by taking the gradient with respect to y and setting it equal
to zero:

Vi(x)+uy—x) =0,
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From this we obtain that the lower bound in (4) will be minimized

by
Yy—x= —in(m).

Plugging this into (4) yields
1 1
fy) = f(@) = —|IVf(@); + IV (@)]]3
,Li H
= f(x) - @HVf(w)H%-
In particular, this applies when y = a*, which after some rearranging

yields

IVf(@)ll; = 20 (f(z) — fx")). (PL)
This is a famous and useful result, often referred to as the Polyak-
Lojasiewicz inequality.

Combining the PL inequality with (3) we obtain
flana) = f@) < fl@) = fl@) = = (fla) - fla))
- (1-2) (tew) - 1)
That is, the gap between the current value of the objective function
and the optimal value is cut down by a factor of 1 — u/L < 1 at

each iteration. (Note that (2) and (4) imply that L > p.)

This is an example of linear convergence; it is easy to apply the
above iteratively to show that

Fla) — fla) < (1—ﬁ) (flxo) - f=). ()
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If we use €y = f(xg) — f(x*) to denote the initial error, this means
that we can guarantee that

flx) — flx") < e

for

log(€/ep)
= log(1 — p/L)

> £1og <@)
7! €

where the second inequality uses the fast that —log(1 — «) > « for
all 0 < a < 1.

Let’s step back for a moment, and compare

1 (0
— versus log | —].
€ €

What are these quantities when € = 10727 What about 107%7? This
is all to say that the performance guarantees for gradient descent are
dramatically better when f is strictly convex than when it is not.

We can also use (5) to characterize the convergence of the iterates
&, to the unique solution &*. Applying (4) with & = x* and y = x;,
yields (after noting V f(x*) = 0)

flan) = fl@") = Sllze — 2,

while applying (2) with & = * and y = x, yields

L
flxo) — f(z") < §H$0 — x*|);.
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Combining these with (5) yields

. L( p\ .
o =o'l < 5 (1= %) Iz =2l

so . — ax* at a linear rate as well. I will note that a more careful
analysis (which we won’t go into here) can also remove the factor of
L/ in front, yielding

Mm%
o~ < (1-1) flz -2l

Finally, we also note that the PL inequality above also provides some
guidance in terms of setting a stopping criterion. Specifically, if we
declare convergence when ||V f(x)|ls < € then the PL inequality
allows us to conclude that

1 2
flxy) — f(x") < ﬂHVf(a:k)Hg < o

This provides a principled way of declaring convergence.
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Technical Details: L-smooth convergence

Here we complete the convergence analysis for gradient descent on
L-smooth functions that is summarized above. Specifically, recall
that above in (3) we showed that if f is L-smooth then

f@en) < fla) — 57 IV ()2
Moreover, by the convexity of f,

flay) < f@") + (@ — 2", V f(2)),

where x* is a minimizer of f, and so we have

Flan) < fla) + {m — o, V(@) — oV fa) 3

Substituting V f(xy) = L(xy — @py1) then yields

L
f(®r) = f(@") < L{xy — ", ), — Tpy) — gHin e ()

We can re-write this in a slightly more convenient way using the fact
that
la — b[f; = [|lall; — 2(a, b) + [|b]|;

and thus
2(a, b) — [|b]l; = [lallz — lla — b]|5.
Setting @ = @, — * and b = x; — x; and applying this to (6),
we obtain the bound
L * *
2 e~ 2~ e — 272)

f(warl) - f(m*) <
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This result bounds how far away f (@) is from the optimal f(x*) in
terms (primarily) of the error in the previous iteration: ||a; — a*||3.
We can use this result to bound f(xyy1) — f(x*) in terms of the
initial error ||@y — x*||? by a clever argument.

Specifically, this bound holds not only for iteration k, but for all
iterations 7 = 1, ..., k, so we can write down k inequalities and then
sum them up to obtain

k

[k
Z flxi) = flz") < 5 (Z |z — |5 — || — :L’*H§> :

1=1

The right-hand side of this inequality is what is called a telescopic
sum: each successive term in the sum cancels out part of the previous
term. Once you write this out, all the terms cancel except for two
(one component from the ¢ = 1 term and one from the ¢ = k term)
giving us:

k

> flm) — flxh) <

1=1

(llwo = 2l = llzw — 2[J2)

~ no|

< gHiBo — x5

Since, as noted above, f(x;) is monotonically decreasing in 4, we also
have that

=1
and thus I
Fla) — f(@) < oo — [,

which is exactly what we wanted to show.
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Accelerated first-order methods

In the last lecture we provided convergence guarantees for gradient
descent under two different assumptions. Under the stronger assump-
tion that f was both L-smooth and strongly convex with parameter
1, we showed that convergence to a tolerance of € was possible in
O(ﬁlog(l /€)) iterations. Under the weaker assumption where we

only assume that f is L-smooth, we were able to show that O(L/e)
iterations would be sufficient.

In this lecture we show that there are small changes we can make
to gradient descent that can dramatically improve its performance,
both in theory (resulting in improvements on the bounds above)
and in practice. We will talk about two of these here: the heavy ball
method and Nesterov’s “optimal algorithm.” Both of these strategies
incorporate the idea of momentum, although in subtly different ways.

Momentum

One way to interpret gradient descent is as a discretization to the
gradient flow differential equation

Z/(t) = —V f(x(t))

x(0) = x.

(1)

The solution to (1) is a curve that tracks the direction of steep-
est descent directly to the minimizer, where it arrives at a fixed
point (where V f(x) = 0). To see how gradient descent arises as a
discretization of (1), suppose we approximate the derivative with a
forward difference

_x(t+h)—=(1)

ZB/(t) ~ h )
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for some small h. So if we think of ;. and x; as closely spaced
time points, we can interpret

é(wl-ﬁrl —x;) = =V f(x),

as a discrete approximation to gradient flow. Re-arranging the equa-
tion above yields the gradient descent iteration &y, = &, —a'V f(x}).

The problem is once we perform this discretization, the path tends
to oscillate. One way to get a more regular path is to consider an
alternative differential equation that also has a fixed point where
V f(x) = 0 but also incorporates a second-order term:

ma’(t) + a'(t) = =V f(x(t)). (2)

From a physical perspective, this is a model for a particle with mass
m moving in a potential field with friction. This results in trajectories
that develop momentum (a heavy ball will move down a hill faster
than a light one in the presence of friction). In the case where m = 0
we recover (1), but in general the inclusion of the mass term above
will result in a more accelerated trajectory towards the solution.

We can discretize the dynamics as before by setting

Tit1 — 2T + Tj Ty — Tj—
z'(t) ~ 2 PR () e 2T
h hy
If we plug these into (2) and rearrange we obtain an update rule of

the form

X1 = Tr + Br(Tr — 1) — iV f (), (3)
where 8 = hy/hoym and o = hy/m. This is the core iteration for the
heavy ball method, introduced by Polyak in 1964 | ]. The

x;, — x;,_, term above adds a little bit of the last step x;, — ;4
direction into the new step direction x;.; — @) — this method is also
referred to as gradient descent with momentum.
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Convergence of the heavy ball method

In the previous lecture we showed that if f(ax) is L-smooth and
strongly convex, then we can obtain a bound of the form

f@rn) — flx") < (1 - l)k (f(o) — f(2)),

K

where Kk = L/p is the “condition number.” From this we showed
that we can guarantee

*

")

(
(

fley) = fla*) _ )
flxo) = flxr) —
provided that

k> klog(1/e).

In the Technical Details at the end of these notes we also provide
an alternative argument for the convergence of gradient descent that
begins by showing that

* l{_l : *
fow @l < (57) oo = 7]

Using a similar argument as before, we can use this to show that

2 — 2],

g —x*|[s ~

provided that
k> rlog(1/e).

(Note that
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where the inequality comes from the fact that k > 1.)

The heavy ball method significantly improves on this result in terms
of its dependence on k.

Specifically, under the same assumptions as before (L-smoothness
and strong convexity), in the Technical Details section we show (for
the quadratic case) that for the heavy ball method with

. — 4 and (3, = <M>2
SENV/RE C\VL+ i

we can achieve

2 — 2],

<e when k2 vk log(1/e).
[0 — ||

The difference with gradient descent can be significant. When x =
107, we are asking for & 100log(1/€) iterations for gradient descent,
as compared with ~ 10log(1/¢) from the heavy ball method.

Conjugate gradients

If you are familiar with the method of conjugate gradients (CG),
some of this may feel vaguely familiar. If you have never heard of CG,
[ highly recommend reading through the tutorial “An introduction to
the conjugate gradient method without the agonizing pain” | ).

The CG method was developed for minimizing quadratic functions
of the form f(x) = j&"Qx —x"b. While it is normally presented in
quite a different fashion, it ultimately boils down to being a variant of
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the heavy ball method that is particularly well-suited to minimizing
quadratic functions. To see this connection, note that the core CG
iteration can be expressed' as

di, = =V f(x;) + Brdy

Tpi1 = T + apdy,

where we start with dy = —V f(xy). In CG, the §; are set as

5 IVs@I?
IV f(@r-)l3
If f(x) is a quadratic function this choice ensures that at each itera-
tion dj, is conjugate to dy, . ..,d;_;. We won’t worry about saying

more about this beyond the fact that this is a good idea if f(x)
15 quadratic. Once (, is fixed, ay, can then be chosen using a line
search. Again, if f(x) is quadratic, there is a simple closed form
solution for this (which we have previously derived).

While CG is parameterized differently than the heavy ball method
as described in (3), they are fundamentally the same. To see this
note that we can also write

1 = T + oy (—V f(xr) + Brdy_1)
L — L
= Ly — Okaf(mk) + Ckkﬁk—l
A1
This is precisely the same iteration as (3), but with a slightly different
way of parameterizing the weight being applied to the momentum
term.

You will typically see this algorithm described specifically for the quadratic
case, in which case V f(x) = Qx — b and these calculations are carefully
broken up to re-use as many calculations as possible and avoid any un-
necessary matrix-vector multiplies, so it may initially look quite different.
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If you are trying to minimize a quadratic function, CG is the way
to go. The convergence guarantees you get for CG when minimizing
a quadratic function are just as good (but not actually better than)
what you have for the heavy ball method, but you don’t need to
know anything like Lipschitz or strong convexity parameters (which
would correspond to the maximum and minimum eigenvalues of Q)
in order to choose the a4 and f;.

However, if you are trying to minimize anything else CG is not
necessarily a good choice. The choices for «, and 3, are highly tuned
to the quadratic setting and can yield unstable results in general.

Nesterov’s “optimal”’ method

In the case where f is strictly convex, you can come up with examples
that show that the convergence rate of the heavy ball method can’t
be improved in general. For non-strictly convex f, the story is more
complicated.

Recall that we also have a convergence result for gradient descent
in the case where we only assume L-smoothness. In particular, last
time we showed that for a fixed step size « = 1/L,

* L *
flaw) = (@) < o o — I5-
Thus, to reduce the error by a factor of € requires
.
— 2e

1terations.

In 1983, Yuri Nesterov proposed a slight variation on the heavy ball
method that can improve on this theory, and often works better in
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practice | ].% Specifically, recall the heavy ball method, which
can be represented via the iteration:

Dy, = Bk (wkz - wk—l)
LTy = T + Py — Oszf(in),

where we start with p, = 0. Nesterov’s method makes a subtle, but
significant, change to this iteration:

D, = B (iL’k; - ka;—1) (4)
Ty = T + P — iV f(xr + Dy)-

Notice that this is the same as heavy ball except that there is also a
momentum term snside the gradient expression. With this iteration,
we will show that (for a suitable choice of ay, and S},

fla) — fla) S sl —

meaning that we can reduce the error by a factor of € in

oz L

\/E?
iterations. When € ~ 107, this is much, much better than 1/e.
Nesterov’s method is called “optimal” because it is impossible to beat

the 1/k? rate using only function and gradient evaluations. There
are careful demonstrations of this in the literature (e.g., in | ).

Note that in practice, oy, can be chosen using a standard line search,
and a good choice of 8 (both in practice, and as we will show below,

*Note that this method remained to a large extent unknown in the wider
community until his 2004 publication (in English) of | ].
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in theory) turns out to be

k—1
b= 15 5)

This tells us that we should initially not provide much weight to the
momentum term, which makes intuitive sense as the initial gradients
may not be pushing us in the right direction, but as we proceed we
should have increased confidence that we are headed in the right
direction and increase how much weight we place on the momentum
term.

Significantly, note that in setting (5, we do not need to know any-
thing about the function we are minimizing (such as strong convexity
parameters). This represents an important advantage compared to
the heavy ball method described above.

Convergence analysis of Nesterov’s method

Analyzing the convergence of Nesterov’'s method under the assump-
tion of L-smoothness is a little more involved than for gradient de-
scent, but the overall approach is the same and contains many of the
same elements, so we will start by recalling the main building blocks
that we used in analyzing gradient descent.

Consequences of convexity and L-smoothness
First, we recall some basic facts that hold for any @,y € dom f.
Since f is convex we have

fly) = fl@)+(y—=z, Vfx)). (6)
Since f is L-smooth we have
fly) < fla) +ly— 2. Vi@)+ Sy —elp (7
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As a consequence of (7) (by setting y = @ — +V f()), we have that
for any @,

(o -2 < piay - L2 ©)

Combining this with the upper bound on f(a) that you can obtain
by rearranging (6), we obtain

Fo= YN < fw) + (o -, 9 st - LD )

L 2L

As we will see below, this inequality is the foundation of our analysis
of both gradient descent and Nesterov’'s method. By plugging in
different choices for y (such as x; or *) we can obtain both lower
bounds on how much progress we make when we take a gradient
step as well as upper bounds on how far away we are from a global
optimum.

Convergence of gradient descent
Recall that in our analysis for gradient we assume a fixed step size
a = 1/L, resulting in an update rule of

. V()
Lp41 — L — 7
Thus, setting @ = x;, and y = x* in (9) implies that

L
f(@rn) < f(@) + L), — ", T — 1) — 5”«’1% — x5

From this, if we define 6, = f(x,) — f(x*) and do some algebraic
manipulation (see the previous notes) we get a bound of the form

L

Ops1 < ) (lcr — 2|5 — || eers — 7]]3) -
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This yields the telescopic sum

k—1 L k—1
Y i < ) (Z i — 2"l — (|21 — fH%)
1=0 1=0

L

=L (- a3~ — 2 )
L

< 5”35‘0 — x5

The proof for gradient descent concludes by noting that

Convergence of Nesterov’s method

We will follow a similar argument to analyze Nesterov’s method. We
will again take o, = 1/L, but we will see that the analysis suggests
a natural choice for . With this choice of oy, the main iteration
from (4) is

1
Tpt1 = T + Pj, — va(mk + D).

It will be convenient to define

1
gr = —7V./(@i +py),
so that the main iteration becomes simply x,,1 = ®; + p. + g,

With this notation, by setting = x; + p, in (9) we obtain the
bound

L
fl@e) < 1) — Lae—p - 3.9 — Slaul3 (10
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If we set y = «* in (10) and again let §; denote f(x) — f(ax*) we
obtain

h

Opr1 < ) (2(x" — @ — P, g0) — 119:ll3) - (11)

In our analysis of gradient descent, we then tried to rearrange an
analogous bound to obtain a telescopic sum, but that doesn’t quite
work here. Instead we will need to combine (11) with another bound.
Noting that 6, — 641 = f(@x) — f(@ry1), we observe that setting
y = x; in (10) yields

L
0k — 01 > B (2(py, g) + HngS) : (12)

We now consider the inequality formed by adding together (11) and
1 — Ay times (12) (where A, is something we will choose later, but
satisfies A\, > 1, so that this multiplication switches the direction of
the inequality). The left-hand side of the sum will be

Ors1 + (1 = X)) (0 — Org1) = AkOpsr — (A — 1)0%.
The right-hand side of the sum will be

L *
5 @@ =@ = p+ (1= AP g1 — lglls + (1= M)llgully)
L *
D) (2(2" — @ — Mepp 91) — Nellgill5)
L
(2<5’5 — T}, — NP MeGr) — [[Argrll )
2>\k
L
(2" = @ — Nepylls — 12" — 2 — Moy — Megiill) 5
2>\k
where the last equality follows from the easily verified fact that
2(a,b) — ||bll5 = |la|3 — |la — bl|5. If we make the substitution
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U, = T + \;Py., then combining these yields the inequality

L
Ak = (A = Ap)dx < 5 lz" = willz = [l — wi — Megyll2) -
(13)

We will now show that if we choose A\, and ), appropriately, (13) will
yield a telescopic sum on both sides. This will occur on right-hand

side of (13) if
Uy + MGy = Upt1-

Noting that p, | = Bit1(®k+1 — 1) = B (Py, + g;.), We can write
Upy1 = Thy1 + Ner1DPi

=X, + P, + 9+ >\k+16/~c+1<pk + gk:)
=, + (1 + M1 8es1) (Pr + G1)-

Thus, to make u;,; equal to wy+ Arg, = Tr+ \e(p.+g,.) we simply
need to have

A — 1

Ak1

A =14+ N1 Bk1 = B = (14)

For f3;. satisfying (14), if we sum (13) from ¢ = 0 to k — 1 we thus
have

k—1
L
> Nbia — (A = X)d; < ) (1 = woll; — [J* — will3)
1=0
L *
< §HCB Ik
L *
L (15
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Next, one possible approach is to choose the A, so as to obtain a
telescopic sum on the left-hand side of the inequality as well. This is
the approach you will see most often in analyzing the convergence of
Nesterov’s method, but it is a little involved and leads to a recursive
formula for A\;, (and hence f3},) instead of a simple closed form expres-
sion. Instead we will choose a simpler A\, that yields essentially the
same bound.

Specifically, suppose that we set A\, = (k + 2)/2. First, note that
from (14) this yields

B2
Bk:—l—l: 2k+1 - )
k+3

2

which coincides with the rule for setting 5, given in (5). Next, note
that we can write

k-1 k-1
D NG — (AT = AN)G = (A= AT+ AL 10+ > (AL — AT+ N5
1=0 =1

Plugging in A\; = (i 4+ 2)/2 yields

k—1 2
k + 1
2 . —_— 2 —_— . [ — _— f— .
;:0: >\z 52—1—1 ()\z >‘z)52 ( ) 5k + 4 E 52

where the inequality follows since §; = f(x;)— f(x*) > 0. Combining
this lower bound with (15) yields

k4 1\° L. .
(F5) 82 Fla" ~ aulf
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or equivalently

2L
sl —olls,

flx) — f(z") < m

which is exactly the O(1/k?) convergence rate we wanted.
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Technical Details: Analysis of the heavy ball
method

We will analyze the heavy ball method for the special case of a
quadratic function:

. 1 T T
minimize flx) = 5% Qr+bx
We will assume that the eigenvalues of @ are in [u, L], and so f(x)
is both L-smooth and p-strongly convex.

Gradient descent revisited

We will warm up for our analysis on the heavy ball method by quickly
revisiting standard gradient descent. In the quadratic case, there is
an easy argument that

L—p
_ * < _ *
i =@l < e — 7,
diy I
= X — L
K+ 11k 2

where k = L/ is the condition number of Q.

Since 1 = xp — ,Vf(x,) and V f(x*) = 0, we have

leris — 27 l2 = llzx — iV (@) — 27

= [|®r — 2" — i (Vf(@r) = V()]
= [[(T— a@)(x) — )5

< T = @l - [ — 7|
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Since we have a bound on the eigenvalues of @, we know that the
maximum eigenvalue of the symmetric matrix I — Q) is no more
than

1T — Q] < max (|1 — agpl, |1 —aiL|).

If we take o = 2/(L + ), we obtain

L—p k-1

I-— < —
H akQ‘| — L—i—,u l‘i—i—l’

and so
Kk — 1

K+ 1

)Hm—me

Huﬂ—fms(

and by induction on k

* /{J_l : *
e 2l < (57 ) llzo - @7l

Heavy ball

For the heavy ball method, we have a similar analysis® that ends in
a better result. Recall the heavy ball iteration

i1 = T + Pe(Tr — 1) — 4V f(x),

We will derive a bound on how quickly [|@y1 — x*||* + ||x) — x*||3
goes to zero for fixed values of oy, = «a, £, = 8 which we will choose

*These notes are derived from | ].
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later. Rewriting the iteration above, we have
T — x| (x4 BTy — ) — | N Vf(xr) — Vf(x)
T, — x| x; — T 0

TV
Zk+1

T, — x*

(1+ B8)I — aQ —51] [wk—w]

I 0 T, 1 — T

T Zk

_ =+ Bler — ) — zc*] o [Q (wko_ w*)]

We have z, = Tz, and so
lzells < T (=0l

so we want to bound the spectral norm (largest singular value) of
T},

We are now analyzing the rate of convergence (to zero) of a linear
dynamical system. We know that the eigenvalues of T" are the
eigenvalues of T raised to the kth power. The only complicating
factor is that T" is not symmetric, and so the eigenvalues and singular
values are not the same thing. We reconcile this using the spectral
radius

p(T') = maximum magnitude of eigenvalues of T.

Two key results from linear algebra and dynamical systems are that
p(T) < ||T'|| and
p(T) = T [T

That is, for any given ¢ > 0, there exists an n such that

ITH|Y" < p(T) + 6,
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for all £ > n. Thus if we define the constant

B 1T
¢ = o<hon (p(T) + 0)F

we will have

ITH| < C(p(T) +6)" (16)

We are left with the task of bounding p(T') < 1 and choosing an
appropriate §. (Note that if T were symmetric, we would simply

have p(T') = | T|| and | T"|| = | T|[* = p(T)")

We can get a start on this by taking an eigenvalue decomposition of

the symmetric positive definite matrix @ = VAV, Since VV' =
I, we can write

(1+5)I-aQ —pl
| |

e e

0V I 0 0o VT~

Since [‘S ‘0/] is orthonormal, its application on the right of a matrix

and its transpose (inverse) on the left does not change the eigenvalues,
and so we can study the spectral radius of

T — [(1 + B)II —al —51] |

Notice that this a 2/N x 2N matrix divided into 4 blocks, each of which
is an N X N diagonal matrix. As such, there is also a permutation
matrix P that we can apply on both the rows and columns to make
this a block diagonal matrix (with 2 x 2 blocks along the diagonal):

' T Tll
PT'P = ! 0

Ty
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Since again the application of a matrix and its inverse on either side
does not change the eigenvalues, we can compute the spectral radius
of the matrix on the right. Since it is block diagonal, we know the
spectral radius is the maximum of the individual spectral radii of the
blocks. That is, we now have

p(T) = max p(T)

1<n<N

Since it is a 2 X 2 matrix, we can compute the eigenvalues of T,
exactly. We know that « is an eigenvalue of T", if det(T", —~I) = 0,
i.e. if

72_ (1+6—O‘)‘n)7+5207
which means the eigenvalues are

(71, 72) zé(1+ﬁa)\ni\/(1+ﬁmn)24ﬁ>.

If we choose 3 so that the eigenvalues are complex,

48 > (1+ 8 —a\,)’ (17)

then we have

(71, 72) :%<1+5—04>\nij\/45—(1+5—04>\n)2)a

and |71| = || = B, and hence p(T")) = 3. Using that fact that
p <A\, <L, we can ensure (17) holds when

8 = min(|1 — y/az, 1 - VaL]).
We can now choose « so that these two terms are equal,
4 VL-/n
(VL + /i) VL+ /i

= 1—\/ap=—(1-+al)

o =
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and so

g Mg_(l_ LY
VL + /1 VE+1)
Taking d = 1/(y/k + 1) in (16) above and using 5% < 3, we have

1 k
lale < € (1=—=57) Ml

This means we are guaranteed that ||z;]|s < € when

k> (VE+1)log(Ce/e), € = |zl
2 Vklog(eo/e).
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Newton’s Method

Newton’s method is a classical technique for finding the root of a
general differentiable function f(x) : R — R. That is, we want to
find an & € R such that

f(z)=0.

As you probably learned in high school, one technique for doing this
is to start at some guess x(, and then follow the iteration

ST )

This update results from taking a simple linear approximation at
cach step:

Of course, there can be many roots, and which one we converge to
will depend on what we choose for xy. It is also very much possible
that the iterations do not converge for certain (or even almost all)
initial values x.
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However there is a classical convergence theory that says that once
we are close enough to a particular root xy, we will have

‘CUO — $k+1| < C- (550 - xk)27

"

€ 2
k+1 €L

where the constant C' depends on the ratio between the first and
second derivatives in the interval' around the root xy:

O o 113

ver 2| f'(x)]
The take-away here is that close to the solution, Newton’s methods
exhibits quadratic convergence: the error at the next iteration is
proportional to the square of the error at the last iteration. Since we
are concerned with €, small, €, < 1, this means that under the right
conditions, the error goes down in dramatic fashion from iteration to
iteration.

Notice that applying the technique requires that f is differentiable,
but the convergence guarantee depends on f be twice (continuously)
differentiable.

When f(x) is convex, twice differentiable, and has a minimizer, we
can find a minimizer by applying Newton’s method to the derivative.
We start at some initial guess xy, and then take

f' ()

Tpy1 = Tp — m (1)

IThere are various technical conditions that f must obey on Z for this
result to hold, including the second derivative being continuous and the
first derivative not being equal to zero. Also, the condition “close enough”
is characterized by looking at ratios of derivatives at the root and on Z.
The Wikipedia article on this is not bad: https://en.wikipedia.org/
wiki/Newton’s_method.
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Again, if f is three-times continuously differentiable, we converge to
the global minimizer quadratically with a constant that depends on

1)
C=5 S )

for an appropriate interval Z around the solution. Again, apply-
ing the method relies on us being able to compute first and second
derivatives of f, and the analysis relies on f being three-times differ-
entiable.

We can interpret the iteration (1) above in the following way:

1. At x, approximate f(z) using the Taylor expansion

F(o) = f@) + e — o)+ 5" () — )

2. Find the exact minimizer of this quadratic approximation. Tak-
ing the derivative of the expansion above and setting it equal
to zero yields the following optimality condition for x to be a

minimizer:
fi@e) - (@ = x) = = f ().
This is just a re-arrangement of the iteration (1).

3. Take 1.1 =7.

This last interpretation extends naturally to the case where f() is a
function of many variables, f : RY — R. We know that if f is convex
and twice differentiable, we have a minimizer * when V f(x*) = 0.
Newton’s method to find such a minimizer proceeds as above. We
start with an initial guess @y, and use the following iteration:
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1. Take a Taylor approximation around f(x;):
1
f(@) = f(zy) + (@ — 2, 9) + 5(5’3 —z;) H(z — x))
where

g =V f(x,) = N x 1 gradient vector at x;
H = V°f(x;) = N x N Hessian matrix at x.

2. Find the exact minimizer & to this approximation. This gives

us the problem
1

minimize g'(x — x;) + =(x — z;) H(x — ;).
xeRN 2

Since H € S8 (since we are assuming f is convex), we know
that the conditions for & being a minimizer” are

H(x —x;) = —g.

If H is invertible (i.e., H € Siv . ), then we have a unique
minimizer and
z=x,— H'g.

3. Take x;, ., = .

This procedure is often referred to as a pure Newton step, as it does
not involve the selection of a step size. In practice, however, it is
often beneficial to choose the step direction as

di, = — (V2 f(z) V(xy),

and then choose a step size a4, using a backtracking line search, and
then take
Tpp1 = Ty, + oudy,

as before.

?Take the gradient of this new expression and set it equal to O.
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Convergence of Newton’s Method

Suppose that f(a) is strongly convex,
pl X Vif(x) < LI, Va € RY,
and that its Hessian is Lipschitz,
IV*f(z) = Vil < Qllz — yll.

(The norm on the left-hand side above is the standard operator
norm.) We will show that the Newton algorithm coupled with an
exact line search’ provides a solution with precision e:

fxr) —p" <

provided that the number of iterations satisfies

k > Cy(f(xo) — p*) +log,logy(en/e),

where we can take the constants above to be C} = 2L*Q*/u’ and
€0 = 217 /Q?. Qualitatively, this says that Newton’s method takes a
constant number of iterations to converge to any reasonable precision
— we can bound log, log,(€y/€) < 6 (say) for ridiculously small values
of €.

To establish this result, we break the analysis into two stages. In
the first, the damped Newton stage, we are far from the solution (as
measured by ||V f(x)]|2), but we make constant progress towards
the answer. Specifically, we will show that in this stage,

flxr) = f(ea) = 1/Ch.

3These results are easily extended to backtracking line searches; we are just
using an exact line search to make the exposition easier. See | , Sec.
9.5.3] for the analysis with backtracking.
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This implies that when we are far from the solution, we reduce the
gap f(x) — p* by at least 1/C} at each iteration. It should be clear,
then, that the number of damped Newton steps is no greater than

C1 (f(xo) — p*).

We will then show that when ||V f(a;)]2 is small enough, the gap
closes dramatically at every iteration. We call this the quadratic
convergence stage, as we will be able to show that once the algorithm
enters this stage at iteration ¢, for all & > /£,

IVf(xy)]ls < Cy-2727,

where Cy = @Q/(2u?) is another constant.

Damped phase

We are in this stage when
IV f(@)ll2 > 17/ Q.
We take @1 = @) + Qexactdy, Where
dy = =V’ f(z) 'V f(z),
and Qe 18 the result of an exact line search®:

Qlexact = alg min f(wk + Oédk)
0<a<l

We define the current Newton decrement as

N = \/ V(@) T(V2f () V f (),

‘For convenience, we are not letting o be larger than 1, just as in a back-
tracking method.
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and note that \f = —V f(x;)'d,. Moreover, strong convexity im-
plies that the eigenvalues of (V2 f(x;)) " are at least 1/L and at
most 1/p, yielding the bounds

1 1
!!dk\@S;Ai and <[ Vf(@y)ll; < A,

which we will use below. From the L-smoothness of the gradient of
f, we know that for any ¢ we have

flan + 1d) < faa) + (e, VF ) + 5

Lt?

= f(@y) — tA; + THdng
Lt?

< flay) — tA, + ZAZ

Plugging in ¢t = u/L above yields

f(wk' + O‘exactdk) - f(wk) < f (wk + %dk) - f(wk)
Koo
< -
< 2£>\k
< — 5V @)l
1P
= 2022
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Quadratic convergence

When
IV i)l < 17/ Q,

we start to settle things very quickly. We will assume that in this
stage, we choose the step size to be o, = 1. In fact, you can show
that under very mild assumptions on the backtracking parameter
(¢ < 1/3, to be specific), backtracking will indeed not backtrack at
all and return o = 1 (see | , p. 490]).

We start by pointing out that by construction,
V2f($k)dk = =V f(xs),

and so by the fundamental theorem of calculus,
Vi(@i) = V(x,+dy) — V(e — Vf(x)ds
1
= [ V(e + )yt — 9 (),
0
1
0

Thus, we obtain
V5 (erle < [ 19+ tde) — V(e - el dt
< [ Qi at
)V ] S

< Q%HVf(wk)H%,
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where the second inequality follows from the Lipschitz assumption
on the Hessian and the last inequality follows from the fact that the
maximum eigenvalue of (V2 f(x;)) % is less than 1/u? Thus we have

vl < (smivi@l) < (3)

where the last inequality follows since ||V f(xy)|ls < p?/Q. That
is, at every iteration, we are squaring the error (which is less than
1/2). If we entered this stage at iteration ¢, this means

< ()

« 5 20 (1
fla) —p < IVl < —(_)

2]{75 2]67&

%nwwug < (%rww%nz)

Then using the strong convexity of f,

The right hand side above is less than € when

k— 0+ 1> log,logy(ep/€), € =2m?/L?,
so we spend no more than log, log, (€, /€) iterations in this phase.
Note that

e=10""¢ = log,log,(€/e) = 6.0539.
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Convergence criteria: the Newton decrement

We know that at the minimia of a smooth convex functional we will
have Vf(x) = 0. So a natural test for convergence is to measure
how far away V f(x) is from 0; that is, we say we are converged
when the norm of V f(x) is below some threshold (call it €):

stop when ||V f(z;)]| < e.

Which norm should we use?

The natural instinct here is to go with the standard Euclidean (/)
norm, stopping when

IV ()]s < e

and in fact, this quantity played a key role in our analysis above.
But there is something that is unsatisfying about using the Euclidean
norm, and this problem also extends to the way we approached the
analysis in the previous section. An interesting feature of Newton’s
method is that it is affine invariant; if we simply change the co-
ordinates, the iterates change accordingly. For example, let T' be
a N x N invertible matrix, and set f(x) = f(Tx). Suppose we
run Newton’s method to try to find a minima of f starting at a,
and computing iterates @i, @, .... Then we run Newton’s method
on f starting at T 'a, and compute iterates &;, T, .... This sec-
ond set of iterates will follow the same progression as the first under
transformation by T

., =T 'z, k=1,2,...

The problem, then, with the the Euclidean norm of the gradient is
that it is not affinely invariant:

IV f(@)ll: # [IVf(T2)], for general T
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(Apply the chain rule.)

A criteria that is affinely invariant is the Newton decrement:

Nx)=+/g"™H'g, g=Vf(z) H=Vf(x)

(Again, you can work this out with a little effort by applying the
chain rule.) These are various ways you can interpret this: one is as
size of the gradient in the norm induced by H

A@) = |V £ (@)l

Of course, the norm itself depends on the point . You can also
think of it as the directional derivative in the direction we are taking

a Newton step; it d = —(V?f(x)) 'V f(x), then
(d, V(@) = =A(@)".

At any rate, the convergence criteria for Newton’s method is usually
whether A\(x;) is below some threshold.
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Self-concordant functions

There is an alternative analysis of Newton’s method that is more
satisfying in that it gives an affinely invariant bound, and it does
not depend on the constants u, L, () that are usually unknown. The
analysis holds for functions that are self-concordant, a term that we
define below.

Definition. We say that a convex function of one variable f : R —
R is self-concordant if

1" (z)] < 2f"(x)3?, forall x € dom f.

We say that a convex function of multiple variables f : RY — R is
self-concordant if

g(t) = f(x +tv) is self-concordant for all & € dom f, v € R".

We should note that the constant 2 that appears in front of the f”(x)
above is somewhat arbitrary — if there is any uniform bound on the
ratio of |f”(x)| to f"(x)*?, then f can be made self-concordant
simply by re-scaling.

We mention a few important examples (see | , Chapter 9.6] for

many more).

e Since the third derivative of all linear and quadratic functionals
is zero, they are self-concordant.

o f(x)= —log(x) is self-concordant
e f(X)=—logdet X for X € S¥, is self-concordant

e Sclf-concordance is preserved under composition with an affine

60

Georgia Tech ECE 6270 Notes by M. Davenport and J. Romberg. Last updated 12:34, September 28, 2021



transformation, so for example

M
flx) = —Zlog(bm—aflw) on{x:a’ <b, m=1,... M}
m=1

is self-concordant. Functions of the above form will play a ma-
jor role when we talk about log-barrier methods for contrained
optimization.

Using a line of argumentation not too different than in the classical
analysis in the last section, we have the following result for the con-
vergence of Newton’s method (again, see | , Chapter 9] for the
details):

If f(x) : RY — R is self-concordant, then Newton iterations starting
from xy coupled with standard backtracking line search will have

flxy) —p"<e

when
k > Cey+log,logy(1/€), € = flxg) — p~.

The constant C' above depends only on the backtracking parameters.

You may more fully appreciate this result when we talk about log
barrier techniques a little later.

References
[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cam-
bridge University Press, 2004.
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Nonsmooth optimization

Most of the theory and algorithms that we have explored for convex
optimization have assumed that the functions involved are differen-
tiable — that is, smooth.

This is not always the case in interesting applications. In fact,
nonsmooth functions can arise quite naturally in applications. We
already have looked at optimization programs involving the hinge
loss max(a'x + b,0), the ¢; norm, the £, norm, and the nuclear
norm — none of these is differentiable. As another example, sup-
pose fi,..., fo are all perfectly smooth convex functions. Then the
pointwise maximum

flx) = max f,(»)

is in general not smooth.

) = (10 () = (=17 fi(t) = max (A1), fo()
t— t—

Fortunately, the theory for nonsmooth optimization is not too dif-
ferent than for smooth optimization. We really just need one new
concept: that of a subgradient.
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Subgradients

If you look back through the notes so far, you will see that the vast
majority of the time we use the gradient of a convex function, it is
in the context of the inequality

fly) = fle)+(y—= Vi), foralxyedonf

/

This is a very special property of convex functions, and it led to all
kinds of beautiful results.

When a convex f is not differentiable at a point @, we can more or
less reproduce the entire theory using subgradients. A subgradient
of f at @ is a vector g such that

fly) > flx)+{y —x,g), forally e dom f.

Unlike gradients for smooth functions, there can be more than one
subgradient of a nonsmooth function at a point. We call the collection
of subgradients the subdifferential at x:

of(x) =1{g : fly) > f(x)+(y —=,g), forally € dom f}.
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Example:

—1, x <0
fla)=lz], Of(x)=q[-11, z=0
1, x> 0.
black: f(x) = |z|
i | blue: f(0)+g(z—0) forafew g € 9f(0)

05r

0

-0.5

-1rF

15 . . . . . . .
-2 -1.5 -1 -0.5 0 0.5 1 15 2

xr —

Facts for subdifferentials of convex functions:

1. If f is convex and differentiable at @, then the subdifferential
contains exactly one vector: the gradient,

Of(x) ={V[f(z)}.

2. If f is convex on dom f, then the subdifferential is non-empty
and bounded at all & in the interior of dom f.

For non-convex f, these two points do not hold in general. The
gradient at a point is not necessarily a subgradient:
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and there can also be points where neither the gradient nor subgra-
dient exist, e.g. f(z) = —+/|z| for z € R
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Example: The /; norm

Consider the function
f(x) = ||z

The ¢, norm is not differentiable at any x that has at least one coordi-
nate equal to zero. We will see that optimization problems involving
the ¢, norm very often have solutions that are sparse, meaning that
they have many zeros. This is a big problem — the nonsmoothness is
kicking in at exactly the points we are interested in.

What does the subdifferential d||x||; look like in such a case? To
see, recall that by definition, if a vector w € 0||x||;, at the point @,
then we must have

lylls = Nzl + (y — z,u) (1)

for all y € RY. To understand what this means in terms of x, it
is useful to introduce the notation I'(x) to denote the set of indexes
where @ is non-zero:

Nx)={n : x, # 0}.

Using this, we can re-write the right-hand side of (1) as

x|l + (y — x,u) Z\xn\+2un

nel’ n=1

Note that if
1 if x, >0,

tn = sign(z,) = {—1 iz, <0
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then u,x, = |z,|. Thus, if u, = sign(zx,) for all n € I', we have

Z |z, — upx, = Z lz,| — |x,| = 0.

nel’ nel’

Thus, if we set u,, = sign(x,,) for all n € I, then (1) reduces to

lylly = (y, w).

As long as |u,| < 1 for all n, then this will hold. Hence, if a vector
u satisfies

u, = sign(zx,) ifnerl,
lu,| <1 ifné¢l,

then w € J||x||;. It is not hard to show that for any w that violates
these conditions, we can construct a y such that (1) is violated, and
thus this is a complete description of all vectors in u € 0||x||;.
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Example: The ¢, norm

While the function '@ = ||«||3 is the prototypical differentiable
(Vf(x) = «), smooth, and strongly convex function (V2f(x) =1),
the function f(x) = ||x||2 is not as nice; it is not strongly convex,
and it is not differentiable at & = 0 (to appreciate this latter point,
consider that a 1D slice of the function s(t) = |[tv||y = |t]||v]]2 looks
like the absolute value function as function of t).

For & # 0, an easy calculation' shows that

xr

vaHQ — H«’ﬂHz

At & = 0, we know that u € 9||x||, if
lyll2 = (0]l + {y — 0, u) = (y,u) forall yeR". (2)

We can find w that meet these conditions using the Cauchy-Schwarz
inequality. Note that

(y,u) < [lyll2][u]l,

so (2) will hold when ||u|l; < 1. On the other hand, if ||ul||y > 1,
then for y = u, we have

(y,u) = [lylz > [lyll.
and (2) does not hold. Therefore

u : ||ullp <1}y, =0
aHa:Hz—{{i st

(]2

"Use the fact that £1/2% +a = z/V2? + a.
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General norms at £ =0

Norms in general are not differentiable at & = 0, again because they
look like an absolute value function along a line: s(t) = |[[tv|| =
|t] - [|Jv|| for any valid norm || - ||. We can generalize the result for the
¢ norm at & = 0 using the concept of a dual norm.

The dual norm || - ||, of a norm || - || is

|y« = max (x,y).

]| <1

Since sublevel sets of norms in RY are compact, we know that this
maximum is achieved, and it is an easy exercise to show that || - ||,
is a valid norm. You can also verify the following easy facts at home

e the dual of || - |5 is again || - ||,

e the dual of || - || 18 || - [|s

e the dual of || - [|o is || - |1
It is also a fact (for norms on RY) that the dual of || - ||, is the
original norm || - ||, i.e. ||x|/.. = ||x]|. We also have the generalized

Cauchy-Schwarz inequality

(gl < lzll -yl

We can use these facts with an argument similar to the ¢, case above
to compute the subdifferential of any norm at 0 as

0] = {u : [Jufl. < 1}.
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Properties of subdifferentials

Here are some properties of the subdifferential that we will state
without proof (but are easy to prove). Below, we assume that all
functions are well-defined on all of RY.

Summation: If f(x) = fi(x) + f(x), then

Of (x) = dfi(x) + dfa(x).

That is, the set of all subgradients (at @) of f is the set of vectors
that can be written as a sum of a vector from df;(x) plus a vector

from 0 fy(x).

Chain rule for affine transformations: If h(x) = f(Ax+b),
then
Oh(x) = A"0f(Ax + b).

That is, we compute the subgradients of f at the point Aa + b, then
map them through A",

where ['(x) = {m : f,.(x) = f(x)}, and conv takes the convex
hull:

P P
conv(X) = {Z ATy, Ty € XN, 2> O,Z)\p =1, VP}
p=1

p=1
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Exercise: Compute 0f(x) for f(x) = ||y — Ax||;.

Answer: Set I'(z) = {m : a},x = ym}, where a}, is the mth row of A. Then df(x) is the set of vectors that can be written

m
T ~
u = § sgn(a,, — ?/m)""m + E Bm@m

mgI'(x) mel (x)

as

for any By, with |Bm| < 1.
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Exercise: Compute 0f(z) for f(x) = max(z,0).

Answer:

Exercise: Compute 0f(x) for f(x) = max((z + 1), (x — 1)?).

Answer:

20c —1) x <O,
of(z) =41[-2,2], x=0,

2(x+1), x>0.
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Exercise: Compute df(x) for f(x) = ||Z||w-
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Optimality conditions for unconstrained optimization

With the right definition in place, it is very easy to re-derive the cen-
tral mathematical results in this course for general® convex functions.

Let f(x) be a general convex function. Then a* is a solution to
the unconstrained problem

minimize f(x)
xeRN

if and only if
0 cof(xr).

The proof of this statement is so easy you could do it in your sleep.
Suppose 0 € df(x*). Then

fly) = f(&") + {y — =", 0)
= flx

for all y € dom f. Thus x* is optimal. Likewise, if f(y) > f(x*)
for all y € dom f, then of course it must also be true that f(y) >
f(x*) + (y — x,0) for all y, and so 0 € 9 f (x*).

Example: The LASSO

Consider the £; regularized least-squares problem

o] 5
minitnize §||y — Ax|; + 7||z|;.

Meaning not necessarily differentiable.
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We can quickly translate the general result 0 € 0 f(a*) into a useful
set of optimality conditions. We need to compute the subdifferential

of f(x) = ||y — Ax||3 + 7||||;. The first term is smooth, so the

subdifferential just contains the gradient:
Of(x) = A" (Ax — y) + 70||z||.
As shown above 0||x||; is the set of all vectors w such that

u, = sign(z,) if z, #0,
u,| < 1 if 7, = 0.

Thus the optimality condition
0c A'(Az* — y) + 70||x*||1,
means that «* is optimal if and only if

a, (y— Az*) = rsigna’ if 2 # 0,
la(y — Az*)| <7 if 27 = 0.

where here a,, is the n'® column of A.

Note that this doesn’t quite give us a closed form expression for x*
(except when A is an orthonormal matrix), but it is useful both algo-
rithmically (for checking if a candidate @ is a solution) and theoreti-
cally (for understanding and analyzing the properties of the solution
to this optimization problem.)
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The subgradient method

The subgradient method is the non-smooth version of gradient de-
scent. The basic algorithm is straightforward, consisting of the iter-
ation

Ty = T — pdy, (3)

where d}, is any subgradient at @y, i.e., d;, € 0 f(x;). Of course, there
could be many choices for d, at every step, and the progress you make
at that iteration could very dramatically with this choice. Making
this determination, though, is often very difficult, and whether or
not it can even be done it very problem dependent. Thus the ana-
Iytical results for the subgradient method just assume we have any
subgradient at a particular step.

With the right choice of step sizes {ay}, some simple analysis (which
we will get to in a minute) shows that the subgradient method con-
verges. The convergence rate, though, is very slow. This is also
evidenced in most practical applications of this method: it can take
many iterations on even a medium-sized problem to arrive at a solu-
tion that is even close to optimal.

Here is what we know about this algorithm for solving the general
unconstrained program

minimize f(x). (4)

RN

We will look at one particular case here; for more detailed results
see | , Chapter 3]. Along with f being convex, we will assume
that it has at least one minimizer. The results also assume that f is

Lipschitz:
[f(x) = f(y)| < Lllz—yl..
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Note that here we are assuming that f is Lipschitz, not that f has
Lipschitz gradients (since the gradient does not even necessarily ex-
ist). A direct consequence of f being Lipschitz is that the norms of
the subgradients are bounded:

|d||; < L, foralld e df(x), foral xR, (5)

The results below used pre-determined step sizes. Thus the itera-
tion (3) does not necessarily decrease the functional f(x) at every
step. We will keep track of the best value we have up to the current
iteration with

Pest — min { f(x;), 0<i<k}.
We will let &* be any solution to (4) and set f* = f(x*).

Our analytical results stem from a careful look at what happens
during a single iteration. Note that

i — 2|l = @ — aud; — 7|3

= ||z, — x5 — 20 (x; — x*, di) + || di |3
<@ — 2|5 — 204(f(x:) — 1) + ;|| di]|5,

where the inequality follows from the definition of a subgradient:
[Pz fle) + (@ —w, di).
Rearranging the bound above we have
20; (f(@:) = ) < [l@s — 2[5 = [|@isn — 2[5 + o[ dil2,
and so of course

200 (f7 = f7) < Ml — 2|5 = Nl — @7[[2 + o] [ l2-
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Since fP*' is monotonically decreasing, at iteration k we have
200 (fi™ = f*) <z = 2"[; = i — 2"+ o[ dil]3,

for all + < k. To understand what has happened after k iterations,
we sum both sides of the expression above from i =0toi1 =k — 1.
Notice that the two error terms on the right hand side give us the
telescoping sum:

k-1
ZO (l: = 2*[l; = i = 27[13) = llo — "l = Il — 273
i
< [lmy — 2|3
and so
s _ o N =275 + ZZ 0 illdill5 (6)
B 25 0 QU

We can now specialize this result to general step-size strategies.

Fixed step size. Suppose that a;, = a > 0 for all k. Then (6)
becomes
best f* Hwo o w*”% Lza

2ko 2’

where we have also used the Lipschitz property (5). Note that in
this case, no matter how small we choose «, the subgradient
algorithm is not guaranteed to converge. This is, in fact,
standard in practice as well. The problem is that, unlike gradients for
smooth functions, the subgradients do not have to vanish as we ap-
proach the solution. Even at the solution, there can be subgradients
that are large.
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Fixed step length. A similar result holds if we always move the
same amount, taking

o = s/||d|ls-
This means that
Hwkﬂ — kaH2 = S.

Of course, with this strategy it is self-evident that it will never con-
verge, since we move some fixed amount at every step. We can bound
the suboptimality at step £ as

L||lxyg — x*||5 Ls

best * <
’ s 2ks 2

which is not necessarily worse than the fixed step size result. In fact,
notice that even though you are moving some fixed amount, you will
never move too far from an optimal point.

Decreasing step size. The results above suggest that we might
want to decrease the step size as k increases, so we can get rid of
this constant offset term. To make the terms in (6) work out, we let
ap — 0, but not too fast. Specifically, we choose a sequence {ay}
such that

i o

o
g ap =00, and —=—7— —0.
k=1 i=0 Vi

Looking at (6) above, we can see that under these conditions fPe* —
f*. Tt is an exercise (but a nontrivial one) to show that it is enough
to choose {a;} such that

ap — 0as k — oo, and Zozk:oo. (7)
k=1
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To get an idea of the tradeoffs involved here, suppose that a; =
a/(k+1). Then for large k, we have the approximations

k-1 k—1
Z a; ~ alogk, and Z o’ ~ Const = a*7° /6
i=0 i=0

that are good as upper and lower bounds to within constants. In this
case, the convergence result (6) becomes
2o — I3 al’

Const - 22
alogk MU gk

kbest . f* 5

So the convergence is extraordinarily slow — logarithmic in k.

You can get much better rates than this (but still not great) by
decreasing the stepsize more slowly. Consider now o = a/Vk + 1.
Then for large k

k—1

k-1
Zai ~ (a+1)Vk, and Z o ~ o’logk,
i=0 i=0

and so o 2100
I — =71 + Const - == 287

(o + DVE vk

This is something like O(1/v/k) convergence. This means that if we
want to guarantee fP*' — f* <'¢, we need k = O(1/¢€®) iterations.

kk:)est . f* 5

In | , Chapter 3], it is shown that there is no better rate of
convergence than O(1/+/k) that holds uniformly across all problems.

Example. Consider the “/; approximation problem”

minimize ||Ax — b|};.
xeRN
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We have already looked at the subdifferential of ||a||;. Specifically,
we showed that w is a subgradient of ||x||; at @ if it satisfies

u, = sign(x,) if z, # 0,
lu,| <1 if z,, = 0.

In the exercise above, we also derived the subdifferential for || Az — b||;.
We quickly re-derive it here using “guess and check”. First consider
a vector z that satisfies

Zm = sign(a, © —b,) ifa x — b, #0,
2| < 1 ifa'x —b, =0.

Now consider the vector u = ATz, Note that

u'(y—z)=z"Aly — =)
=2'(Ay—b+b— Ax)
=2'(Ay —b) — z'(Az — b)
=2z (Ay —b) — [[Az — b||,
< [[Ay = bl[; — || Az — b]],.

Rearranging this shows that w is a subgradient of || Ax — bl|;. Using
this we can construct a subgradient at each step @,

Below we illustrate the performance of this approach for a randomly
generated example with A € R0 and b € R For three
different sizes of fixed step length, s = 0.1,0.01,0.001, we make
quick progress at the beginning, but then saturate, just as the theory
predicts:
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(f(®r) = )/ f (S =)/ f
————— 10—

— 01 | ; — 01 |
— 0.01 | * — 0.01 ||

1 —0.001] 101&\ —0.001}]
107 ; 1

107050 40 60 8o 100 107" 1000 2000
0 1000 2000 3000

k k

Here is a run using two different decreasing step size strategies: oy, =

01/vk and ay = .01/k.
(Rt = )/ f*

‘—0.‘01/‘\/E
— 0.01/k ||

0 1000 2000 ) 3000 4000 5000
As you can see, even though the theoretical worst case bound makes

a stepsize of ~ 1/ V'k look better, in this particular case, a stepsize
~ 1/k actually performs better.
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Qualitatively, the takeaways for the subgradient method are:

L.

It is a natural extension of the gradient descent formulation

2. In general, it does not converge for fixed stepsizes.

3. If the stepsizes decrease, you can guarantee convergence.
4.
5

. Convergence rates in practice are also very slow, but depend a

Theoretical convergence rates are slow.

lot on the particular example.

References

[NesO4] Y. Nesterov. Introductory Lectures on Conver Optimiza-

tion. Springer Science+Business Media, 2004.

33

Georgia Tech ECE 6270 Notes by M. Davenport and J. Romberg. Last updated 11:57, October 4, 2021



Proximal algorithms

The subgradient algorithm is one generalization of gradient descent.
It is simple, but the convergence is typically very slow (and it does
not even converge in general for a fixed step size).

One way to deal with this is to add a smooth reqularization term.
Specifically, it is easy to show that if &* is a minimizer of f(a), then
it is also the minimizer of

minimize f(x) + ||z — x*||3,
xeRN
where 0 > (0. While the resulting optimization problem is still nons-
mooth, it is now strongly convex, and we know that strongly convex
functions are generally much easier to minimize. The “only” chal-
lenge is that it requires us to already know the solution a&*, which
would seem to limit the practical applicability of this idea.

We can turn this into an actual algorithm by adopting an iterative ap-
proach. The proximal algorithm or proximal point method
uses the following iteration:

1

i = argnin ( f(a) + 5 |lo — @il ) ()
RN 873

As noted above, when f is convex, f(x) + 0||lx — z||3 is strictly
convex for all § > 0 and z € RY, so the mapping from x;, to x;,; is
well-defined. We will sometimes use the “prox operator” to denote
this mapping:

1
pros, () = argmin ( (@) + 5 —[}@ — 2[3) .
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It can be shown (and in fact we give a proof later in these notes)
that the iterations above do find a minimizer of convex f for an
appropriate choice of “step sizes” .

At this point, you would be forgiven for having doubts about what
we are really doing here. We have taken an optimization problem and
turned it into... a sequence of many optimization problems. How-
ever, these problems can sometimes be far easier to solve that the
original problem. One way to think about the additional ﬁ | — ||
term is as a regqularizer that makes each subproblem computation-
ally easier to solve, and whose influence naturally disappears as we
approach the solution, even for a fixed “step size” a;, = .

A very nice a detailed review of proximal algorithms can be found in

P14

Implicit gradient descent (“backward Euler”)

The proximal point method can also be interpreted as a variation
on gradient descent. To see this, let us return for a moment to the
differential equations for the “gradient flow” of f:

z'(t) = =V f(=(t), z(0)==z (2)
The equilibrium points for this system are the & such that V f(x) =
0, which are precisely the minimizers for f(x).

As we first discussed in the context of momentum-based methods,
we can interpret gradient descent as a first-order numerical method
for tracing the path from @, to a solution &*. This comes from dis-
cretizing the derivative on the right using a forward finite difference:

x(t+h)—x(t) -

; —V f(x(t)) for small h.
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Thus the gradient descent iterations
Ty = xp — hV f(x})

approximate the solution at equispaced times spaced h seconds apart
— the step size in gradient descent can be interpreted as the time
scale to which we are approximating the derivative. This is known
as the forward Euler method for discretizing (2).

But now suppose we used a backward difference to approximate the
derivative:

x(t) —x(t—h)
h

Now the iterates must obey

~ —V f(x(t)) forsmall h.

T = T — WV f(Th41).

This is an equally valid technique for discretizing (2) known as the
backward Euler method. However, computing the iterates is not as
straightforward — we can’t just compute the gradient at the current
point, we have to find the next point by finding an @;,; that obeys
the equation above.

This is exactly what the proximal operator does. If f is differentiable,
then

, 1
op1 = arguin ( f(2) + 5| — )
xRN o7
)
1
0=Vf(zp)+ a_(mkﬂ — ). (3)
k
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So the proximal point method can be interpreted as a backward Euler
discretization for gradient flow.

Note that we assumed the differentiability of f above purely for il-
lustration; we can compute the prox operator whether or not f has
a gradient.

Example: Least squares

Suppose we want to solve the standard least-squares problem

minimize ||y — Az|l,

When A has full column rank, we know that the solution is given
by Z)s = (A" A) A"y, However, we also know that when A" A is
not well-conditioned, this inverse can be unstable to compute, and

iterative descent methods (gradient descent and conjugate gradients)
can take many iterations to converge.

Consider the proximal point iteration (with fixed o, = «) for solving

this problem:

. 1 1
Toer — argmin (§||y ~ Azl + -z - wkuz) .

RN

Here we have the closed form solution

L1 = (ATA + 51)_1(ATy + 5a:k), 0=
—x, +(A"A+ ) A (y — Axy).

1
Qo

Now each step is equivalent to solving a least-squares problem, but
this problem can be made well-conditioned by choosing § (i.e., «)
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appropriately. The iterations above will converge to &, for any value
of a; as we decrease « (increase ¢§), the number of iterations to
get within a certain accuracy of &y increases, but the least-squares
problems involved are all very well conditioned. For « very small,
we are back at gradient descent (with step size «).

This is actually a well-known technique in numerical linear algebra
called iterative refinement.

Proximal gradient algorithms

Recall the core update equation for the proximal point method:

1
111 = pros, (o) = ang i f(2) + o — ).

xeRN 2a
Suppose that we did not wish to fully solve this problem at each iter-
ation. If f is differentiable, we could approximate this update by re-
placing f(ax) with its linear approximation f(x)+{(x—ax;, V f(x;)).
This would yield the update

e = ang win ( flae) + (@~ @1, V(@) + 5o - @il)

reRN

= arg min (IV f @)+ (@ — 0, T ) + 5o — il

reRN

1
= arg min (—HZL‘ — Ty + on(wk)Hg)

xRN 073

= Ly — Oéka<$k>

Thus, taking a linear approximation of f, the proximal method sim-
ply reduces to standard gradient descent. (Note that the first equality
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above comes from the fact that the presence/absence of f(x;) and
IV f(,)||5 does not affect what the minimizer is, as @, is fixed.)

Where this starts getting interesting is when we encounter optimiza-
tion problems where the objective function can be broken into the
sum two parts, 1.e.,

f(x) = g(x) + h(z),

where both g and h are convex, but g is smooth (differentiable) and h
is a non-smooth function for which there is a fast proximal operator.
Such optimization problems quite a bit more often than you might
expect.

The proximal gradient algorithm is the result of applying the
proximal point method to minimize the approximation of f where
we take a linear approximation to the smooth component g. Using
the same argument as above, this results in the update rule!

_ 1
v = arg min (glae) + (@ — o, Vlaw)) + hie) + 5 @ - )
k

reRN

, 1
— arg min (h(zc) + 2—”:13 — Iy + oWg(wk)H%)
xRN Qe

= ProxX,,; (r — axVg(xy)) .

This is also called forward-backward splitting, with the “forward”
referring to the gradient step, and the “backward” to the proximal
step. (The prox step is still making progress, just like the gradient
step; the forward and backward refer to the interpretations of gra-
dient descent and the proximal algorithm as forward and backward
Euler discretizations, respectively.)

'Again, the second line comes from removing g(x;) and adding a multiple
of |[Vg(x.)||3 and then completing the square.
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Example: The LASSO

Recall our friend the LASSO:
1

minimize =|ly — Ax|); + 7llx|;.
xRN 2

We take
1
o) = Sl — Azl s Vilz) = AT(Az —y),

and
hx) = 7l
The prox operator for the ¢; norm is:

. 1 9
prox,,(z) = arg min | 7||x||; + %Hw — z||;

zeRN
— TTa(z)7
where 17, is the soft-thresholding operator

Zi —TQ, Z; > TQ,
(Tra(2)); = 40, |zi| < Ta,
zi+Ta, z; < —Ta.

Hence, the gradient step requires an application of A and A*, and
the proximal step simply requires a soft-thresholding operation. The
iteration looks like

L1 = TTak (mk + Oék;AT(y — Amk)) .

This is also called the iterative soft thresholding algorithm, or ISTA.
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Here is a comparison” of a typical run for ISTA versus the subgradient
method. ISTA absolutely crushes the subgradient method.

0.50
|

0.20
|

0.10
|

f(@®r) — f

0.05
|

—— Subgradient method
—— Generalized gradient
T T T T T T

0 200 400 600 800 1000

0.02
|

# iterations

>This is taken from the lecture notes of Geoff Gordon and Ryan Tibshirani;
“generalized gradient” in the legend means ISTA.
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Convergence of the proximal gradient method

The convergence analysis of the proximal gradient method is ex-
tremely similar to what we did for gradient descent. In fact, gradi-
ent descent is a special case of the proximal gradient method (when
h(x) = 0), and our analysis will recover the same result. We will
assume that g is L-smooth, but we will make no assumptions on
h aside from convexity. As before, we will use a fixed “step size”,
ap = 1/L for all k. We will * denote any minimizer of f.

The general structure of the argument is as follows:

1. Using the L-smoothness of g as well as the first-order charac-
terization of convexity, we can establish that

f(@r) < f(2) + (@ — 2,dy) - —||dk||2 (4)

for all z € RY where dy := L(x;, — ®j11).

2. From (4) we can conclude, by setting z = @, that

flan) < fla) = 5zl < fl),

and thus f(x;) is non-increasing at every step.

3. From (4) we can also conclude, by setting z = a*, that

f(@i1) < f(x") + (z — 2", dy) — _HdkHQ

By exactly the same argument as we have seen in the analysis
of both gradient descent and Nesterov’s method, we can show
that this bound is equivalent to
. L
f(@ra) — fl&") < )

([lzy — 2] 15

9 — Hwkﬂ — & Hz) :
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4. This yields a telescopic sum, and hence by an identical argu-

ment to that used in analyzing gradient descent, we arrive at
the bound

* L *
fl@y) = fla) < —llzo — 5.
2k
Thus, the proximal gradient algorithm exhibits the same convergence
rate as gradient descent: O(1/k). This is remarkable when consid-
ering that it holds for any h. This result is in fact a kind of “master

result” for the convergence rate of many different algorithms:
e gradient descent (take h(x) = 0),
e the proximal point method (take g(x) = 0),
e the proximal gradient method.

The work above gives a unified analysis for all three of these, showing
that they all exhibit O(1/k) convergence.

Note that the only novelty in the analysis above compared to that of
gradient descent is the derivation of (4). To establish this inequality,
we first note that

f(@ri1) = g(@pi1) + h(Xgs1)
< g(as) = 7 Volwe) + 5ol + i), (5)

where the inequality follows directly from the definition of L-smoothness.
We now use two facts to get an upper bound on this expression. First,
note that from the first-order characterization of convexity,

9(2) 2 gl@) + (2 — @, Vg(xi)). (6)
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Second, since

1
L1 = ProXy (wk — Evg(wk))

x 2

2
)
2

0e 8h(azk+1) — dk + Vg(a:k) = dk — Vg(:lzk) € 8h(wk+1)

L 1
= arg min (h(w) + — Ha: — Ty + ng(mk)

we know

Thus
h(z) > h(xpy) + (z — 1, dy — V(). (7)
We combine (6) and (7) back into (5) to obtain

1
L

#h(z) = (2= @t dinds — Vo(a) )

F(@n) < 9l2) + (s — 2 Vglaa)) — 7idk, Volan)) + ol

L
1 /L
= f(z) + <513/<; - Z,dk> + Z (ﬁ - 1) Hdng

1
< f(z)+ (xr — z,dy) — innga

which establishes (4).

94

Georgia Tech ECE 6270 Notes by M. Davenport and J. Romberg. Last updated 16:04, October 4, 2021



Accelerated proximal gradient

We can accelerate the proximal gradient method in exactly the same
way we accelerated gradient descent — in fact, the Nesterov’s method
for gradient descent is simply a special case as that for the proximal
gradient algorithm. The accelerated iteration is

k-1
Pr= 37
T = ProX,,, (Tr + P — pVg(xr +py)) -

(wk - in—1)

Again, the computations here are in general no more involved than
for the non-accelerated version, but the number of iterations can
be significantly lower. We will not prove it here (see | | for an
analysis), but adding in the momentum term results in convergence
rate of O(1/k?) using a similar argument as before.

The numerical performance can also be dramatically better. Here are
typical runs® for the LASSO, which compares the standard proximal
gradient method (ISTA) to its accelerated version (FISTA):

0.200 0.500

0.020 0.050

=
8
NI
|
~
%

—— Subgradient method
—— Generalized gradient
— — Nesterov acceleration

0.002 0.005

T T T T T T
0 200 400 600 800 1000

# iterations

3Again, this example comes from Gordon and Tibshirani; as before “gener-
alized gradient” means ISTA, and “Nesterov acceleration” means FISTA.

95

Georgia Tech ECE 6270 Notes by M. Davenport and J. Romberg. Last updated 16:04, October 4, 2021



References

[IBT09] A. Beck and M. Teboulle. A fast iterative shrinkage-

thresholding algorithm for linear inverse problems. SIAM
J. Imaging Sci., 2(1):183-202, 2009.

[PB14] N. Parikh and S. Boyd. Proximal algorithms. Foundations
and Trends in Optimization, 1(3):123-231, 2014.

96

Georgia Tech ECE 6270 Notes by M. Davenport and J. Romberg. Last updated 16:04, October 4, 2021



Reading materials

Lemma

V f is Lipschitz with constant L if and only if
L
fy) < fl@)+ Vi) (y—x)+ §||y — |2, for all z,y.

Proof. Suppose V f is Lipschitz with constant L. Consider ¢g(t) = f(x + t(y — x)).
Then ¢'(t) = Vf(z +t(y — 2))" (y — 2).
Then

Fly) = (@) = V@) (y - 2)
=g(1) = 9(0) = Vf(2)"(y — )

- / V(o +tly — 2) 7y — ) — V()T @y — z)dt

- / (V1 + tly — 2)) — V()T (y — )t

1

< / IVf (@ + tly — ) — V(@) |lly — z2dt
1

< / Ltlly — o|2dt

L
= Zlly -l

Conversely, suppose f(y) < f(2)+Vf(z)T (y—z)+%|ly—=z||3, for all z,y. Consider
the function ¢, (2) := f(z) — Vf(x)T 2.

¢ is convex and V¢, (z) = Vf(z) — V().

Since, f(2) < f(y) + V()" (z = y) + 5]z — y|[*, we have

F2) = Vf(@)z < fly) = V@) Ty + (Vi) = V@) (z—y) + g\lz —y[1?
That is
62(2) < 62(0) + V6,0)" (=~ 9) + 511z~ oIl
We minimized both sides over z. The left hand side is minimized at z = x.
The right hand side is minimized at z = —+V¢,(y) + y. Hence,
F(@) = V1) 2 = 6:(2) < 6:(0) + Vou ) (~ Vou(w) + =17 Vor(w)]?

= ()~ V@)Y~ 5 IV) - V(@)
So

Fl) ~ F@) = V5@~ 2) > 5= IVF )~ V)P

Interchange the role of x,y, we get

F(@) = 7)) @ —9) > 5|9 () ~ V)P

Adding the two inequalities, we get
(Vf(@) = V) (@ —y) > %Ilvf(x) ~ Vil
Hence, we have
IV f(y) = Vf(@)* < LVf(y) = V()" (y - 2)
< LIV () = VI@)lllly — =]



Reading materials

Lemma

Suppose f is p-strongly convex. Then
2u(f(z) = f*) < IVf(@)]3-
Proof. Since f is u-strongly convex,
) = f@) + Vi@ (g —2) + Slly -l

We minimize both sides with respect to y. Taking gradient on the right hand side,
we note that the minimizer is x — in(x)
Therefore,

o=t 1) 2 gt { £0) 4 V10— ) + Gy~ 0l = 1(0) = oIV I@E

Hence,

1
frzf@) - ﬂllvf(l“)llg
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Reading materials

Lemma

V f is Lipschitz with constant L if and only if
L
fy) < fl@)+ Vi) (y—x)+ §||y — |2, for all z,y.

Proof. Suppose V f is Lipschitz with constant L. Consider ¢g(t) = f(x + t(y — x)).
Then ¢'(t) = Vf(z +t(y — 2))" (y — 2).
Then

Fly) = (@) = V@) (y - 2)
=g(1) = 9(0) = Vf(2)"(y — )

- / V(o +tly — 2) 7y — ) — V()T @y — z)dt

- / (V1 + tly — 2)) — V()T (y — )t

1

< / IVf (@ + tly — ) — V(@) |lly — z2dt
1

< / Ltlly — o|2dt

L
= Zlly -l

Conversely, suppose f(y) < f(2)+Vf(z)T (y—z)+%|ly—=z||3, for all z,y. Consider
the function ¢, (2) := f(z) — Vf(x)T 2.

¢ is convex and V¢, (z) = Vf(z) — V().

Since, f(2) < f(y) + V()" (z = y) + 5]z — y|[*, we have

F2) = Vf(@)z < fly) = V@) Ty + (Vi) = V@) (z—y) + g\lz —y[1?
That is
62(2) < 62(0) + V6,0)" (=~ 9) + 511z~ oIl
We minimized both sides over z. The left hand side is minimized at z = x.
The right hand side is minimized at z = —+V¢,(y) + y. Hence,
F(@) = V1) 2 = 6:(2) < 6:(0) + Vou ) (~ Vou(w) + =17 Vor(w)]?

= ()~ V@)Y~ 5 IV) - V(@)
So

Fl) ~ F@) = V5@~ 2) > 5= IVF )~ V)P

Interchange the role of x,y, we get

F(@) = 7)) @ —9) > 5|9 () ~ V)P

Adding the two inequalities, we get
(Vf(@) = V) (@ —y) > %Ilvf(x) ~ Vil
Hence, we have
IV f(y) = Vf(@)* < LVf(y) = V()" (y - 2)
< LIV () = VI@)lllly — =]
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Lemma

Suppose f is p-strongly convex. Then
2u(f(z) = f*) < IVf(@)]3-
Proof. Since f is u-strongly convex,
) = f@) + Vi@ (g —2) + Slly -l

We minimize both sides with respect to y. Taking gradient on the right hand side,
we note that the minimizer is x — in(x)
Therefore,

o=t 1) 2 gt { £0) 4 V10— ) + Gy~ 0l = 1(0) = oIV I@E

Hence,

1
frzf@) - ﬂllvf(l“)llg







