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Math4230: Optimization Theory 
Prerequisite Topics

This is meant to be a brief, informal refresher of some topics that will form building blocks in
this course. The content of the first two sections of this document is mainly taken from Appendix
A of B & V, with some supplemental information where needed. See the end for a list of potentially
helpful resources you can consult for further information.

1 Real Analysis and Calculus

1.1 Properties of Functions

Limits You should be comfortable with the notion of limits, not necessarily because you will have
to evaluate them, but because they are key to understanding other attributes of functions.
Informally, limx→a f(x) is the value that f approaches as x approaches the value a.

Continuity A function f(x) is continuous at a particular point x′ if, as a sequence x1, x2, ...
approaches x′, the value f(x1), f(x2), ... approaches f(x′). In limit notation: limi→∞ f(xi) =
f(limi→∞ xi). f is continuous if it is continuous at all points x′ ∈ domf .

Differentiability A function f : Rn → R is considered differentiable at x ∈ int domf if there
exists a vector 5f(x) that satisfies the following limit:

lim
z∈domf,z 6=x,z→x

||f(z)− f(x)−Df(x)(z − x)||2
||z − x||2

= 0

We refer to 5f(x) as the derivative of f , and it is the transpose of the gradient.

Smoothness f is smooth if the derivatives of f are continuous over all of domf . We can describe
smoothness of a certain order if the derivatives of f are continuous up to a certain derivative.
It is also reasonable to talk about smoothness over a particular interval of the domain of f .

Lipschitz A function f is Lipschitz with Lipschitz constant L if ||f(x) − f(y)|| ≤ L||x − y||
∀x, y ∈ domf . If we refer to a function f as Lipschitz, we are making a stronger statement
about the continuity of f . A Lipschitz function is not only continuous, but it does not change
value very rapidly, either. This is obviously not unrelated to the smoothness of f , but a
function can be Lipschitz but not smooth.
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Taylor Expansion The first order Taylor expansion of a function gives us an easy way to form a
linear approximation to that function:

f(y) ≈ f(x) +∇f(x)(y − x)

And equivalent form that is often useful is the following:

f(y) = f(x) +

∫ 1

0

∇f(t(x− y) + y)(y − x) dt.

For a quadratic approximation, we add another term:

f(y) ≈ f(x) +∇f(x)(y − x) +
1

2
(y − x)T∇2f(x)(y − x)

Often when doing convergence analysis we will upper bound the Hessian and use the quadratic
approximation to understand how well a technique does as a function of iterations.

1.2 Sets

Interior The interior intC of the set C is the set of all points x ∈ C for which ∃ε > 0 s.t.
{y||y − x||2 ≤ ε} ⊆ C.

Closure The closure clC of a set C is the set of all x such that ∀ε > 0 ∃y ∈ C s.t. ||x− y||2 ≤ ε.
The closure only makes sense for closed sets (see below), and can be considered the union of
the interior of C and the boundary of C.

Boundary The boundary is the set of points bdC for which the following is true: ∀ε ∃y ∈ C, z /∈ C
s.t. ||y − x||2 ≤ ε and ||z − x||2 ≤ ε.

Complement The complement of the set C ⊆ Rn is denoted by Rn
C. It is the set of all points not in C

Open vs Closed A set C is open if intC = C. A set is closed if its complement is open.

Equality You’ll notice that above we used a notion of equality for sets. To show formally that
sets A and B are equal, you must show A ⊆ B and B ⊆ A.

1.3 Norms

See B & V for a much more detailed treatment of this topic. I am going to list the most common
norms so that you are aware of the notation we will be using in this class:

`0 ||x||0 is the number of nonzero elements in x. We often want to minimize this, but it is non-
convex (and actually, not a real norm), so we approximate it (you could say we relax it) to
other norms (e.g. `1).

`p ||x||p = (|x1|p + · · ·+ |xn|p)1/p, where p ≥ 1. Some common examples:

• ||x||1 =
∑n
i=1 |xi|

• ||x||2 =
√∑n

i=1 x
2
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• ||x||∞ = maxi |xi|

Spectral/Operator Norm ||X||op = σ1(X), the largest singular value of X.

Trace Norm ||X||tr =
∑r
i=1 σr(X), the sum of all the singular values of X.

1.4 Linear/Affine Functions

In this course, a linear function will be a function f(x) = aTx. Affine functions are linear functions
with a nonzero intercept term: g(x) = aTx+ b.

1.5 Derivatives of Functions

See B & V for some nice examples. Consider the following for a function f : Rn → R:

Gradient The ith element of 5f is the partial derivative of f w.r.t. the ith dimension of the input

x: 5f(x)i = ∂f(x)
∂xi

Chain Rule Let h(x) = g(f(x)) for g : R→ R. We have: 5h(x) = g′(f(x))5 f(x)

Hessian In the world of optimization, we denote the Hessian matrix as 52f(x) ∈ Rn×n (some of
you have maybe seen this symbol used as the Laplace operator in other courses). The ijth

entry of the Hessian is given by: 5f(x)ij = ∂2f(x)
∂xi∂xj

Matrix Differentials In general we will not be using these too much in class. The major differ-
entials you need to know are:

• ∂XTX = X

• ∂
∂X tr(XA) = AT

2 Linear Algebra

2.1 Matrix Subspaces

Row Space The row space of a matrix A is the subspace spanned of the rows of A.

Column Space The column space of a matrix A is the subspace spanned of the columns of A.

Null Space The null space of a matrix A is the set of all x such that Ax = 0.

Rank rankA is the number of linearly independent columns in A (or, equivalently, the number of
linearly independent rows). A matrix A ∈ Rm×n is full rank if rankA = min{m,n}. Recall
that if A is square and full rank, it is invertible.

2.2 Orthogonal Subspaces

Two subspaces S1, S2 ∈ Rn are orthogonal if sT1 s2 = 0 ∀ s1 ∈ S1, s2 ∈ S2.



2.3 Decomposition

Eigen Decomposition If A ∈ Sn, the set of real, symmetric, n × n matrices, then A can be
factored:

A = QΛQT

Here Q is an orthogonal matrix, which means that QTQ = I. Λ = diag(λ1, λ2, ..., λn), where
the eigenvalues λi are ordered by decreasing value. Some useful facts about A that we can
ascertain from the eigen decomposition:

• |A| =
∏n
i=1 λi

• trA =
∑n
i=1 λi

• A is invertible iff (if and only if) all its eigenvalues are nonzero. Then A−1 = QΛ−1QT

(note that I have used the fact that for orthogonal Q, Q−1 = QT

• A is positive semidefinite if all its eigenvalues are nonnegative.

Singular Value Decomposition Any matrix A ∈ Rm×n with rank r can be factored as:

A = UΣV T

Here U ∈ Rm×r has the property that UTU = I and V ∈ Rn×r likewise satisfies V TV = I.
Σ = diag(σ1, σ2, ..., σr) where the singular values σi are ordered by decreasing value. Some
useful facts that we can learn using this decomposition:

• The SVD of A has the following implication for the eigendecomposition of ATA:

ATA = [VW ]

[
Σ2 0
0 0

]
[VW ]T

W is the matrix such that [VW ] is orthogonal.

• The condition number of A (an important concept for us in this course) is condA = σ1

σr

Pseudoinverse The SVD of a singular matrix A yields the pseudoinverse A† = V Σ−1UT .

3 Canonical ML Problems

3.1 Linear Regression

Linear regression is the problem of finding f : X → Y , where X ∈ Rn×p, Y is an n-dimensional
vector of real values and f is a linear function. Canonically, we find f by finding the vector β̂ ∈ Rp
that minimizes the least squares objective:

β̂ = argmin
β
||Xβ − Y ||22

For Y ∈ Rn×q, the multiple linear regression problem, we find a matrix B̂ that such that:

B̂ = argmin
B

||XB − Y ||2F

Note that in its basic form, the linear regression problem can be solved in closed form.



3.2 Logistic Regression

Logistic regression is the problem of finding f : X → Y , where Y is an n-dimensional vector binary
values, and f has the form f(x) = logit(βTx). The logit function is defined as logit(α) = 1

1+exp(−α) .

We typically solve for β by maximizing the likelihood of the observed data, which results in the
following optimization problem:

β̂ = argmax
β

n∑
i=1

[yiβ
Txi − log(1 + exp(−yiβTxi)]

3.3 Support Vector Machines

Like logistic regression, SVMs attempt to find a function that linearly separates two classes. In this
case, the elements of Y are either 1 or −1. SVMs frame the problem as the following constrained
optimization problem (in primal form):

β̂ = argmin
β

1

2
||β||22

s.t. yi(β
Txi) ≥ 1 ∀i = 1, ..., n

In its simplest form, the support vector machine seeks to find the hyperplane (parameterized
by β) that separates the classes (encoded in the constraint) and does so in a way that creates the
largest margin between the data points and the plane (encoded in the objective that is minimized).

3.4 Regularization/Penalization

Regularization (sometimes referred to as penalization) is a technique that can be applied to al-
most all machine learning problems. Most of the time, we regularize in an effort to simplify the
learned function, often by forcing the parameters to be “small” (either in absolute size or in rank)
and/or setting many of them to be zero. Regularization is also sometimes used to incorporate prior
knowledge about the problem.

We incorporate regularization by adding either constraints or penalties to the existing optimiza-
tion problem. This is easiest to see in the context of linear regression. Where previously we only
had least squares loss, we can add penalties to create the following two variations:

Ridge Regression By adding an `2 penalty, our objective to minimize becomes:

β̂ = argmin
β
||Xβ − Y ||22 + λ||β||2

This will result in many elements of β being close to 0 (more so if λ is larger).

Lasso Regression By adding an `1 penalty, our objective to minimize becomes:

β̂ = argmin
β
||Xβ − Y ||22 + λ||β||1

This will result in many elements of β being 0 (more if λ is larger).

The first example is nice because it still can be solved in closed form. Notice however that the `1
penalty creates issues not only for a closed-form solution, but also for standard first-order methods,
because it is not differentiable everywhere. We will study how to deal with this later in the course.



4 Further Resources

In addition to B & V, the following are good sources of information on these topics:

• Matrix Cookbook: https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

 • Linear Algebra Lectures by Zico Kolter: http://www.cs.cmu.edu/~zkolter/course/

linalg/
index.html

• Functional Analysis/Matrix Calculus Lectures by Aaditya Ramdas: http://www.cs.cmu.

edu/~aramdas/videos.html

http://www.mit.edu/~wingated/stuff_i_use/matrix_cookbook.pdf
http://www.cs.cmu.edu/~zkolter/course/linalg/index.html
http://www.cs.cmu.edu/~zkolter/course/linalg/index.html
http://www.cs.cmu.edu/~aramdas/videos.html
http://www.cs.cmu.edu/~aramdas/videos.html
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Lecture 1

What is the Course About?

• A special class of optimization (includes Linear Programming)

Convex Optimization 2



Lecture 1

Who Cares and Why?

• Who?

Anyone using or interested in computational aspects of optimization

• Why?

• To understand the underlying basic terminology, principles, and

methodology (to efficiently use the existing software tools)

• To develop ability to modify tools when needed

• To develop ability to design new algorithms or improve the efficiency

of the existing ones

Convex Optimization 3



Lecture 1

Course Objective

• The goal of this course is to provide you with working knowledge of

convex optimization

• In particular, to provide you with skills and knowledge to

• Recognize convex problems

• Model problems as convex

• Solve the problems

Convex Optimization 4



Lecture 1

Convex Optimization History

• Convexity Theory and Analysis have being studied for a long time, mostly

by mathematicians

• Until late 1980’s:

• Algorithmic development focused mainly on solving Linear Problems

� Simplex Algorithm for linear programming (Dantzig, 1947)

� Ellipsoid Method (Shor, 1970)

� Interior-Point Methods for linear programming (Karmarkar, 1984)

• Applications in operations research and few in engineering

• Since late 1980’s: A new interest in Convex Optimization emerges

Convex Optimization 5



Lecture 1

New Interest in the Topic

Recent developments stimulated a new interest in Convex Optimization

• The recognition that Interior-Point Methods can efficiently solve certain

classes of convex problems, including semi-definite programs and second-

order cone programs, almost as easily as linear programs

• The new technologies and their applications created a need for new

models (convex models are often suitable)

• Convex Problems are now prevalent in practice

• Automatic Control Systems

• Estimation, Signal and Image Processing

• Communication and Data Networks

• Data Analysis and Modeling

• Statistics and Finance

Convex Optimization 6



Lecture 1

Formal Introduction

• Mathematical Formulation of Optimization

• Some Examples

• Solving Optimization Problems

• Least-Squares

• Linear Optimization

• Convex Optimization

• Practical Example

• Ongoing Research in Convex Optimization
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Lecture 1

Mathematical Formulation of Optimization Problem

minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . , m

x ∈ X

• Vector x = (x1, . . . , xn) represents optimization (decision) variables

• Function f : Rn → R is an objective function

• Functions gi : Rn → R, i = 1, . . . , m are constraint functions (represent

inequality constraints)

• Set X ⊆ Rn is a constraint set

Optimal value: The smallest value of f among all vectors that satisfy the

set and the inequality constraints

Optimal solution: A vector that achieves the optimal value of f and

satisfies all the constraints

Convex Optimization 8



Lecture 1

Some Examples

Communication Networks

• Variables: communication rates for users

• Constraints: link capacities

• Objective: user cost

Portfolio Optimization

• Variables: amounts invested in different assets

• Constraints: available budget, maximum/minimum investment per asset,

minimum return, time constraints

• Objective: overall risk or return variance

Data Fitting

• Variables: model parameters

• Constraints: prior information, parameter limits

• Objective: measure of misfit or prediction error

Convex Optimization 9



Lecture 1

Solving Optimization Problems

General Optimization Problem

• Very difficult to solve

• Existing methods involve trade offs between “time” and “accuracy”, eg.,

very long computation time, or finding a sub-optimal solution

Exceptions: Certain problem classes can be solved efficiently and reliably

• Least-Squares Problems

• Linear Programming Problems

• Some classes of Convex Optimization Problems

Convex Optimization 10



Lecture 1

Least-Squares

minimize ‖Ax− b‖2

Solving Least-Squares Problems
• Analytical solution: x∗ = (ATA)−1ATb
• Reliable and efficient algorithms and software
• A mature technology
• Computation time proportional to n2k (A ∈ Rk×n); less if structured

Using Least-Squares
• Least-squares problems are easy to recognize
• In regression analysis, optimal control, parameter estimation
• A few standard techniques increase its flexibility in applications (eg.,

including weights, regularization terms)

Convex Optimization 11



Lecture 1

Linear Programming

minimize c′x

subject to a′ix ≤ bi, 1 ≤ i ≤ m

Solving Linear Programs
• No analytical solution

• Reliable and efficient algorithms and software

• A mature technology

Convex Optimization 12



Lecture 1

Using Linear Programming

• Not as easy to recognize as least-squares problems (linear formulation

possible but not always obvious)

• A few standard tricks used to convert problems into linear programs

(eg., problems involving maximum norm, piecewise-linear functions)

Convex Optimization 13



Lecture 1

Convex Optimization Problems

minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . , m

x ∈ X
• Objective and constraint functions are convex
• Constraint set is convex
• Includes least-squares problems and linear programs as special cases

Solving Convex Optimization Problems
• No analytical solution
• Reliable and efficient algorithms for some classes
• Computation time (roughly) proportional to max{n3, n2m, G}, where

G is a cost of evaluating gi’s and their first and second derivatives
• Almost a technology

Using Convex Optimization
• Often difficult to recognize
• Many tricks for transforming problems into convex form
• Many practical problems can be modeled as convex optimization

Convex Optimization 14



Lecture 1

Practical Example

Image Reconstruction in PET-scan [Ben-Tal, 2005]

• Maximum Likelihood Model results in convex optimization

min
x≥0, e′x≤1

−
m∑

i=1

yi ln

 n∑
j=1

pijxj


• x is a decision vector

• y models measured data (by PET detectors)

• pij probabilities modeling detections of emitted positrons

Convex Optimization 15



Lecture 1

Ongoing Research in Convex Optimization and Beyond

• Distributed computations for large scale (nonsmooth) convex problems

• Approximation schemes with rate and error estimates

• Extending the methodology to non-convex problems

Deep learning methods

Convex Optimization 16



Homework: 

Download: 

http://www.lix.polytechnique.fr/bigdata/mathbigdata/wp-
content/uploads/2014/10/Lnotes_CvxAn_FullEn.pdf 

Read: 

1. Chapter 1
2. Chapter 2

http://www.lix.polytechnique.fr/bigdata/mathbigdata/wp-content/uploads/2014/10/Lnotes_CvxAn_FullEn.pdf
http://www.lix.polytechnique.fr/bigdata/mathbigdata/wp-content/uploads/2014/10/Lnotes_CvxAn_FullEn.pdf


Introduction: Why Optimization?

Convex Optimization



Prerequisites: no formal ones, but class will be fairly fast paced

Assume working knowledge of/proficiency with:

• Real analysis, calculus, linear algebra

• Core problems in Machine Learning and Statistics

• Programming (R, Python, Julia, your choice ...)

• Data structures, computational complexity

• Formal mathematical thinking

If you fall short on any one of these things, it’s certainly possible to
catch up; but don’t hesitate to talk to us

3



Optimization in Machine Learning and Statistics

Optimization problems underlie nearly everything we do in Machine
Learning and Statistics. In other courses, you learn how to:

translate into P : min
x∈D

f(x)

Conceptual idea Optimization problem

Examples of this? Examples of the contrary?

This course: how to solve P , and why this is a good skill to have

6



Motivation: why do we bother?

Presumably, other people have already figured out how to solve

P : min
x∈D

f(x)

So why bother? Many reasons. Here’s three:

1. Different algorithms can perform better or worse for different
problems P (sometimes drastically so)

2. Studying P through an optimization lens can actually give you
a deeper understanding of the task/procedure at hand

3. Knowledge of optimization can actually help you create a new
problem P that is even more interesting/useful

Optimization moves quickly as a field. But there is still much room
for progress, especially its intersection with ML and Stats

7



Example: algorithms for linear trend filtering

Given observations yi ∈ R, i = 1, . . . , n corresponding to
underlying locations xi = i, i = 1, . . . , n
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Problem: min
θ

1

2

n∑
i=1

(yi − θi)2 + λ

n−2∑
i=1

|θi − 2θi+1 + θi+2|
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What’s the message here?

So what’s the right conclusion here?

Is primal-dual interior point method simply a better method than
proximal gradient descent, coordinate descent? ... No

In fact, different algorithms will work better in different situations.
We’ll learn details throughout the course

In the linear trend filtering problem:

• Primal-dual: fast (structured linear systems)

• Proximal gradient: slow (conditioning)

• Coordinate descent: slow (large active set)

10



Central concept: convexity

Historically, linear programs were the focus in optimization

Initially, it was thought that the important distinction was between
linear and nonlinear optimization problems. But some nonlinear
problems turned out to be much harder than others ...

Now it is widely recognized that the right distinction is between
convex and nonconvex problems

Your supplementary textbooks for the course:

Boyd and Vandenberghe
(2004)

and
Rockafellar

(1970)

16



Wisdom from Rockafellar (1993)

From Terry Rockafellar’s 1993 SIAM Review survey paper:

Credit to Nemirovski, Yudin, Nesterov, others for formalizing this

This view was dominant both within the optimization community
and in many application domains for many decades (... currently
being challenged by successes of neural networks?)
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Convex sets and functions

Convex set: C ⊆ Rn such that

x, y ∈ C =⇒ tx+ (1− t)y ∈ C for all 0 ≤ t ≤ 124 2 Convex sets

Figure 2.2 Some simple convex and nonconvex sets. Left. The hexagon,
which includes its boundary (shown darker), is convex. Middle. The kidney
shaped set is not convex, since the line segment between the two points in
the set shown as dots is not contained in the set. Right. The square contains
some boundary points but not others, and is not convex.

Figure 2.3 The convex hulls of two sets in R2. Left. The convex hull of a
set of fifteen points (shown as dots) is the pentagon (shown shaded). Right.
The convex hull of the kidney shaped set in figure 2.2 is the shaded set.

Roughly speaking, a set is convex if every point in the set can be seen by every other
point, along an unobstructed straight path between them, where unobstructed
means lying in the set. Every affine set is also convex, since it contains the entire
line between any two distinct points in it, and therefore also the line segment
between the points. Figure 2.2 illustrates some simple convex and nonconvex sets
in R2.

We call a point of the form θ1x1 + · · · + θkxk, where θ1 + · · · + θk = 1 and
θi ≥ 0, i = 1, . . . , k, a convex combination of the points x1, . . . , xk. As with affine
sets, it can be shown that a set is convex if and only if it contains every convex
combination of its points. A convex combination of points can be thought of as a
mixture or weighted average of the points, with θi the fraction of xi in the mixture.

The convex hull of a set C, denoted conv C, is the set of all convex combinations
of points in C:

conv C = {θ1x1 + · · · + θkxk | xi ∈ C, θi ≥ 0, i = 1, . . . , k, θ1 + · · · + θk = 1}.

As the name suggests, the convex hull conv C is always convex. It is the smallest
convex set that contains C: If B is any convex set that contains C, then conv C ⊆
B. Figure 2.3 illustrates the definition of convex hull.

The idea of a convex combination can be generalized to include infinite sums, in-
tegrals, and, in the most general form, probability distributions. Suppose θ1, θ2, . . .

Convex function: f : Rn → R such that dom(f) ⊆ Rn convex, and

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for all 0 ≤ t ≤ 1

and all x, y ∈ dom(f)

Chapter 3

Convex functions

3.1 Basic properties and examples

3.1.1 Definition

A function f : Rn → R is convex if dom f is a convex set and if for all x,
y ∈ dom f , and θ with 0 ≤ θ ≤ 1, we have

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y). (3.1)

Geometrically, this inequality means that the line segment between (x, f(x)) and
(y, f(y)), which is the chord from x to y, lies above the graph of f (figure 3.1).
A function f is strictly convex if strict inequality holds in (3.1) whenever x ̸= y
and 0 < θ < 1. We say f is concave if −f is convex, and strictly concave if −f is
strictly convex.

For an affine function we always have equality in (3.1), so all affine (and therefore
also linear) functions are both convex and concave. Conversely, any function that
is convex and concave is affine.

A function is convex if and only if it is convex when restricted to any line that
intersects its domain. In other words f is convex if and only if for all x ∈ dom f and

(x, f(x))

(y, f(y))

Figure 3.1 Graph of a convex function. The chord (i.e., line segment) be-
tween any two points on the graph lies above the graph. 18



Convex optimization problems

Optimization problem:

min
x∈D

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , r

Here D = dom(f) ∩⋂m
i=1 dom(gi) ∩

⋂p
j=1 dom(hj), common

domain of all the functions

This is a convex optimization problem provided the functions f
and gi, i = 1, . . . ,m are convex, and hj , j = 1, . . . , p are affine:

hj(x) = aTj x+ bj , j = 1, . . . , p

19



Local minima are global minima

For convex optimization problems, local minima are global minima

Formally, if x is feasible—x ∈ D, and satisfies all constraints—and
minimizes f in a local neighborhood,

f(x) ≤ f(y) for all feasible y, ‖x− y‖2 ≤ ρ,
then

f(x) ≤ f(y) for all feasible y

This is a very useful
fact and will save us
a lot of trouble!

●

●

●

●

●

●

●

●

●

●

Convex Nonconvex
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Convexity I: Sets and Functions

Convex Optimization

See supplements for reviews of

• basic real analysis

• basic multivariate calculus

• basic linear algebra



Last time: why convexity?

Why convexity? Simply put: because we can broadly understand
and solve convex optimization problems

Nonconvex problems are mostly treated on a case by case basis

Reminder: a convex optimization problem is of
the form

min
x∈D

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , r

where f and gi, i = 1, . . . ,m are all convex, and
hj , j = 1, . . . , r are affine. Special property:
any local minimizer is a global minimizer

●

●

●

●

●

●

●

●

●

●
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Outline

Today:

• Convex sets

• Examples

• Key properties

• Operations preserving convexity

• Same, for convex functions
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Convex sets

Convex set: C ⊆ Rn such that

x, y ∈ C =⇒ tx+ (1− t)y ∈ C for all 0 ≤ t ≤ 1

In words, line segment joining any two elements lies entirely in set
24 2 Convex sets

Figure 2.2 Some simple convex and nonconvex sets. Left. The hexagon,
which includes its boundary (shown darker), is convex. Middle. The kidney
shaped set is not convex, since the line segment between the two points in
the set shown as dots is not contained in the set. Right. The square contains
some boundary points but not others, and is not convex.

Figure 2.3 The convex hulls of two sets in R2. Left. The convex hull of a
set of fifteen points (shown as dots) is the pentagon (shown shaded). Right.
The convex hull of the kidney shaped set in figure 2.2 is the shaded set.

Roughly speaking, a set is convex if every point in the set can be seen by every other
point, along an unobstructed straight path between them, where unobstructed
means lying in the set. Every affine set is also convex, since it contains the entire
line between any two distinct points in it, and therefore also the line segment
between the points. Figure 2.2 illustrates some simple convex and nonconvex sets
in R2.

We call a point of the form θ1x1 + · · · + θkxk, where θ1 + · · · + θk = 1 and
θi ≥ 0, i = 1, . . . , k, a convex combination of the points x1, . . . , xk. As with affine
sets, it can be shown that a set is convex if and only if it contains every convex
combination of its points. A convex combination of points can be thought of as a
mixture or weighted average of the points, with θi the fraction of xi in the mixture.

The convex hull of a set C, denoted conv C, is the set of all convex combinations
of points in C:

conv C = {θ1x1 + · · · + θkxk | xi ∈ C, θi ≥ 0, i = 1, . . . , k, θ1 + · · · + θk = 1}.

As the name suggests, the convex hull conv C is always convex. It is the smallest
convex set that contains C: If B is any convex set that contains C, then conv C ⊆
B. Figure 2.3 illustrates the definition of convex hull.

The idea of a convex combination can be generalized to include infinite sums, in-
tegrals, and, in the most general form, probability distributions. Suppose θ1, θ2, . . .

Convex combination of x1, . . . , xk ∈ Rn: any linear combination

θ1x1 + · · ·+ θkxk

with θi ≥ 0, i = 1, . . . , k, and
∑k

i=1 θi = 1. Convex hull of a set C,
conv(C), is all convex combinations of elements. Always convex
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Examples of convex sets

• Trivial ones: empty set, point, line

• Norm ball: {x : ‖x‖ ≤ r}, for given norm ‖ · ‖, radius r

• Hyperplane: {x : aTx = b}, for given a, b

• Halfspace: {x : aTx ≤ b}

• Affine space: {x : Ax = b}, for given A, b

5



• Polyhedron: {x : Ax ≤ b}, where inequality ≤ is interpreted
componentwise. Note: the set {x : Ax ≤ b, Cx = d} is also a
polyhedron (why?)32 2 Convex sets

a1 a2

a3

a4

a5

P

Figure 2.11 The polyhedron P (shown shaded) is the intersection of five
halfspaces, with outward normal vectors a1, . . . . , a5.

when it is bounded). Figure 2.11 shows an example of a polyhedron defined as the
intersection of five halfspaces.

It will be convenient to use the compact notation

P = {x | Ax ≼ b, Cx = d} (2.6)

for (2.5), where

A =

⎡
⎢⎣

aT
1
...

aT
m

⎤
⎥⎦ , C =

⎡
⎢⎣

cT
1
...

cT
p

⎤
⎥⎦ ,

and the symbol ≼ denotes vector inequality or componentwise inequality in Rm:
u ≼ v means ui ≤ vi for i = 1, . . . , m.

Example 2.4 The nonnegative orthant is the set of points with nonnegative compo-
nents, i.e.,

Rn
+ = {x ∈ Rn | xi ≥ 0, i = 1, . . . , n} = {x ∈ Rn | x ≽ 0}.

(Here R+ denotes the set of nonnegative numbers: R+ = {x ∈ R | x ≥ 0}.) The
nonnegative orthant is a polyhedron and a cone (and therefore called a polyhedral
cone).

Simplexes

Simplexes are another important family of polyhedra. Suppose the k + 1 points
v0, . . . , vk ∈ Rn are affinely independent, which means v1 − v0, . . . , vk − v0 are
linearly independent. The simplex determined by them is given by

C = conv{v0, . . . , vk} = {θ0v0 + · · · + θkvk | θ ≽ 0, 1T θ = 1}, (2.7)

• Simplex: special case of polyhedra, given by
conv{x0, . . . , xk}, where these points are affinely independent.
The canonical example is the probability simplex,

conv{e1, . . . , en} = {w : w ≥ 0, 1Tw = 1}

6



Cones

Cone: C ⊆ Rn such that

x ∈ C =⇒ tx ∈ C for all t ≥ 0

Convex cone: cone that is also convex, i.e.,

x1, x2 ∈ C =⇒ t1x1 + t2x2 ∈ C for all t1, t2 ≥ 0

26 2 Convex sets

0

x1

x2

Figure 2.4 The pie slice shows all points of the form θ1x1 + θ2x2, where
θ1, θ2 ≥ 0. The apex of the slice (which corresponds to θ1 = θ2 = 0) is at
0; its edges (which correspond to θ1 = 0 or θ2 = 0) pass through the points
x1 and x2.

00

Figure 2.5 The conic hulls (shown shaded) of the two sets of figure 2.3.

Conic combination of x1, . . . , xk ∈ Rn: any linear combination

θ1x1 + · · ·+ θkxk

with θi ≥ 0, i = 1, . . . , k. Conic hull collects all conic combinations

7



Examples of convex cones

• Norm cone: {(x, t) : ‖x‖ ≤ t}, for a norm ‖ · ‖. Under the `2
norm ‖ · ‖2, called second-order cone

• Normal cone: given any set C and point x ∈ C, we can define

NC(x) = {g : gTx ≥ gT y, for all y ∈ C}

●

●

●

●

This is always a convex cone,
regardless of C

• Positive semidefinite cone: Sn+ = {X ∈ Sn : X � 0}, where
X � 0 means that X is positive semidefinite (and Sn is the
set of n× n symmetric matrices)

8



Key properties of convex sets

• Separating hyperplane theorem: two disjoint convex sets have
a separating between hyperplane them

2.5 Separating and supporting hyperplanes 47

E1

E2

E3

Figure 2.18 Three ellipsoids in R2, centered at the origin (shown as the
lower dot), that contain the points shown as the upper dots. The ellipsoid
E1 is not minimal, since there exist ellipsoids that contain the points, and
are smaller (e.g., E3). E3 is not minimal for the same reason. The ellipsoid
E2 is minimal, since no other ellipsoid (centered at the origin) contains the
points and is contained in E2.

D

C

a

aT x ≥ b aT x ≤ b

Figure 2.19 The hyperplane {x | aT x = b} separates the disjoint convex sets
C and D. The affine function aT x − b is nonpositive on C and nonnegative
on D.

Formally: if C,D are nonempty convex sets with C ∩D = ∅,
then there exists a, b such that

C ⊆ {x : aTx ≤ b}
D ⊆ {x : aTx ≥ b}

9



• Supporting hyperplane theorem: a boundary point of a convex
set has a supporting hyperplane passing through it

●

Formally: if C is a nonempty convex set, and x0 ∈ bd(C),
then there exists a such that

C ⊆ {x : aTx ≤ aTx0}

Both of the above theorems (separating and supporting hyperplane
theorems) have partial converses; see Section 2.5 of BV

10



Example: linear matrix inequality solution set

Given A1, . . . , Ak, B ∈ Sn, a linear matrix inequality is of the form

x1A1 + x2A2 + · · ·+ xkAk � B

for a variable x ∈ Rk. Let’s prove the set C of points x that satisfy
the above inequality is convex

Approach 1: directly verify that x, y ∈ C ⇒ tx+ (1− t)y ∈ C.
This follows by checking that, for any v,

vT
(
B −

k∑

i=1

(txi + (1− t)yi)Ai

)
v ≥ 0

Approach 2: let f : Rk → Sn, f(x) = B −∑k
i=1 xiAi. Note that

C = f−1(Sn+), affine preimage of convex set

12



Convex functions

Convex function: f : Rn → R such that dom(f) ⊆ Rn convex, and

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for 0 ≤ t ≤ 1

and all x, y ∈ dom(f)

Chapter 3

Convex functions

3.1 Basic properties and examples

3.1.1 Definition

A function f : Rn → R is convex if dom f is a convex set and if for all x,
y ∈ dom f , and θ with 0 ≤ θ ≤ 1, we have

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y). (3.1)

Geometrically, this inequality means that the line segment between (x, f(x)) and
(y, f(y)), which is the chord from x to y, lies above the graph of f (figure 3.1).
A function f is strictly convex if strict inequality holds in (3.1) whenever x ̸= y
and 0 < θ < 1. We say f is concave if −f is convex, and strictly concave if −f is
strictly convex.

For an affine function we always have equality in (3.1), so all affine (and therefore
also linear) functions are both convex and concave. Conversely, any function that
is convex and concave is affine.

A function is convex if and only if it is convex when restricted to any line that
intersects its domain. In other words f is convex if and only if for all x ∈ dom f and

(x, f(x))

(y, f(y))

Figure 3.1 Graph of a convex function. The chord (i.e., line segment) be-
tween any two points on the graph lies above the graph.

In words, function lies below the line segment joining f(x), f(y)

Concave function: opposite inequality above, so that

f concave ⇐⇒ −f convex

15



Important modifiers:

• Strictly convex: f
(
tx+ (1− t)y

)
< tf(x) + (1− t)f(y) for

x 6= y and 0 < t < 1. In words, f is convex and has greater
curvature than a linear function

• Strongly convex with parameter m > 0: f − m
2 ‖x‖22 is convex.

In words, f is at least as convex as a quadratic function

Note: strongly convex ⇒ strictly convex ⇒ convex

(Analogously for concave functions)

16



Examples of convex functions

• Univariate functions:

I Exponential function: eax is convex for any a over R
I Power function: xa is convex for a ≥ 1 or a ≤ 0 over R+

(nonnegative reals)
I Power function: xa is concave for 0 ≤ a ≤ 1 over R+

I Logarithmic function: log x is concave over R++

• Affine function: aTx+ b is both convex and concave

• Quadratic function: 1
2x

TQx+ bTx+ c is convex provided that
Q � 0 (positive semidefinite)

• Least squares loss: ‖y −Ax‖22 is always convex (since ATA is
always positive semidefinite)

17



• Norm: ‖x‖ is convex for any norm; e.g., `p norms,

‖x‖p =
(

n∑

i=1

|xi|p
)1/p

for p ≥ 1, ‖x‖∞ = max
i=1,...,n

|xi|

and also operator (spectral) and trace (nuclear) norms,

‖X‖op = σ1(X), ‖X‖tr =
r∑

i=1

σr(X)

where σ1(X) ≥ . . . ≥ σr(X) ≥ 0 are the singular values of
the matrix X

18



• Indicator function: if C is convex, then its indicator function

IC(x) =

{
0 x ∈ C
∞ x /∈ C

is convex

• Support function: for any set C (convex or not), its support
function

I∗C(x) = max
y∈C

xT y

is convex

• Max function: f(x) = max{x1, . . . , xn} is convex

19



Key properties of convex functions

• A function is convex if and only if its restriction to any line is
convex

• Epigraph characterization: a function f is convex if and only
if its epigraph

epi(f) = {(x, t) ∈ dom(f)× R : f(x) ≤ t}

is a convex set

• Convex sublevel sets: if f is convex, then its sublevel sets

{x ∈ dom(f) : f(x) ≤ t}

are convex, for all t ∈ R. The converse is not true

20



• First-order characterization: if f is differentiable, then f is
convex if and only if dom(f) is convex, and

f(y) ≥ f(x) +∇f(x)T (y − x)

for all x, y ∈ dom(f). Therefore for a differentiable convex
function ∇f(x) = 0 ⇐⇒ x minimizes f

• Second-order characterization: if f is twice differentiable, then
f is convex if and only if dom(f) is convex, and ∇2f(x) � 0
for all x ∈ dom(f)

• Jensen’s inequality: if f is convex, and X is a random variable
supported on dom(f), then f(E[X]) ≤ E[f(X)]

21



Operations preserving convexity

• Nonnegative linear combination: f1, . . . , fm convex implies
a1f1 + · · ·+ amfm convex for any a1, . . . , am ≥ 0

• Pointwise maximization: if fs is convex for any s ∈ S, then
f(x) = maxs∈S fs(x) is convex. Note that the set S here
(number of functions fs) can be infinite

• Partial minimization: if g(x, y) is convex in x, y, and C is
convex, then f(x) = miny∈C g(x, y) is convex
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Example: distances to a set

Let C be an arbitrary set, and consider the maximum distance to
C under an arbitrary norm ‖ · ‖:

f(x) = max
y∈C

‖x− y‖

Let’s check convexity: fy(x) = ‖x− y‖ is convex in x for any fixed
y, so by pointwise maximization rule, f is convex

Now let C be convex, and consider the minimum distance to C:

f(x) = min
y∈C

‖x− y‖

Let’s check convexity: g(x, y) = ‖x− y‖ is convex in x, y jointly,
and C is assumed convex, so apply partial minimization rule

23



More operations preserving convexity

• Affine composition: if f is convex, then g(x) = f(Ax+ b) is
convex

• General composition: suppose f = h ◦ g, where g : Rn → R,
h : R→ R, f : Rn → R. Then:

I f is convex if h is convex and nondecreasing, g is convex
I f is convex if h is convex and nonincreasing, g is concave
I f is concave if h is concave and nondecreasing, g concave
I f is concave if h is concave and nonincreasing, g convex

How to remember these? Think of the chain rule when n = 1:

f ′′(x) = h′′(g(x))g′(x)2 + h′(g(x))g′′(x)

24



• Vector composition: suppose that

f(x) = h
(
g(x)

)
= h

(
g1(x), . . . , gk(x)

)

where g : Rn → Rk, h : Rk → R, f : Rn → R. Then:

I f is convex if h is convex and nondecreasing in each
argument, g is convex

I f is convex if h is convex and nonincreasing in each
argument, g is concave

I f is concave if h is concave and nondecreasing in each
argument, g is concave

I f is concave if h is concave and nonincreasing in each
argument, g is convex
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Example: log-sum-exp function

Log-sum-exp function: g(x) = log(
∑k

i=1 e
aTi x+bi), for fixed ai, bi,

i = 1, . . . , k. Often called “soft max”, as it smoothly approximates
maxi=1,...k (aTi x+ bi)

How to show convexity? First, note it suffices to prove convexity of
f(x) = log(

∑n
i=1 e

xi) (affine composition rule)

Now use second-order characterization. Calculate

∇if(x) =
exi

∑n
`=1 e

x`

∇2
ijf(x) =

exi

∑n
`=1 e

x`
1{i = j} − exiexj

(
∑n

`=1 e
x`)2

Write ∇2f(x) = diag(z)− zzT , where zi = exi/(
∑n

`=1 e
x`). This

matrix is diagonally dominant, hence positive semidefinite
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Optimization Theory: Reading materials Spring 2022

Lecture: Convex Functions – Jan 18-19, 2022

Overview In these two lectures, we will introduce the concept of convex functions, and provide several
ways to characterize convex functions, discuss some calculus that can be used to detect convexity of functions
and compute the subgradients of convex function.

3.1 Definitions

Definition 3.1 (Convex function) A function f(x) : Rn → R is convex if

(i) dom(f) ⊆ Rn s a convex set;

(ii) ∀x, y ∈ dom(f) and λ ∈ [0, 1], f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Figure 3.1: Example of convex function

A function is called strictly convex if (ii) holds with strict sign, i.e. f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y).

A function is called α-strictly convex if f(x)− α
2 ‖x‖

2
2 is convex.

A function is called concave if −f(x) is convex.

For example, a linear function is both convex and concave. Any norm is convex.

Remark 1 (Extended value function). Conventionally, we can think of f as an extended value function
from Rn to R ∪ {+∞} by setting f(x) = +∞ if x /∈ dom(f), the condition (ii) is equivalent as

∀x, y,∀λ ∈ [0, 1], f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).
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Remark 2. (Slope inequality) What does convexity really mean? Let z = λx+ (1− λ)y, observe that
‖y − x‖ : ‖y − z‖ : ‖z − x‖ = 1 : λ : (1− λ). Therefore

f(z) ≤ λf(x) + (1− λ)f(y)

⇐⇒ f(z)− f(x)

1− λ
≤ f(y)− f(x) ≤ f(y)− f(z)

λ

⇐⇒ f(z)− f(x)

‖z − x‖
≤ f(y)− f(x)

‖y − x‖
≤ f(y)− f(z)

‖y − z‖

Figure 3.2: Slope PQ ≤ Slope PR ≤ Slope QR

3.2 Several Characterizations of Convex Functions

1. Epigraph characterization

Proposition 3.2 f is convex if and only if its epigraph

epi(f) := {(x, t) ∈ Rn+1 : f(x) ≤ t}

is a convex set.

Proof: This can be verified by using the definition of convex function and convex set.

• (=⇒) Suppose (x, t1), (y, t2) ∈ epi(f), then f(x) ≤ t1, f(y) ≤ t2. For any λ ∈ [0, 1], by convexity of
f , f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y) ≤ λt1+(1−λ)t2. Thi implies that λ·(x, t1)+(1−λ)·(y, t2) ∈
epi(f). Hence, epi(f) is a convex set.

• (⇐=) Let x, y ∈ Rn, since (x, f(x)) and (y, f(y)) lie in epi(f), by convexity of epigraph set, we
have for any λ ∈ [0, 1], (λx+(1−λ)y, λ(x)+(1−λ)f(y)) ∈ epi(f). By definition, f(λx+(1−λ)y) ≤
λf(x) + (1− λ)f(y). Hence, function f is convex.
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2. Level set characterization

Proposition 3.3 If f is convex, then the level set for any t ∈ R

Ct(f) = {x ∈ dom(f) : f(x) ≤ t}

is a convex set.

For example, the unit norm ball {x : ‖x‖ ≤ 1} is a convex set since ‖ · ‖ is convex.

Remark. The reverse is not true. A function with convex level set is not always convex. In fact, it
is known as a quasi-convex function.

3. One-dimensional characterization

Proposition 3.4 f is convex if and only if its restriction on any line, i.e. function

φ(t) := f(x+ th)

is convex on the axis for any x and h.

Remark. Convexity is a one-dimensional property. In order to detect the convexity of a function, it
all boils down to check the convexity of a one-dimensional function on the axis. From basic calculus,
we already know that

φ(t) is convex on (a, b)

⇐⇒ φ(s)− φ(t1)

s− t1
≤ φ(t2)− φ(t1)

t2 − t1
≤ φ(t2)− φ(s)

t2 − s
,∀a < t1 < s < t2 < b (due to slope inequality)

⇐⇒ φ′(t1) ≤ φ′(t2),∀a < t1 < t2 < b (if φ is differentiable)

⇐⇒ φ′′(t) > 0,∀a < t < b (if φ is twice-differentiable)

Hence, if f is differentiable or twice-differentiable, we can characterize it by based on its first-order or
second-order.

4. First-order characterization for differentiable convex functions

Proposition 3.5 Assume f is differentiable, then f is convex if and only if dom(f) is convex and for
any x, y,

f(x) ≥ f(y) +∇f(y)T (x− y). (?)

Proof:

• (=⇒) If f is convex, letting z = (1−ε)y+εx = y+ε(x−y) with ε ∈ (0, 1), from the slop inequality,
we have

f(x)− f(y)

‖x− y‖
≥ f(z)− f(y)

‖z − y‖
=
f(y + ε(x− y))− f(y)

ε‖x− y‖
.

Hence, letting ε→ 0+, we have

f(x)− f(y) ≥ lim
ε→0+

f(y + ε(x− y))− f(y)

ε
= ∇f(y)T (x− y).

Therefore, f(y) ≥ f(x) +∇f(x)T (y − x).
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Figure 3.3: First-order condition

• (⇐=) If (?) holds, letting z = λx+ (1− λ)y for any λ ∈ [0, 1], we have

f(x) ≥ f(z) +∇f(z)T (x− z)
f(y) ≥ f(z) +∇f(z)T (y − z)

Adding the two inequalities with scalings λ and (1− λ), it follows that

λf(x) + (1− λ)f(y) ≥ f(z) = f(λx+ (1− λ)y).

Hence, f is convex.

5. Second-order characterization for twice-differentiable convex functions

Proposition 3.6 Assume f is twice-differentiable, then f is convex if and only if dom(f) is convex
and for any x ∈ dom(f),

∇2f(x) � 0. (??)

Proof:

• (=⇒) If f is convex, then for any x, h, φ(t) = f(x+th) is convex on the axis. Hence, φ′′(t) ≥ 0,∀t.
Particularly,

φ′′(0) = hT∇2f(x)h ≥ 0.

This implies that ∇2f(x) � 0.

• (⇐=) It suffices to show that every one-dimensional function φ(t) := f(x+ t(y− x)) is convex for
any x, y ∈ dom(f). The latter is indeed true because φ′′(t) = (y−x)T∇2f(x+ t(y−x))(y−x) ≥ 0
due to (??).

6. Subgradient characterization for non-differentiable convex functions

Proposition 3.7 f is convex if and only if ∀x ∈ int(dom(f)), there exists g, such that

f(x) ≥ f(y) + gT (x− y)

i.e. the subdifferential set is non-empty.

To be discussed in Section 3.5.
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3.3 Calculus of Convex Functions

The following operators preserve the convexity of functions, which can be easily verified based on the defi-
nition.

1. Taking conic combination: If fα(x), α ∈ A are convex functions and {λα}α∈A ≥ 0, then∑
α∈A

λαfα(x)

is also a convex function.

2. Taking affine composition If f(x) is convex on Rn, and A(y) : y 7→ Ay + b is an affine mapping
from Rk to Rn, then

g(y) := f(Ay + b)

is convex on Rk.

The proofs are straightforward and hence omitted.

3. Taking superposition:

• If f is a convex function on Rn and F (·) is a convex and non-decreasing function on R, then
g(x) = F (f(x)) is convex.

• More generally, if fi(x), i = 1, . . . ,m are convex on Rn and F (y1, . . . , ym) is convex and non-
decreasing (component-wise) on Rm, then

g(x) = F (f1(x), . . . , fm(x))

is convex.

Proof: By convexity of fi, we have

fi(λx+ (1− λ)y) ≤ λfi(x) + (1− λ)fi(y),∀i,∀λ ∈ [0, 1].

Hence, we have for any λ ∈ [0, 1],

g(λx+ (1− λ)y) = F (f1(λx+ (1− λ)y), . . . , fm(λx+ (1− λ)y))

≤ F (λf1(x) + (1− λ)f1(y), . . . , λfm(x) + (1− λ)fm(y)) ( by monotonicity of F )

≤ λF (f1(x), . . . , fm(x)) + (1− λ)F (f1(x), . . . , fm(x)) ( by convexity of F )

= λg(x) + (1− λ)g(y) ( by definition of g)

4. Taking supremum: If fα(x), α ∈ A are convex, then

sup
α∈A

fα(x)

is convex.

Note that when A is finite, this can be considered as a special superposition with F (y1, . . . , ym) =
max(y1, . . . , ym), which can be easily shown to be monotonic and convex.
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Proof: We show that

epi(sup
α∈A

fα) = {(x, t) : sup
α∈A

fα(x) ≤ t}

= {(x, t) : fα(x) ≤ t,∀α ∈ A}
= ∩α∈A{(x, t) : fα(x) ≤ t}
= ∩α∈Aepi(fα).

Since fα is convex, epi(fα) is therefore a convex set for any α ∈ A. Their intersection remains convex,
i.e. epi(supα∈A fα) is a convex set, i.e. supα∈A fα(x) is convex.

5. Partial minimization: If f(x, y) is convex in (x, y) ∈ Rn and C is a convex set, then

g(x) = inf
y∈C

f(x, y)

is convex.

Proof: Given any x1, x2, by definition, for any ε > 0,

∃y1 : f(x1, y1) ≤ g(x1) + ε/2

∃y2 : f(x2, y2) ≤ g(x2) + ε/2

For any λ ∈ [0, 1], adding the two equations, we have

λf(x1, y1) + (1− λ)f(x2, y2) ≤ λg(x1) + (1− λ)g(x2) + ε.

Invoking the convexity of f(x, y), this implies

f(λx1 + (1− λ)x2, λy1 + (1− λ)y2) ≤ λg(x1) + (1− λ)g(x2) + ε.

Hence for any ε > 0, g(λx1 + (1 − λ)x2) ≤ λg(x1) + (1 − λ)g(x2) + ε. Letting ε → 0 leads to the
convexity of g.

6. Perspective function: If f(x) is convex , then the perspective of f

g(x, t) := tf(x/t)

is convex on its domain dom(g) = {(x, t) : x/t ∈ dom(f), t > 0}.

Proof: Observe that

(x, t, τ) ∈ epi(g)⇐⇒ tf(x/t) < τ ⇐⇒ f(x/t) ≤ τ/t⇐⇒ (x/t, τ/t) ∈ epi(f)

Define the perspective function P : Rn ×R++ ×R :→ Rn ×R, (x, t, τ) 7→ (x/t, τ/t), then

epi(g) = P−1(epi(f)).

Since f is convex, epi(f) is a convex set. To show g is convex, it suffices to show that the inverse image
of a convex set under the perspective function is convex.

Claim: If U is a convex set, then

P−1(U) = {(u, t) : u/t ∈ U, t > 0}

is a convex set.

This is because if (u, t) ∈ P −1(U) and (v, s) ∈ P −1(U), for any λ ∈ [0, 1],

λu+ (1− λ)v

λt+ (1− λ)s
= µ · u

t
+ (1− µ) · v

s
∈ U

where µ = λt
λt+(1−λ)s ∈ [0, 1]. Hence, λ · (u, t) + (1− λ) · (v, s) ∈ P−1(U).
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3.4 Examples of Convex Functions

Example 1. Simple univariate functions:

• x2, x4, . . .

• eax for any a

• − log(x)

• x log(x)

Example 2. Multi-variate functions:

• ‖ · ‖

• 1
2x

TQx+ bTx+ c, when Q � 0

• ‖Ax− b‖22
• max(aT1 x+ b1, . . . , a

T
k x− bk)

• relative entropy function g(x, t) : R2
++ → R, (x, t) 7→ t log(t)− t log(x)

• log(
∑k
i=1 e

aTi x+bi)

Proof: It suffices to show that f(x) = log(
∑n
i=1 e

xi) is convex. Observe that any h, we have

hT∇2f(x)h =

∑
i e
xih2i∑
i e
xi
−

(
∑
i e
xihi)

2

(
∑
i e
xi)2

.

Let pi = exi∑
i e

xi
, we have

hT∇2f(x)h =
∑
i

pih
2
i − (

∑
i

pihi)
2 ≥

∑
i

pih
2
i −

∑
i

(
√
pi)

2
∑
i

(
√
pihi)

2 =
∑
i

pih
2
i − 1 ·

∑
i

pih
2
i = 0.

The first inequality is due to Cauchy-Schwarz inequality. Hence, ∇2f(x) � 0.

• − log(det(X))

Proof: Let f(X) = − log(det(X)), the domain dom(f) = Sn++. Let X,H � 0, it is sufficient to show
that g(t) = f(X + tH) is convex on dom(g) = {t : X + tH � 0}. Since

g(t) = − log(det(X+tH)) = − log(det(X1/2(I+tX−1/2HX−1/2)X1/2)) = −
∑
i

log(1+tλi)−log(det(X))

where λ1, . . . , λn are the eigenvalues of X−1/2HX−1/2. Note that for each i, − log(1 + tλi) is convex
in t, so g(t) is also convex.

Example 3. Some distances:

• maximum distance to any set C: d(x,C) := maxy∈C ‖x− y‖

• minimum distance to a convex set C: d(x,C) : miny∈C ‖x− y‖
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Example 4. Indicator and support functions:

• indicator function of a convex set C: IC(x) :=

{
0, x ∈ C
∞, x /∈ C

• support function of any set C (convex or not): I∗C(x) = supy∈C x
T y

3.5 Subgradients of Convex Functions

Definition 3.8 (Subgradient) Let f be a convex function and x ∈ dom(f), any vector g satisfying

f(y) ≥ f(x) + gT (y − x)

is called a subgradient of f at x.

The set of all subgradients of f at x is called the subdifferential, denoted as ∂f(x).

Example 1. If f is differentiable at x ∈ dom(f), then ∇f(x) is the unique element of ∂f(x).

Proof: Let g ∈ ∂f(x), by definition, f(x+td)−f(x)t ≥ gT d, ,∀d. Let t→ 0, we have ∇f(x)T d ≥ gtd,∀d, which
implies ∇f(x) = g.

Example 2. Let f(x) = |x|, then ∂f(0) = [−1, 1].
Proof: This is because |x| ≥ 0 + gx,∀g ∈ [−1, 1].

Example 3. Let f(x) = ‖x‖2, then ∂f(x) =

{ x
‖x‖2 , x 6= 0

{g : ‖g‖2 ≤ 1}, x = 0
.

Proof: This is because ‖x‖2 ≥ 0 + gTx,∀‖g‖2 ≤ 1.

Proposition 3.9 If x̄ ∈ int(dom(f)), then ∂f(x̄) is nonempty, closed, bounded, and convex.

Proof:

• (Convexity and closedness): this is due to the fact that

∂f(x̄) = ∩x{g : f(x) ≥ f(x̄) + gT (x− x̄)}

is a infinite system of linear inequalities. The sub-differentiable set can be treated as the intersection
of halfspaces, hence is closed and convex.

• (Non-emptyness): applying the separation theorem on (x̄, f(x̄)) and epi(f) = {(x, t) : f(x) ≤ t}, we
have

∃a, β, s. t. aT x̄+ βf(x̄) ≤ aTx+ βt,∀(x, t) ∈ epi(f).

Claim: β > 0. We can first rule out β 6= 0 since x̄ ∈ int(dom(f)). We then rule out β < 0 by setting
x = x̄ and t > f(x̄).
Therefore, defining g = β−1a, we have f(x) ≥ f(x̄) + gT (x− x̄), i.e. g ∈ ∂(f).
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• (Boundedness): if ∂f(x̄) is unbounded, then there exist sk ∈ ∂f(x̄), such that ‖sk‖∞ →∞ as n→∞.
SInce x̄ ∈ int(dom(f)), there exits ε > 0, such that B(x̄, ε) = {x : ‖x − x̄‖ ≤ ε} ⊂ dom(f). Hence,
letting yk = x̄+ ε sk

‖sk‖ , we have yk ∈ B(x̄, ε), and

f(yk) ≥ f(x̄) + sTk (yk − x̄) = f(x̄) + ε‖sk‖ → ∞, as k →∞.

However, every convex function can be shown to be continuous on its interior; it is Lipschitz continuous
on any convex compact subset on the domain. This implies that f(x) is bounded on the compact ball
B(x̄, ε), which leads to a contradiction.

Remark. The reverse is also true. If ∀x ∈ int(dom(f)), ∂f(x) is nonempty, then f is convex.

Proof: Let x, y ∈ dom(f), z = λx+ (1− λ)y ∈ int(dom(f)), we have

f(x) ≥ f(z) + gT (x− z)
f(y) ≥ f(z) + gT (y − z)

Hence, λf(x) + (1− λ)f(y) ≥ f(z) = f(λx+ (1− λ)y).

3.6 Calculus of Sub-differential

Determining the subdifferentiable set of a convex function at a given point is in general very difficult. That’s
why calculus of subdifferentiable sets is particularly important in convex analyis.

1. Taking conic combination: If h(x) = λf(x) + µg(x), where λ, µ ≥ 0 and f, g are both convex, then

∂h(x) = λ∂f(x) + µ∂g(x),∀x ∈ int(dom(h)).

2. Taking affine composition: If h(x) = f(Ax+ b), where f is convex, then

∂h(x) = AT∂f(Ax+ b).

3. Taking supremum: If h(x) = supα∈A fα(x) and each fα(x) is convex, then

∂h(x) ⊇ conv{∂fα(x)|α ∈ α(x)}

where α(x) := {α : h(x) = fα(x)}.

4. Taking superposition: If h(x) = F (f1(x), . . . , fm(x)), where F (y1, . . . , ym) is non-decreasing and
convex, then

∂h(x) ⊇

{
m∑
i=1

di∂fi(x) : (d1, . . . , dm) ∈ ∂F (y1, . . . , ym)

}
.

Example 1. Let h(x) = max1≤i≤n(aTi x+bi), then ak ∈ ∂h(x) if k is some index such that h(x) = aTk x+bk.

Example 2. Let h(x) = E[F (x, ξ)] be a convex function, then g(x) =
∫
G(x, ξ)p(ξ)dξ ∈ ∂h(x) if G(x, ξ) ∈

∂F (x, ξ) for each ξ.
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Example 3. Let h(x) = maxy∈C f(x, y) where f(x, y) is convex in x for any y and C is closed, then
∂f(x, y∗(x)) ⊂ ∂h(x), where y∗(x) = argmaxy∈Cf(x, y).

This is because if g ∈ ∂f(x, y∗(x)), we have

h(z) ≥ f(z, y∗(x)) ≥ f(x, y∗(x)) + gT (z − x) = h(z) + gT (z − x).

3.7 Other Properties of Convex Functions

Jensen’s inequality. Let f be a convex function, then

f(
∑
i

λixi) ≤
∑
i

λif(xi)

as long as λi ≥ 0, ∀i and
∑
i λi = 1.

Moreover, let f be a convex function and X be a random variable, then

f(E[X]) ≤ E[f(X)].

Example . The Kullback-Liebler distance between two distributions is nonnegative: i.e.

KL(p||q) =
∑
i

pi log

(
pi
qi

)
≥ 0

where pi ≥ 0, qi ≥ 0,
∑
i pi =

∑
i qi = 1.

Proof: Let f(x) = − log(x), f is convex, so

− log(
∑
i

pixi) ≤ −
∑
i

pi log(xi).

Plugging xi = qi/pi, this leads to

0 = − log(
∑
i

qi) ≤
∑
i

pi log(pi/qi).
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We describe an apparently novel way of constructing the subgradient of a convex function 
defined on a finite dimensional vector space. 

Key words: Convex Function, Subgradient, Max-formula. 

The existence of subgradients for continuous convex functions plays a central 
role in optimization theory [1, 3, 5-8]. Typically the existence of subgradients is 
shown by some separation argument which itself relies on a substratum of 
topology and calculus. In this note we describe an apparently novel construction 
of the "max-formula"  for subgradients which relies only on the definition of the 
directional derivative and on linear algebra. This also makes the subgradient 
immediately accessible for  pedagogical purposes.  As is well known, the existence 
of subgradients is itself equivalent to all the other standard separation or duality 
principles [3, 4]. Thus our result can be satisfactorily used to base most  further 
analysis. 

A few preliminary definitions and notations (essentially as in [6]) need to be 
reviewed. We let X be a finite dimensional real vector  space and let X* denote 
the linear functionals on X. Let  f : X ~ ] -  ~, ~] be a proper convex function. This 
is to say that the effective domain  of f, dom f :={x ~ X I f ( x )  < ~}, is non-empty 
and that 

t l f ( X  1) "}- t2f(X 2) ~ f ( t l x l " ~  - t2 X2) (1) 

for all Xl, x 2 in dom f and tl, t2 ~ 0 with ti + t2 = 1. If (1) holds for all non-negative 
tl and t2, then f is said to be sublinear. Recall that the core of a convex set C, 
denoted by core C, is the set of points x in C with the proper ty  that, for  each y 

* Research partially funded on NSERC grant A5116. 
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in X, one can find 6 > 0  with x + ty E C for 0 <  t < 6. Also, the directional 

derivative (or minorant )  of f at xo is defined by 

Vf(xo; h) := inf f (xe  + th) - f(xo) (2) 
t>o t 

for each h in X. Now Vf(x0;.) is always positively homogeneous and well 
defined with values in [ - ~ , ~ ] .  For completeness we include a self-contained 
proof of the following proposition [6]. 

Proposition A. Le t  f : X ~ ]~, ~] be convex  and proper. Le t  Xo lie in core(dom f). 
Then Vf(x0; .) is an everywhere finite sublinear funct ion.  

Proof. Let  rt(h) := t-~[f(xo + t h ) -  f(x0)] for  t non-zero in R. Then rt is a convex 
function which (because f is convex) satisfies 

rt(h) >- rs(h) >- r_s(h) >- r t(h) (3) 

for 0 < s < t and h in X. Since x0 lies in core(dom f)  one can find t with both 
r_t(h) and rt(h) finite. It follows from (3) that Vf(x0; h) is always finite. 
Moreover,  if h, k lie in X one has (again because f is convex) that 

Vf(x0; h + k) <- rs(h + k)  <- r2s(h ) + r2~(k) <- r2s(h ) + r2,(k ) 

for 0 < s < t. Taking infima first with respect to s and then with respect to t 
shows that Vf(x0; h + k)-< Vf(xo; h) + Vf(x0; k). Since Vf(xo; .) is positively 
homogeneous,  this shows that Vf(x0; .) is sublinear. 

Now let us recall that the subgradient  set of f at Xo is defined by 

Of(xo) := {x* E X* I x*(x - Xo) <--f(x) - f(xo), for  all x E dom f}. 

We may now state and establish our result. 

(4) 

Theorem B. Le t  f : X ~ ]-0% ~] be proper  and convex.  Le t  Xo lie in core(dom f).  

Then, f o r  each h in X,  

Vf(x0; h) = max{x*(h) Ix* ~ Of(xo)}. MAX F O R M U L A  (5) 

In part icular Of(xo) is non-empty .  

Proof. Let  us fix h in X. It is easily verified that Vf(xo; h) is an upper bound for 
the right-hand side of (5). Thus it suffices to establish the existence of a 
subgradient x* with Vf(xo; h) = x*(h) .  Let  us consider a basis B := {ek I 1 -< k -< 
n} for X with el :=h. Recursively define 

(i) Po := Vf(xo; "), 
(ii) Pk :=- Vpk l(ek; ") (6) 
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for 1 ~ k - n. It follows from Proposit ion A that each Pk is sublinear and finite. 
Moreover ,  for x in X and 1 ~ k-< n, 

p , ( x )  <-- pk (x )  <-- Pk-l(ek + X) -- Pk-i(e~) <-- pk-l(X) --< po(X). (7) 

Now the definition of Pk and (7) shows that, for 1 -< k -< m -< n, 

0 <- pm(ek) + p m ( - e k )  <- pk(ek) + pk(--ek) = Pk-l(ek) + (--Pk l(ek)) = 0, (8) 

since each Pm is sublinear. Then (8) shows that pro(-  ek) = -- pm(ek) for  1 ----- k <--- 
m-< n. This implies that Pm being sublinear is actually linear on the span of 

{ek I 1 <-- k <-- m}.  In particular p, must be linear. Set x* := p,. Now (7) shows that 

x * ( x  - Xo) <- po(x - Xo) <- f ( x )  - f(Xo) (9) 

for  x in X;  and so x*  E Of(Xo). Finally (7) and (8) show that 

- x * ( h )  = x * ( - e O  <- p l ( - e 0  = - p o ( e O  = - p o ( h ) .  (10) 

This implies that x * ( h )  = Vf(x0; h) as required. 

The same argument in combination with the appropriate maximality principle 
can be used to establish Theorem B in arbitrary vector  spaces or for  convex 
operators [2]. The basic iteration remains unchanged. One indexes a basis for  X 
by the ordinals preceding some cardinal 6 and defines a " sequence"  of 

sublinear operators (p~) by (i) using (6) for  successor  ordinals, and (ii) defining 
p~ := inf{p~ [/3 < a }  when a is a limit ordinal. The proof  is essentially un- 
changed. 

Geometrically the proof  is very  simple. Each directional derivative minorizes 
the previous one and is guaranteed to be linear in at least one more direction. 
After n steps we must produce an appropriate linear minorant. In general, many 
fewer  than n steps will be needed. After all f is differentiable almost everywhere  
in core(dom f)  [6]. At such points V/(x0;-) is itself the appropriate function. The 
following simple example shows that n iterations may be needed. 

Example C. Let  X := R". Let  {~. [ 1 --< j --< n} be the usual basis and let f be defined 
by f ( x )  := max{xj ] 1 -< j -< n}. Le t  x0 := 0 and h := ~ = 1  ~Sj. Consider the iteration in 
(6) with ek:=~-+~-ksj .  Then P 0 = f  and P k : = m a x { x j l l - - < j - - - - - n - k + l }  for 
1 --< k -< n. This is easily established by induction. It follows that Pn is linear, as 
promised, but no previous Pk is. Notice also that Pn ~ 3f(0) and 

1 = p, , (h)  = po(h)  = Vf(x0; h), 

as claimed by (5). 

An immediate consequence of (5) is that Of(Xo) is singleton exact ly when 
Vf(xo; .) is linear (and f is Gateaux differentiable at x0). 
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W e  leave  an open  ques t ion  as to w h e t h e r  (6) has  any  pos s ib l e  u t i l i ty  in 

mak ing  a n u m e r i c a l  e s t ima te  of  a s u b g r a d i e n t  of  a c o n v e x  func t ion?  
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1. Let B : Rn → Rp be an affine mapping and let Ω be a convex subset of
Rn. Prove the equality

B(ri Ω) = ri B(Ω).

Proof. Let y ∈ B(ri Ω), then there exits x ∈ ri Ω such that y = Bx.
By the prolongation lemma, for any x̄ ∈ Ω, there exists γ > 0 such
that x + γ(x − x̄) ∈ Ω. Hence y + γ(y − ȳ) = B(x + γ(x − x̄)) ∈ B(Ω),
where ȳ = Bx̄. Since x̄ is arbitrary, by the prolongation lemma again,
y ∈ ri B(Ω). Hence B(ri Ω) ⊆ ri B(Ω).

To show the other direction, we first show that B(Ω) = B(ri Ω). Note
that Ω = ri Ω, hence we have

B(Ω) ⊆ B(Ω) = B(ri Ω) ⊆ B(ri Ω),

where the last inclusion follows from the continuity of B. This shows that
B(Ω) ⊆ B(ri Ω). Since B(ri Ω) ⊆ B(Ω), we have B(Ω) = B(ri Ω).

Now since B(Ω) = B(ri Ω), ri B(Ω) = ri B(ri Ω) (see tutorial notes).
Hence

ri B(Ω) = ri B(ri Ω) ⊆ B(ri Ω).

�

2. Let Ω1, Ω2 be convex subsets of Rn. Show that ri(Ω1−Ω2) = ri Ω1−ri Ω2.

Proof. Consider B : Rn × Rn → Rn given by B(x, y) = x − y. Then
Ω1 − Ω2 = B(Ω1 × Ω2). The equality can then be obtained by applying
the previous result to B and Ω = Ω1 × Ω2. �

1

Reading materials: Proof of Theorem 5.9
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Math4230: Optimization Theory 
(for reading)
Handout: Separating hyperplane theorem

Strict separation

For x, y ∈ Rn, we write d(x, y) = ‖x − y‖. For subsets A,B ⊆ Rn, we de-
fine d(A, x) = d(x,A) = infa∈A d(x, a) and d(A,B) = infa∈A,b∈B d(a, b). Let
diamA = supx,y∈A d(x, y). For A ⊆ Rn and x ∈ Rn, we define 〈A, x〉 = {〈a, x〉 :
a ∈ A}. In Euclidean space Rn, the term compact set refers to any set that is
closed and bounded.

Theorem 1 (Separating hyperplane theorem, strict case). Let C,K ⊆ Rn be
nonempty convex sets with C ∩ K = ∅. If C is closed and K compact, then
there exists ψ ∈ Rn with

inf 〈C,ψ〉 > sup 〈K,ψ〉.

Proof. The strategy of the proof is illustrated in Figure 1. We start by proving
the existence of a pair of closest points x∗ and y∗, where x ∈ C and y ∈ K.
We then show that the hyperplane with normal vector ψ = x∗ − y∗ separates
the two convex sets. Details follow.

Claim 2. There exist x∗ ∈ C and y∗ ∈ K such that d(x∗, y∗) = d(C,K).

Proof. For this, pick an arbitrary point x0 ∈ C and define r = 2d(x0, K) +
diamK. By the triangle inequality, d(x, x0) 6 d(x,K) + diamK + d(x0, K). It
follows that any point x with d(x, x0) > r satisfies

d(x,K) > d(x, x0)− diamK − d(x0, K)

> d(x0, K).

As a result, the compact set C ′ = C ∩ {x : d(x, x0) 6 r} obeys d(C,K) =
d(C ′, K). Since d(·, ·) is a continuous function on the compact C ′×K, it must
attain its infimum on C ′ × K, i.e., there must exist (x∗, y∗) ∈ C ′ × K with
d(x∗, y∗) = d(C ′, K) = d(C,K).

In the remainder of the proof, fix x∗ and y∗ as in Claim 2, and define
ψ = x∗ − y∗.

Claim 3. inf 〈C,ψ〉 > 〈x∗, ψ〉.

1
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Figure 1: Separating two convex sets by a hyperplane.

Proof. For the sake of contradiction, suppose that 〈x, ψ〉 < 〈x∗, ψ〉 for some
x ∈ C. This is equivalent to

〈x− x∗, x∗ − y∗〉 < 0. (1)

For ε ∈ (0, 1), the point xε = (1 − ε)x∗ + εx is contained in C by convexity.
However,

‖xε − y∗‖2 = 〈x∗ − y∗ + ε(x− x∗), x∗ − y∗ + ε(x− x∗)〉
= ‖x∗ − y∗‖2 + 2ε 〈x− x∗, x∗ − y∗〉︸ ︷︷ ︸

<0 by (1)

+ε2‖x− x∗‖2.

Hence d(xε, y
∗) < d(x∗, y∗) for ε > 0 small enough, contradicting d(x∗, y∗) =

d(C,K).

Claim 4. 〈x∗, ψ〉 > 〈y∗, ψ〉.

Proof. We have 〈x∗ − y∗, ψ〉 = ‖x∗ − y∗‖2 > 0, where the last step uses the
fact that x∗ 6= y∗ by the disjointness of C and K.

Claim 5. 〈y∗, ψ〉 > sup 〈K,ψ〉.

Proof. The proof is analogous to Claim 3. Specifically, suppose for the sake of
contradiction that 〈y, ψ〉 > 〈y∗, ψ〉 for some y ∈ K. This is equivalent to

〈y∗ − y, x∗ − y∗〉 < 0. (2)

For ε ∈ (0, 1), the point yε = (1 − ε)y∗ + εy is contained in K by convexity.
However,

‖x∗ − yε‖2 = 〈x∗ − y∗ + ε(y∗ − y), x∗ − y∗ + ε(y∗ − y)〉
= ‖x∗ − y∗‖2 + 2ε 〈y∗ − y, x∗ − y∗〉︸ ︷︷ ︸

<0 by (2)

+ε2‖y∗ − y‖2.

2



Hence d(x∗, yε) < d(x∗, y∗) for ε > 0 small enough, contradicting d(x∗, y∗) =
d(C,K).

By Claims 3–5, the proof is complete.

Nonstrict separation

The proofs below use the following property of compact sets K ⊂ Rn: given
any sequence x1, x2, . . . , xn, . . . ∈ K, there is a subsequence xi1 , xi2 , . . . , xin , . . .
and some x∗ ∈ K such that xin → x∗ as n → ∞. In other words, every
sequence in a compact set has a convergent subsequence. The closure of a
set A ⊆ Rn is a superset of A defined by clA = {x ∈ Rn : d(x,A) = 0}. Put
differently, clA is the smallest closed set that contains A. A point x is called an
interior point of A if there exists ε > 0 such that {y ∈ Rn : d(x, y) < ε} ⊆ A.
The set of all interior points of A is denoted intA.

Lemma 6. Let M ∈ Rn×(n+1) be given by

M =


1 0 0 0 −1
0 1 0 0 −1
0 0 1 0 −1
...

...
...

. . . 0 −1
0 0 0 1 −1

 .
Let {Mk} be a sequence with Mk →M. Then for some k, there exists a vector
λ ∈ (0,∞)n+1 with Mkλ = 0.

Proof. Since the nullspace of every Mk is nonempty, we can fix a sequence
{λk} of unit vectors with Mkλk = 0. By passing to a subsequence if necessary,
we may assume that λk → λ∗. But then λ∗ is a unit vector with Mλ∗ = 0,
which forces

λ∗ =
±1√
n+ 1


1
1
...
1

 .
In particular, for all k large enough, the components of λk are either all positive
or all negative, so that either λk or −λk is the desired vector.

Theorem 7 (Separating hyperplane theorem, nonstrict case). Let X, Y ⊆ Rn

be nonempty convex subsets. If X∩Y = ∅, then there exists a nonzero ψ ∈ Rn

with

inf 〈X,ψ〉 > sup 〈Y, ψ〉.

3
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√1 √2 √k

√

Figure 2: Separating 0 from B by a hyperplane.

Proof. Consider the convex set A = X − Y = {x − y : x ∈ X, y ∈ Y }. Then
0 /∈ A, and our objective is to find a nonzero ψ ∈ Rn with inf 〈A,ψ〉 > 0. Let
B = clA be the closure of A.

First of all, we claim that 0 /∈ intB. For the sake of contradiction, suppose
otherwise. Then for ε > 0 small enough, B contains the ball {v : ‖v‖∞ 6 ε}.
In particular, B contains εv1, εv2, . . . , εvn+1, where vi is the ith column of the
matrix M in Lemma 6. Recall that each vi is the limit of a sequence in A.
By Lemma 6, it follows that some ṽ1, ṽ2, . . . , ṽn+1 ∈ A obey

∑
λivi = 0 for

some positive coefficients λ1, λ2, . . . , λn+1. Since A is convex, we conclude that
0 ∈ A, a contradiction. Hence 0 /∈ intB, as claimed.

The remainder of the proof is illustrated in Figure 2. By the claim just
settled, we can fix a sequence of points {zk} outside of B with zk → 0. By the
strict version of the separating hyperplane theorem, for each k there exists a
unit vector ψk with

inf 〈B,ψk〉 > 〈zk, ψk〉. (3)

Passing to a subsequence if necessary, we may assume that ψk → ψ for some
unit vector ψ. We now claim that inf 〈B,ψ〉 > 0. Indeed, for every v ∈ B,

〈v, ψ〉 = lim
k→∞
〈v, ψk〉 since ψk → ψ

> lim
k→∞
〈zk, ψk〉 by (3)

= 0 since ‖ψk‖ = 1 and zk → 0.

4
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Lemma Let C1 and C2 be nonempty convex sets. We have

ri(C1) ∩ ri(C2) ⊆ ri(C1 ∩ C2), C1 ∩ C2 ⊆ C1 ∩ C2.

Furthermore, if ri(C1) ∩ ri(C2) 6= ∅, then
ri(C1) ∩ ri(C2) = ri(C1 ∩ C2), C1 ∩ C2 = C1 ∩ C2.

Proof. Let x ∈ ri(C1)∩ ri(C2), y ∈ C1∩C2. By the prolongation lemma, the
line segment connecting x and y can be prolonged beyond x without leaving
C1 and C2. Hence, by the prolongation lemma again, x ∈ ri(C1 ∩ C2).
Since C1 ∩ C2 ⊆ C1 ∩ C2, which is closed, we have C1 ∩ C2 ⊆ C1 ∩ C2.
Now suppose ri(C1)∩ ri(C2) 6= ∅ and let x ∈ ri(C1)∩ ri(C2) and y ∈ C1∩C2.
Consider αk → 0 and yk = αkx + (1 − αk)y, then yk → y. By the line

segment property, yk ∈ ri(C1) ∩ ri(C2). Hence y ∈ ri(C1) ∩ ri(C2). Then

C1 ∩ C2 ⊆ ri(C1) ∩ ri(C2) ⊆ C1 ∩ C2.

Hence C1 ∩ C2 = C1 ∩ C2. Moreover, the closure of ri(C1) ∩ ri(C2) and
C1 ∩ C2 are the same. Hence, they have the same relative interior. Then

ri(C1 ∩ C2) = ri(ri(C1) ∩ ri(C2)) ⊆ ri(C1) ∩ ri(C2).

�

Lemma If f : Rn → (−∞,∞] is a convex function then we have that

ri(epi f) = {(x, λ) ∈ Rn × R : x ∈ ri(dom f), λ > f(x)}.

Proof. Let P be the projection on the x component, i.e. P (x, λ) = x. Then
P (epi f) = dom f . Since P is linear, by previous proposition, P (ri(epi f)) =
ri P (epi f) = ri(dom f). Let Fx := {(x, λ) : λ ∈ R}. Then

ri(epi f) =
⋃

x∈ri(dom f)

(
Fx ∩ ri(epi f)

)
.

Note that ri Fx = Fx and Fx∩ ri(epi f) 6= ∅ for x ∈ ri(dom f), by the above
lemma, we have

Fx ∩ ri(epi f) = ri Fx ∩ ri(epi f) = ri(Fx ∩ epi f) = ri (epi f)x,

where (epi f)x := {λ : (x, λ) ∈ epi f} = {λ : λ ≥ f(x)}. Hence

ri(epi f) =
⋃

x∈ri(dom f)

{(x, λ) : λ ∈ ri (epi f)x}.

One can easily observe that the relative interior of the set (epi f)x is {λ :
λ > f(x)}. Hence

ri(epi f) = {(x, λ) ∈ Rn × R : x ∈ ri(dom f), λ > f(x)}.
�

1
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Lagrangian Duality

Given a nonlinear programming problem, known as the primal
problem, there exists another nonlinear programming
problem, closely related to it, that receives the name of the
Lagrangian dual problem.

Under certain convexity assumptions and suitable constraint
qualifications, the primal and dual problems have equal
optimal objective values.



The Primal Problem

Consider the following nonlinear programming problem:

Primal Problem P

minimise f (x), (1)

subject to:

gi(x) ≤ 0 for i = 1, . . . ,m,

hi(x) = 0 for i = 1, . . . , �,

x ∈ X .



The Dual Problem

Then the Lagrangian dual problem is defined as the following
nonlinear programming problem.

Lagrangian Dual Problem D

maximise θ(u, v), (2)

subject to:

u ≥ 0,

where,

θ(u, v) = inf{f (x) +
m∑

i=1

uigi(x) +
�∑

i=1

vihi(x) : x ∈ X}, (3)

is the Lagrangian dual function.



The Dual Problem

In the dual problem (2)–(3), the vectors u and v have as their
components the Lagrange multipliers ui for i = 1, . . . ,m, and
vi for i = 1, . . . , �.

Note that the Lagrange multipliers ui, corresponding to the
inequality constraints gi(x) ≤ 0, are restricted to be
nonnegative, whereas the Lagrange multipliers vi,
corresponding to the equality constraints hi(x) = 0, are
unrestricted in sign.

Given the primal problem P (1), several Lagrangian dual
problems D of the form of (2)–(3) can be devised, depending
on which constraints are handled as gi(x) ≤ 0 and hi(x) = 0,
and which constraints are handled by the set X. (An
appropriate selection of the set X must be made, depending
on the nature of the problem.)



Geometric Interpretation

Consider the following primal problem P:

Primal Problem P

minimise f (x),

subject to:

g(x) ≤ 0,

x ∈ X ,

where f : Rn → R and
g : Rn → R.

xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx

X

x

G

(g, f )

y

z

[g(x), f (x)]

Define the following set in R2:

G = {(y, z) : y = g(x), z = f (x) for some x ∈ X},
that is, G is the image of X under the (g, f ) map.



Geometric Interpretation

G = {(y, z) : y = g(x), z = f (x) for some x ∈ X},

Primal Problem P

minimise f (x),

subject to:

g(x) ≤ 0,

x ∈ X .

xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx

X

x

G

(g, f )

y

z

[g(x), f (x)]

(ȳ, z̄)

Then, the primal problem consists in finding a point in G with y ≤ 0
that has minimum ordinate z.

Obviously this point is (ȳ, z̄).



Geometric Interpretation

Lagrangian Dual
Problem D

maximise θ(u),

subject to:

u ≥ 0,

where (Lagrangian dual
subproblem):

θ(u) = inf{f (x)+ug(x) : x ∈ X}.

xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
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xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
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xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
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xxxxxxxxxxxxxxxxxxxxxx
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xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx

X

x

G

(g, f )

y

z

[g(x), f (x)]

(ȳ, z̄)

α

Slope −u
z + uy = α

Given u ≥ 0, the Lagrangian dual subproblem is equivalent to
minimise z + uy over points (y, z) in G. Note that z + uy = α is the
equation of a straight line with slope −u that intercepts the z-axis
at α.



Geometric Interpretation

Lagrangian Dual
Problem D

maximise θ(u),

subject to:

u ≥ 0,

where (Lagrangian dual
subproblem):

θ(u) = inf{f (x)+ug(x) : x ∈ X}.

xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx

X

x

G

(g, f )

y

z

[g(x), f (x)]

(ȳ, z̄)

θ(u) Slope −u
z + uy = α

In order to minimise z + uy over G we need to move the line
z + uy = α parallel to itself as far down as possible, whilst it
remains in contact with G. The last intercept on the z-axis thus
obtained is the value of θ(u) corresponding to the given u ≥ 0.



Geometric Interpretation

Lagrangian Dual
Problem D

maximise θ(u),

subject to:

u ≥ 0,

where (Lagrangian dual
subproblem):

θ(u) = inf{f (x)+ug(x) : x ∈ X}.

xxxxxxxxxxxxxxxxxxxxxx
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xxxxxxxxxxxxxxxxxxxxxx

X

x

G

(g, f )

y

z

[g(x), f (x)]

(ȳ, z̄)

θ(u) Slope −u
z + uy = α

Slope −ū

Finally, to solve the dual problem, we have to find the line with
slope −u (u ≥ 0) such that the last intercept on the z-axis, θ(u), is
maximal. Such a line has slope −ū and supports the set G at the
point (ȳ, z̄). Thus, the solution to the dual problem is ū, and the
optimal dual objective value is z̄.



Geometric Interpretation

xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
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xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
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X

x

G

(g, f )

y

z

[g(x), f (x)]

(ȳ, z̄)

θ(u) Slope −u
z + uy = α

Slope −ū

The solution of the Primal problem is z̄, and the solution of the
Dual problem is also z̄.
It can be seen that, in the example illustrated, the optimal
primal and dual objective values are equal. In such cases, it is
said that there is no duality gap (strong duality).



Weak Duality

The following result shows that the objective value of any feasible
solution to the dual problem constitutes a lower bound for the
objective value of any feasible solution to the primal problem.

Theorem (Weak Duality Theorem)

Consider the primal problem P given by (1) and its Lagrangian dual
problem D given by (2). Let x be a feasible solution to P; that is,
x ∈ X, g(x) ≤ 0, and h(x) = 0. Also, let (u, v) be a feasible solution
to D; that is, u ≥ 0. Then:

f (x) ≥ θ(u, v).
◦



Weak Duality

Proof.

We use the definition of θ given in (3), and the facts that x ∈ X,
u ≥ 0, g(x) ≤ 0 and h(x) = 0. We then have

θ(u, v) = inf{f (x̃) + utg(x̃) + vth(x̃) : x̃ ∈ X}
≤ f (x) + utg(x) + vth(x) ≤ f (x),

and the result follows. �



Weak Duality

We then have, as a corollary of the previous theorem, the following
result.

Corollary

inf{f (x) : x ∈ X , g(x) ≤ 0, h(x) = 0} ≥ sup{θ(u, v) : u ≥ 0}.
◦

Note from the corollary that the optimal objective value of the
primal problem is greater than or equal to the optimal objective
value of the dual problem.

If the inequality holds as a strict inequality, then it is said that there
exists a duality gap.



Weak Duality

The figure shows an example of the geometric interpretation of the
primal and dual problems.

Optimal dual objective

Optimal primal objective

Duality gap

xxxxxxxxxxxxxxxxxxxxxxxxxx
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x

G

(g, f )

y

z

[g(x), f (x)]

Notice that, in the
case shown in the
figure, there exists
a duality gap due to
the nonconvexity of
the set G.

We will see, in the Strong Duality Theorem, that if some suitable
convexity conditions are satisfied, then there is no duality gap
between the primal and dual optimisation problems.



Strong Duality

Before stating the conditions that guarantee the absence of a
duality gap, we need the following result.

Lemma

Let X be a nonempty convex set in Rn. Let α : Rn → R and
g : Rn → Rm be (componentwise) convex, and h : Rn → R� be
affine (that is, assume h is of the form h(x) = Ax − b). Also, let u0

be a scalar, u ∈ Rm and v ∈ R�. Consider the following two
systems:

System 1: α(x) < 0, g(x) ≤ 0, h(x) = 0 for some x ∈ X.

System 2: u0α(x) + utg(x) + vth(x) ≥ 0 for some
(u0, u, v) � (0, 0, 0), (u0, u) ≥ (0, 0) and for all x ∈ X.

If System 1 has no solution x, then System 2 has a solution
(u0, u, v). Conversely, if System 2 has a solution (u0, u, v) with
u0 > 0, then System 1 has no solution.



Proof of the Lemma

Outline of the proof:

Assume first that

System 1: α(x) < 0, g(x) ≤ 0, h(x) = 0 for some x ∈ X,

has no solution.

Define the set:

S = {(p, q, r) : p > α(x), q ≥ g(x), r = h(x) for some x ∈ X}.
The set S is convex, since X, α and g are convex and h is affine.
Since System 1 has no solution, we have that (0, 0, 0) � S.



Proof of the Lemma (Ctd.)

Example

Consider the functions:

α(x) = (x − 1)2 − 1
4 ,

h(x) = 2x − 1,

and the set

X = {x ∈ R : |x | ≤ 2}.

3

−5

α

h

{α(x), h(x) : x ∈ X}



Proof of the Lemma (Ctd.)

Example (Ctd.)

α(x) = (x − 1)2 − 1
4 ,

h(x) = 2x − 1,

X = {x ∈ R : |x | ≤ 2}.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxx

xxxxxxxxxxxxxxxxxxxxxxx
3

−5

p

r

S

S = {(p, r) : p > α(x), r = h(x) for some x ∈ X}



Proof of the Lemma (Ctd.)

Continuing with the proof of the Lemma, we have the convex set:

S = {(p, q, r) : p > α(x), q ≥ g(x), r = h(x) for some x ∈ X},
and that (0, 0, 0) � S.

Recall the following corollary of the Supporting Hyperplane
Theorem:

Corollary

Let S be a nonempty convex set in Rn and x̄ � int S. Then there is
a nonzero vector p such that pt(x − x̄) ≤ 0 for each x ∈ cl S.

◦



Proof of the Lemma (Ctd.)

We then have, from the above corollary, that there exists a nonzero
vector (u0, u, v) such that

(u0, u, v)t[(p, q, r) − (0, 0, 0)] = u0p + utq + vtr ≥ 0, (4)

for each (p, q, r) ∈ cl S.

Now, fix an x ∈ X. Noticing, from the definition of S, that p and q
can be made arbitrarily large, we have that in order to satisfy (4),
we must have u0 ≥ 0 and u ≥ 0.



Proof of the Lemma (Ctd.)

Example (Ctd.)

α(x) = (x − 1)2 − 1
4 ,

h(x) = 2x − 1,

X = {x ∈ R : |x | ≤ 2}.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxx

xxxxxxxxxxxxxxxxxxxxxxxx
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p

r

S(u0, v)

We can see that u0 cannot be u0 < 0 and satisfy:

(u0, v)t[(p, r) − (0, 0)] = (u0, v)t(p, r) = u0p + vtr ≥ 0,

for each (p, q, r) ∈ cl S.



Proof of the Lemma (Ctd.)

Example (Ctd.)

α(x) = (x − 1)2 − 1
4 ,

h(x) = 2x − 1,

X = {x ∈ R : |x | ≤ 2}.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxx

xxxxxxxxxxxxxxxxxxxxxxxx
3
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r

S

(u0, v)

We conclude that u0 ≥ 0 and

(u0, v)t[(p, r) − (0, 0)] = (u0, v)t(p, r) = u0p + vtr ≥ 0,

for each (p, q, r) ∈ cl S.



Proof of the Lemma (Ctd.)

We have that there exists a nonzero vector (u0, u, v) with
(u0, u) ≥ (0, 0) such that

(u0, u, v)t[(p, q, r) − (0, 0, 0)] = u0p + utq + vtr ≥ 0,

for each (p, q, r) ∈ cl S.

Also, note that [α(x), g(x), h(x)] ∈ cl S and we have from the above
inequality that

u0α(x) + utg(x) + vth(x) ≥ 0.

Since the above inequality is true for each x ∈ X, we conclude that

System 2: u0α(x) + utg(x) + vth(x) ≥ 0 for some
(u0, u, v) � (0, 0, 0), (u0, u) ≥ (0, 0) and for all x ∈ X.

has a solution.



Proof of the Lemma (Ctd.)

To prove the converse, assume that

System 2: u0α(x) + utg(x) + vth(x) ≥ 0 for some
(u0, u, v) � (0, 0, 0), (u0, u) ≥ (0, 0) and for all x ∈ X,

has a solution (u0, u, v) such that u0 > 0.

Suppose that x ∈ X is such that g(x) ≤ 0 and h(x) = 0.

From the previous inequality we conclude that
u0α(x) ≥ −utg(x) ≥ 0, since u ≥ 0 and g(x) ≤ 0. But, since u0 > 0,
we must then have that α(x) ≥ 0.

Hence,

System 1: α(x) < 0, g(x) ≤ 0, h(x) = 0 for some x ∈ X.

has no solution and this completes the proof. �



Proof of the Lemma (Ctd.)

Example (Ctd.)

α(x) = (x − 1)2 − 1
4 ,

h(x) = 2x − 1,

X = {x ∈ R : |x | ≤ 2}.

3

−5

α

h {α(x), h(x) : x ∈ X}

(u0, v)

If
{

System 2: u0α(x) + vth(x) ≥ 0 for some (u0, v) � (0, 0), u0 ≥ 0

and for all x ∈ X
}
, has a solution such that u0 > 0, and x ∈ X is

such that h(x) = 0, we can see that α(x) must be α(x) ≥ 0, and
hence System 1 has no solution.



Strong Duality

The following result, known as the strong duality theorem, shows
that, under suitable convexity assumptions and under a constraint
qualification, there is no duality gap between the primal and dual
optimal objective function values.

Theorem (Strong Duality Theorem)

Let X be a nonempty convex set in Rn. Let f : Rn → R and
g : Rn → Rm be convex, and h : Rn → R� be affine. Suppose that
the following constraint qualification is satisfied. There exists an
x̂ ∈ X such that g(x̂) < 0 and h(x̂) = 0, and 0 ∈ int h(X), where
h(X) = {h(x) : x ∈ X}. Then,

inf{f (x) : x ∈ X , g(x) ≤ 0, h(x) = 0} = sup{θ(u, v) : u ≥ 0}, (5)

where θ(u, v) = inf{f (x) + utg(x) + vth(x) : x ∈ X}. Furthermore, if
the inf is finite, then sup{θ(u, v) : u ≥ 0} is achieved at (ū, v̄) with
ū ≥ 0. If the inf is achieved at x̄, then ūtg(x̄) = 0.



Proof of the Strong Duality Theorem

Let γ = inf{f (x) : x ∈ X , g(x) ≤ 0, h(x) = 0}.
By assumption there exists a feasible solution x̂ for the primal
problem and hence γ < ∞.

If γ = −∞, we then conclude from the corollary of the Weak
Duality Theorem that sup{θ(u, v) : u ≥ 0} = −∞ and, hence, (5) is
satisfied.

Thus, suppose that γ is finite, and consider the following system:

f (x) − γ < 0, g(x) ≤ 0 h(x) = 0, for some x ∈ X .

By the definition of γ, this system has no solution. Hence, from the
previous lemma, there exists a nonzero vector (u0, u, v) with
(u0, u) ≥ (0, 0) such that

u0[f (x) − γ] + utg(x) + vth(x) ≥ 0 for all x ∈ X . (6)



Proof of the Strong Duality Theorem (Ctd.)

We will next show that u0 > 0. Suppose, by contradiction that
u0 = 0.

By assumption, there exists an x̂ ∈ X such that g(x̂) < 0 and
h(x̂) = 0. Substituting in (6) we obtain utg(x̂) ≥ 0. But, since
g(x̂) < 0 and u ≥ 0, utg(x̂) ≥ 0 is only possible if u = 0.

From (6), u0 = 0 and u = 0 imply that vth(x) ≥ 0 for all x ∈ X. But,
since 0 ∈ int h(X), we can choose an x ∈ X such that h(x) = −λv,
where λ > 0. Therefore, 0 ≤ vth(x) = −λ‖v‖2, which implies that
v = 0.

Thus, it has been shown that u0 = 0 implies that
(u0, u, v) = (0, 0, 0), which is a contradiction. We conclude, then,
that u0 > 0.



Proof of the Strong Duality Theorem (Ctd.)

Dividing (6) by u0 and denoting ū = u/u0 and v̄ = v/u0, we obtain

f (x) + ūtg(x) + v̄th(x) ≥ γ for all x ∈ X . (7)

This implies that θ(ū, v̄) = inf{f (x) + ūtg(x) + v̄th(x) : x ∈ X} ≥ γ.
We then conclude, from the Weak Duality Theorem, that
θ(ū, v̄) = γ. And, from the corollary of the Weak Duality Theorem,
we conclude that (ū, v̄) solves the dual problem.

Finally, to complete the proof, assume that x̄ is an optimal solution
to the primal problem; that is, x̄ ∈ X, g(x̄) ≤ 0, h(x̄) = 0 and
f (x̄) = γ.

From (7), letting x = x̄, we get ūtg(x̄) ≥ 0. Since ū ≥ 0 and
g(x̄) ≤ 0, we get ūtg(x̄) = 0.

This completes the proof. �



Example of Strong Duality

Example

Consider the following optimisation problem:

Primal Problem P

minimise (x − 1)2,

subject to:

2x − 1 = 0,

x ∈ X = {x ∈ R : |x | ≤ 2}.
It is clear that the optimal value of the objective function is equal to(
1
2
− 1

)2

=
1
4

, since the feasible set is the singleton

{
1
2

}
.



Example of Strong Duality

Example (Ctd.)

Lagrangian Dual Problem D

maximise θ(v),

where the Lagrangian dual function is,

θ(v) = inf{(x − 1)2 + v(2x − 1) : |x | ≤ 2}.
Differentiating w.r.t. x and equating to zero, we get that the
optimiser of the dual Lagrangian subproblem is x∗ = −v + 1 (if
−1 ≤ v ≤ 3).

Hence θ(v) = (−v + 1 − 1)2 + v(−2v + 2 − 1) = −v2 + v.

Differentiating w.r.t. v and equating to zero, we get that the

optimiser of the dual problem is v∗ =
1
2

and the optimal value of

the dual problem is −v∗2 + v∗ =
1
4

. Thus, there is no duality gap.



Example of Strong Duality

Example (Ctd.)

[ ]

-5 3

-2 2

X

Optimal primal
and dual objectives

[h(x), f (x)] = 2x − 1, (x − 1)2
]

h

f

Slope = −v∗ = −1/2
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KKT Example
Consider

min x21 + x22

s.t. x1 + x2 = 1,

x2 ≤ α,
where (x1, x2) ∈ R2, α ∈ R.
The Lagrangian function is

L(x1, x2, λ, µ) = x21 + x22 + λ(1− x1 − x2) + µ(x2 − α).

KKT conditions are

∂L

∂xi
= 0, i = 1, 2,

x1 + x2 = 1,

x2 − α ≤ 0,

µ ≥ 0,

µ(x2 − α) = 0.



KKT Example

Setting the partial derivatives zero, we get

∂L

∂x1
= 2x1 − λ = 0,

∂L

∂x2
= 2x2 − λ+ µ = 0.

Therefore, x1 = λ
2 , x2 = λ−µ

2 . Substituting into the equality
constraint:

x1 + x2 = λ− µ

2
= 1.

So λ = µ
2 + 1. We get

x1 =
µ

4
+

1

2
, x2 = −µ

4
+

1

2
.

Combining with the inequality constraint, we get −µ
4 + 1

2 ≤ α,
that is µ ≥ 2− 4α. We consider 3 cases.



KKT Example

I α > 1
2 : We can check that µ = 0 > 2− 4α satisfies all the

KKT conditions. So x∗1 = x∗2 = 1
2 is a strictly feasible solution

and the minimum value is 1
2 .

I α = 1
2 : Similar to case 1, µ = 0 = 2− 4α. x∗1 = x∗2 = 1

2 is a
boundary solution and the minimum value is 1

2 .

I α < 1
2 : In this case µ = 2− 4α > 0. Then

x∗1 = 1− α, x∗2 = α. The minimum value is (1− α)2 + α2.



Computation of KKT Points
There seems to be confusion on how one computes KKT points. In general this is a hard problem. The
problems I give you to do by hand are not necessarily easy, but they are doable. The basic is idea is to
make some reasonable guesses and then to use elimination techniques. I will illustrate this with the following
homework problem.

Problem: Locate all of the KKT points for the following problem. Are these points local solutions? Are
they global solutions?

minimize x21 + x22 − 4x1 − 4x2
subject to x21 ≤ x2

x1 + x2 ≤ 2 .

Solution: First write the problem in the standard form required for the application of the KKT theory:

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, 2, . . . , s

fi(x) = 0, i = s + 1, s + 2, . . . ,m.

In our example there are no equality constraints, so s = m = 2 and we have

f0(x1, x2) = x21 + x22 − 4x1 − 4x2 = (x1 − 2)2 + (x2 − 2)2 − 8

f1(x1, x2) = x21 − x2

f2(x1, x2) = x1 + x2 − 2 .

Note that we can ignore the constant term in the objective function since it does not effect the optimal
solution, so henceforth f0(x1, x2) = x1− 2)2 + (x2− 2)2. At this point it is often helpful to graph the solution
set if possible, as it is in this case. It is a slice of a parabola.

Since all of these functions are convex, this is an example of a convex programming problem and so the KKT
conditions are both necessary and sufficient for global optimality. Hence, if we locate a KKT point we know
that it is necessarily a globally optimal solution.

The Lagrangian for this problem is

L((x1, x2), (u1, u2)) = (x1 − 2)2 + (x2 − 2)2 + u1(x
2
1 − x2) + u2(x1 + x2 − 2) .

Let us now write the KKT conditions for this problem.

1. (Primal Feasibility) x21 ≤ x2 and x1 + x2 ≤ 2

2. (Dual Feasibility) 0 ≤ u1 and 0 ≤ u2

3. (Complementarity) u1(x
2
1 − x2) = 0 and u2(x1 + x2 − 2) = 0

4. (Stationarity of the Lagrangian)

0 = ∇xL((x1, x2), (u1, u2)) =

(
2(x1 − 2) + 2u1x1 + u2

2(x2 − 2)− u1 + u2

)
,

or equivalently

4 = 2x1 + 2u1x1 + u2

4 = 2x2 − u1 + u2.



Next observe that the global minimizer for the objective function is (x1, x2) = (2, 2). Thus, if this point
are feasible, it would be the global solution and the multipliers would both be zero. But it is not feasible.
Indeed, both constraints are violated by this point. Hence, we conjecture that both constraints are active at
the solution. In this case, the KKT pair ((x1, x2), (u1, u2)) must satisfy the following 4 key equations

x2 = x22

2 = x1 + x2

4 = 2x1 + 2u1x1 + u2

4 = 2x2 − u1 + u2.

This is 4 equations in 4 unknowns that we can try to solve by elimination. Using the first equation to eliminate
x2 from the second equation, we see that x1 must satisfy

0 = x21 + x1 − 2 = (x1 + 2)(x1 − 1),

so x1 = −2 or x1 = 1. Thus, either (x1, x2) = (−2, 4) or (x1, x2) = (1, 1). Since (1, 1) is closer the global
minimizer of the objective f0, let us first investigate (x1, x2) = (1, 1) to see if it is a KKT point. For this we
must find the KKT multipliers (u1, u2).

By plugging (x1, x2) = (1, 1) into the second of the key equations given above, we get

2 = 2u1 + u2 and 2 = −u1 + u2 .

By subtracting these two equations, we get 0 = 3u1 so u1 = 0 and u2 = 2. Since both of these values
are non-negative, we have found a KKT pair for the original problem. Hence, by convexity we know that
(x1, x2) = (1, 1) is the global solution to the problem.
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Convergence of gradient descent

Here we will prove convergence guarantees for gradient descent,
where we find a minimizer1 of

minimize
x∈RN

f (x)

using our generic iterative algorithm choosing the direction to move
as

dk = −∇f (xk) ,

resulting in the update rule

xk+1 = xk − αk∇f (xk) .

Our goal is to establish the convergence rate of gradient descent. This
can be measured in many different ways. One way is to establish

f (xk)− f (x?) ≤ some function that decreases to 0 as k →∞
:= g(k)

This established convergence of the function values to the minimum.
With a result like this in hand, you can ask

How many iterations do we need to be within ε of a solution?

and the answer is

k ≥ g−1(ε) iterations will suffice.

1In this section, we will always assume that a minimizer exists.
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For example, if we establish

f (xk)− f (x?) ≤ 5/k2

then we know that

k ≥
√

5

ε
⇒ f (xk)− f (x?) ≤ ε.

Note that the g(k) we derive will in general be monotonically de-
creasing and hence invertible.

If we know that there is a unique solution x?, we might also bound

‖xk − x?‖2 ≤ some function that decreases to 0 as k →∞.

The bounds we develop will depend on the structural properties of
the function f . In the mathematical optimization literature, there
are results for all different kinds of structure on f . In this set of
notes, we will consider two cases: convex differentiable f that

1. have an L-Lipschitz gradient map, i.e.

‖∇f (x)−∇f (y)‖2 ≤ L‖x− y‖2, for all x,y;

2. have an L-Lipschitz gradient and in addition are µ-strongly
convex, i.e.

f (y) ≥ f (x) + 〈y − x,∇f (x)〉 +
µ

2
‖y − x‖22 for all x,y.

We will see that the additional structure added in the second case
makes a dramatic difference in convergence rate.
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Convergence of gradient descent: f smooth

As we have discussed before, having an L-Lipschitz gradient is akin
to the function being smooth: if the derivative changes in a controlled
manner as we move from point to point, the function itself will be
very well-behaved.

On the homework, you showed that

‖∇f (x)−∇f (y)‖2 ≤ L‖x− y‖2, (1)

means that we have the pointwise quadratic upper bound

f (y) ≤ f (x) + 〈y − x,∇f (x)〉 +
L

2
‖y − x‖22 (2)

This provides some intuition for what kind of structure the Lipschitz
gradient condition imposes on f . Recall that for any convex function,
we have

f (y) ≥ f (x) + 〈y − x,∇f (x)〉.
So if f is convex, then at any point x we can bound f from below by a
linear approximation. If in addition, if f has a Lipschitz gradient, (2)
we can also bound it from above using a quadratic approximation.
We will often refer to functions that obey (1) as L-smooth.

Now, let’s consider running gradient descent on such a function with
a fixed step size2 αk = 1/L. Recall that the central gradient
descent iteration is just

xk+1 = xk −
1

L
∇f (xk).

2This requires that you know L, which may not be possible in practice. In
fact, if α < 1/L you will still get convergence, it will simply be slower.
Moreover, it is not too hard to extend this approach to get a similar
guarantee when using a backtracking line search.
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From our assumption that f is L-smooth, we know that f satis-
fies (2), and thus plugging in y = xk+1, we obtain

f (xk+1) ≤ f (xk) +

〈
− 1

L
∇f (xk),∇f (xk)

〉
+
L

2

∥∥∥∥ 1

L
∇f (xk)

∥∥∥∥2
2

= f (xk)−
1

L
‖∇f (xk)‖22 +

1

2L
‖∇f (xk)‖22

= f (xk)−
1

2L
‖∇f (xk)‖22. (3)

Note that (3) shows that f (xk+1) < f (xk) as long as we are not
already at the solution, so we are at least guaranteed to make some
progress at each iteration. In fact, it says a bit more, giving us
a guarantee regarding how much progress we are making, namely
that

f (xk)− f (xk+1) ≥
1

2L
‖∇f (xk)‖22,

so that if the gradient is large we are guaranteed to make a large
amount of progress.

In the Technical Details section at the end of these notes, we show
that by combining this result with the definition of convexity and
doing some clever manipulations, we can get a guarantee of the form

f (xk)− f (x?) ≤ L

2k
‖x0 − x?‖22.

Thus, for L-smooth functions, we can guarantee that the error is
O(1/k) after k iterations. Another way to put this is to say that we
can guarantee accuracy

f (xk)− f (x?) ≤ ε
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as long as

k ≥ L

2ε
‖x0 − x?‖22.

Note that if ε is very small, this says we can expect to need a very
large number of iterations.

Convergence of gradient descent: smooth and strongly
convex

We will now show that the convergence rate is much faster if f is
strongly convex in addition to being smooth. Recall that for a µ-
strongly convex function, we have

f (y) ≥ f (x) + 〈y − x,∇f (x)〉 +
µ

2
‖y − x‖22. (4)

for all x,y.

We will use the same fixed step size αk = 1/L, and begin our analysis
in the same way as before, in which we derived the intermediate result
(3) that the L-smoothness of f implies

f (xk+1) ≤ f (xk)−
1

2L
‖∇f (xk)‖22.

We can now use strong convexity to obtain a lower bound on ‖∇f (x)‖22.

We can obtain a simpler lower bound for f (y) by determining the
smallest value that the right-hand side of (4) could ever take over
all possible choices of y. To do this, we simply minimize this lower
bound by taking the gradient with respect to y and setting it equal
to zero:

∇f (x) + µ(y − x) = 0,
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From this we obtain that the lower bound in (4) will be minimized
by

y − x = −1

µ
∇f (x).

Plugging this into (4) yields

f (y) ≥ f (x)− 1

µ
‖∇f (x)‖22 +

1

2µ
‖∇f (x)‖22

= f (x)− 1

2µ
‖∇f (x)‖22.

In particular, this applies when y = x?, which after some rearranging
yields

‖∇f (x)‖22 ≥ 2µ (f (x)− f (x?)) . (PL)

This is a famous and useful result, often referred to as the Polyak-
 Lojasiewicz inequality.

Combining the PL inequality with (3) we obtain

f (xk+1)− f (x?) ≤ f (xk)− f (x?)− µ

L
(f (xk)− f (x?))

=

(
1− µ

L

)
(f (xk)− f (x?)) .

That is, the gap between the current value of the objective function
and the optimal value is cut down by a factor of 1 − µ/L < 1 at
each iteration. (Note that (2) and (4) imply that L ≥ µ.)

This is an example of linear convergence; it is easy to apply the
above iteratively to show that

f (xk)− f (x?) ≤
(

1− µ

L

)k

(f (x0)− f (x?)) . (5)
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If we use ε0 = f (x0)− f (x?) to denote the initial error, this means
that we can guarantee that

f (xk)− f (x?) ≤ ε

for

k ≥ log(ε/ε0)

log(1− µ/L)

≥ L

µ
log

(
ε0
ε

)
,

where the second inequality uses the fast that − log(1− α) ≥ α for
all 0 ≤ α < 1.

Let’s step back for a moment, and compare

1

ε
versus log

(
1

ε

)
.

What are these quantities when ε = 10−2? What about 10−6? This
is all to say that the performance guarantees for gradient descent are
dramatically better when f is strictly convex than when it is not.

We can also use (5) to characterize the convergence of the iterates
xk to the unique solution x?. Applying (4) with x = x? and y = xk

yields (after noting ∇f (x?) = 0)

f (xk)− f (x?) ≥ µ

2
‖xk − x?‖22,

while applying (2) with x = x? and y = x0 yields

f (x0)− f (x?) ≤ L

2
‖x0 − x?‖22.
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Combining these with (5) yields

‖xk − x?‖22 ≤
L

µ

(
1− µ

L

)k

‖x0 − x?‖22,

so xk → x? at a linear rate as well. I will note that a more careful
analysis (which we won’t go into here) can also remove the factor of
L/µ in front, yielding

‖xk − x?‖22 ≤
(

1− µ

L

)k

‖x0 − x?‖22.

Finally, we also note that the PL inequality above also provides some
guidance in terms of setting a stopping criterion. Specifically, if we
declare convergence when ‖∇f (xk)‖2 ≤ ε then the PL inequality
allows us to conclude that

f (xk)− f (x?) ≤ 1

2µ
‖∇f (xk)‖22 ≤

ε2

2µ
.

This provides a principled way of declaring convergence.
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Technical Details: L-smooth convergence

Here we complete the convergence analysis for gradient descent on
L-smooth functions that is summarized above. Specifically, recall
that above in (3) we showed that if f is L-smooth then

f (xk+1) ≤ f (xk)−
1

2L
‖∇f (xk)‖22.

Moreover, by the convexity of f ,

f (xk) ≤ f (x?) + 〈xk − x?,∇f (xk)〉,

where x? is a minimizer of f , and so we have

f (xk+1) ≤ f (x?) + 〈xk − x?,∇f (x)〉 − 1

2L
‖∇f (xk)‖22.

Substituting ∇f (xk) = L(xk − xk+1) then yields

f (xk+1)− f (x?) ≤ L〈xk − x?,xk − xk+1〉 −
L

2
‖xk − xk+1‖22. (6)

We can re-write this in a slightly more convenient way using the fact
that

‖a− b‖22 = ‖a‖22 − 2〈a, b〉 + ‖b‖22
and thus

2〈a, b〉 − ‖b‖22 = ‖a‖22 − ‖a− b‖22.
Setting a = xk − x? and b = xk − xk+1 and applying this to (6),
we obtain the bound

f (xk+1)− f (x?) ≤ L

2

(
‖xk − x?‖22 − ‖xk+1 − x?‖22

)
.
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This result bounds how far away f (xk+1) is from the optimal f (x?) in
terms (primarily) of the error in the previous iteration: ‖xk − x?‖22.
We can use this result to bound f (xk+1) − f (x?) in terms of the
initial error ‖x0 − x?‖22 by a clever argument.

Specifically, this bound holds not only for iteration k, but for all
iterations i = 1, . . . , k, so we can write down k inequalities and then
sum them up to obtain

k∑
i=1

f (xi)− f (x?) ≤ L

2

(
k∑

i=1

‖xi−1 − x?‖22 − ‖xi − x?‖22

)
.

The right-hand side of this inequality is what is called a telescopic
sum: each successive term in the sum cancels out part of the previous
term. Once you write this out, all the terms cancel except for two
(one component from the i = 1 term and one from the i = k term)
giving us:

k∑
i=1

f (xi)− f (x?) ≤ L

2

(
‖x0 − x?‖22 − ‖xk − x?‖22

)
≤ L

2
‖x0 − x?‖22.

Since, as noted above, f (xi) is monotonically decreasing in i, we also
have that

k (f (xk)− f (x?)) ≤
k∑

i=1

f (xi)− f (x?),

and thus

f (xk)− f (x?) ≤ L

2k
‖x0 − x?‖22,

which is exactly what we wanted to show.
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Accelerated first-order methods

In the last lecture we provided convergence guarantees for gradient
descent under two different assumptions. Under the stronger assump-
tion that f was both L-smooth and strongly convex with parameter
µ, we showed that convergence to a tolerance of ε was possible in
O(L

µ
log(1/ε)) iterations. Under the weaker assumption where we

only assume that f is L-smooth, we were able to show that O(L/ε)
iterations would be sufficient.

In this lecture we show that there are small changes we can make
to gradient descent that can dramatically improve its performance,
both in theory (resulting in improvements on the bounds above)
and in practice. We will talk about two of these here: the heavy ball
method and Nesterov’s “optimal algorithm.” Both of these strategies
incorporate the idea of momentum, although in subtly different ways.

Momentum

One way to interpret gradient descent is as a discretization to the
gradient flow differential equation

x′(t) = −∇f (x(t)),

x(0) = x0.
(1)

The solution to (1) is a curve that tracks the direction of steep-
est descent directly to the minimizer, where it arrives at a fixed
point (where ∇f (x) = 0). To see how gradient descent arises as a
discretization of (1), suppose we approximate the derivative with a
forward difference

x′(t) ≈ x(t + h)− x(t)

h
,
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for some small h. So if we think of xk+1 and xk as closely spaced
time points, we can interpret

1

α
(xk+1 − xk) = −∇f (xk),

as a discrete approximation to gradient flow. Re-arranging the equa-
tion above yields the gradient descent iteration xk+1 = xk−α∇f (xk).

The problem is once we perform this discretization, the path tends
to oscillate. One way to get a more regular path is to consider an
alternative differential equation that also has a fixed point where
∇f (x) = 0 but also incorporates a second-order term:

mx′′(t) + x′(t) = −∇f (x(t)). (2)

From a physical perspective, this is a model for a particle with mass
mmoving in a potential field with friction. This results in trajectories
that develop momentum (a heavy ball will move down a hill faster
than a light one in the presence of friction). In the case where m = 0
we recover (1), but in general the inclusion of the mass term above
will result in a more accelerated trajectory towards the solution.

We can discretize the dynamics as before by setting

x′′(t) ≈ xk+1 − 2xk + xk−1

h1

, x′(t) ≈ xk − xk−1

h2

.

If we plug these into (2) and rearrange we obtain an update rule of
the form

xk+1 = xk + βk(xk − xk−1)− αk∇f (xk), (3)

where β = h1/h2m and α = h1/m. This is the core iteration for the
heavy ball method, introduced by Polyak in 1964 [Pol64]. The
xk − xk−1 term above adds a little bit of the last step xk − xk−1
direction into the new step direction xk+1−xk – this method is also
referred to as gradient descent with momentum.
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Convergence of the heavy ball method

In the previous lecture we showed that if f (x) is L-smooth and
strongly convex, then we can obtain a bound of the form

f (xk+1)− f (x?) ≤
(

1− 1

κ

)k
(f (x0)− f (x?)) ,

where κ = L/µ is the “condition number.” From this we showed
that we can guarantee

f (xk)− f (x?)

f (x0)− f (x?)
≤ ε

provided that
k ≥ κ log (1/ε) .

In the Technical Details at the end of these notes we also provide
an alternative argument for the convergence of gradient descent that
begins by showing that

‖xk − x?‖2 ≤
(
κ− 1

κ + 1

)k
‖x0 − x?‖2.

Using a similar argument as before, we can use this to show that

‖xk − x?‖2
‖x0 − x?‖2

≤ ε

provided that
k ≥ κ log(1/ε).

(Note that

κ− 1

κ + 1
= 1− 2

κ + 1
≤ 1− 1/κ = 1− µ/L,
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where the inequality comes from the fact that κ ≥ 1.)

The heavy ball method significantly improves on this result in terms
of its dependence on κ.

Specifically, under the same assumptions as before (L-smoothness
and strong convexity), in the Technical Details section we show (for
the quadratic case) that for the heavy ball method with

αk =
4

(
√
L +
√
µ)2

and βk =

(√
L−√µ√
L +
√
µ

)2

we can achieve

‖xk − x?‖2
‖x0 − x?‖2

≤ ε when k &
√
κ log(1/ε).

The difference with gradient descent can be significant. When κ =
102, we are asking for ≈ 100 log(1/ε) iterations for gradient descent,
as compared with ≈ 10 log(1/ε) from the heavy ball method.

Conjugate gradients

If you are familiar with the method of conjugate gradients (CG),
some of this may feel vaguely familiar. If you have never heard of CG,
I highly recommend reading through the tutorial “An introduction to
the conjugate gradient method without the agonizing pain” [She94].

The CG method was developed for minimizing quadratic functions
of the form f (x) = 1

2
xTQx−xTb. While it is normally presented in

quite a different fashion, it ultimately boils down to being a variant of
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the heavy ball method that is particularly well-suited to minimizing
quadratic functions. To see this connection, note that the core CG
iteration can be expressed1 as

dk = −∇f (xk) + βkdk−1
xk+1 = xk + αkdk,

where we start with d0 = −∇f (x0). In CG, the βk are set as

βk =
‖∇f (xk)‖22
‖∇f (xk−1)‖22

.

If f (x) is a quadratic function this choice ensures that at each itera-
tion dk is conjugate to d0, . . . ,dk−1. We won’t worry about saying
more about this beyond the fact that this is a good idea if f (x)
is quadratic. Once βk is fixed, αk can then be chosen using a line
search. Again, if f (x) is quadratic, there is a simple closed form
solution for this (which we have previously derived).

While CG is parameterized differently than the heavy ball method
as described in (3), they are fundamentally the same. To see this
note that we can also write

xk+1 = xk + αk (−∇f (xk) + βkdk−1)

= xk − αk∇f (xk) + αkβk
xk − xk−1

αk−1
.

This is precisely the same iteration as (3), but with a slightly different
way of parameterizing the weight being applied to the momentum
term.
1You will typically see this algorithm described specifically for the quadratic

case, in which case ∇f(x) = Qx− b and these calculations are carefully
broken up to re-use as many calculations as possible and avoid any un-
necessary matrix-vector multiplies, so it may initially look quite different.
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If you are trying to minimize a quadratic function, CG is the way
to go. The convergence guarantees you get for CG when minimizing
a quadratic function are just as good (but not actually better than)
what you have for the heavy ball method, but you don’t need to
know anything like Lipschitz or strong convexity parameters (which
would correspond to the maximum and minimum eigenvalues of Q)
in order to choose the αk and βk.

However, if you are trying to minimize anything else CG is not
necessarily a good choice. The choices for αk and βk are highly tuned
to the quadratic setting and can yield unstable results in general.

Nesterov’s “optimal” method

In the case where f is strictly convex, you can come up with examples
that show that the convergence rate of the heavy ball method can’t
be improved in general. For non-strictly convex f , the story is more
complicated.

Recall that we also have a convergence result for gradient descent
in the case where we only assume L-smoothness. In particular, last
time we showed that for a fixed step size α = 1/L,

f (xk)− f (x?) ≤ L

2k
‖x0 − x?‖22.

Thus, to reduce the error by a factor of ε requires

k ≥ L

2ε
iterations.

In 1983, Yuri Nesterov proposed a slight variation on the heavy ball
method that can improve on this theory, and often works better in
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practice [Nes83].2 Specifically, recall the heavy ball method, which
can be represented via the iteration:

pk = βk (xk − xk−1)

xk+1 = xk + pk − αk∇f (xk),

where we start with p0 = 0. Nesterov’s method makes a subtle, but
significant, change to this iteration:

pk = βk (xk − xk−1)

xk+1 = xk + pk − αk∇f (xk + pk).
(4)

Notice that this is the same as heavy ball except that there is also a
momentum term inside the gradient expression. With this iteration,
we will show that (for a suitable choice of αk and βk)

f (xk)− f (x?) .
L

k2
‖x0 − x?‖22,

meaning that we can reduce the error by a factor of ε in

k &
1√
ε
,

iterations. When ε ∼ 10−4, this is much, much better than 1/ε.

Nesterov’s method is called “optimal” because it is impossible to beat
the 1/k2 rate using only function and gradient evaluations. There
are careful demonstrations of this in the literature (e.g., in [Nes04]).

Note that in practice, αk can be chosen using a standard line search,
and a good choice of βk (both in practice, and as we will show below,

2Note that this method remained to a large extent unknown in the wider
community until his 2004 publication (in English) of [Nes04].
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in theory) turns out to be

βk =
k − 1

k + 2
. (5)

This tells us that we should initially not provide much weight to the
momentum term, which makes intuitive sense as the initial gradients
may not be pushing us in the right direction, but as we proceed we
should have increased confidence that we are headed in the right
direction and increase how much weight we place on the momentum
term.

Significantly, note that in setting βk we do not need to know any-
thing about the function we are minimizing (such as strong convexity
parameters). This represents an important advantage compared to
the heavy ball method described above.

Convergence analysis of Nesterov’s method

Analyzing the convergence of Nesterov’s method under the assump-
tion of L-smoothness is a little more involved than for gradient de-
scent, but the overall approach is the same and contains many of the
same elements, so we will start by recalling the main building blocks
that we used in analyzing gradient descent.

Consequences of convexity and L-smoothness
First, we recall some basic facts that hold for any x,y ∈ dom f .
Since f is convex we have

f (y) ≥ f (x) + 〈y − x,∇f (x)〉. (6)

Since f is L-smooth we have

f (y) ≤ f (x) + 〈y − x,∇f (x)〉 +
L

2
‖y − x‖22. (7)
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As a consequence of (7) (by setting y = x− 1
L
∇f (x)), we have that

for any x,

f

(
x− ∇f (x)

L

)
≤ f (x)− ‖∇f (x)‖22

2L
. (8)

Combining this with the upper bound on f (x) that you can obtain
by rearranging (6), we obtain

f

(
x− ∇f (x)

L

)
≤ f (y) + 〈x− y,∇f (x)〉 − ‖∇f (x)‖22

2L
. (9)

As we will see below, this inequality is the foundation of our analysis
of both gradient descent and Nesterov’s method. By plugging in
different choices for y (such as xk or x?) we can obtain both lower
bounds on how much progress we make when we take a gradient
step as well as upper bounds on how far away we are from a global
optimum.

Convergence of gradient descent
Recall that in our analysis for gradient we assume a fixed step size
α = 1/L, resulting in an update rule of

xk+1 = xk −
∇f (xk)

L
.

Thus, setting x = xk and y = x? in (9) implies that

f (xk+1) ≤ f (x?) + L〈xk − x?,xk − xk+1〉 −
L

2
‖xk − xk+1‖22.

From this, if we define δk = f (xk) − f (x?) and do some algebraic
manipulation (see the previous notes) we get a bound of the form

δk+1 ≤
L

2

(
‖xk − x?‖22 − ‖xk+1 − x?‖22

)
.
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This yields the telescopic sum

k−1∑
i=0

δi+1 ≤
L

2

(
k−1∑
i=0

‖xi − x?‖22 − ‖xi+1 − x?‖22

)

=
L

2

(
‖x0 − x?‖22 − ‖xk − x?‖22

)
≤ L

2
‖x0 − x?‖22.

The proof for gradient descent concludes by noting that

δk ≤
1

k

k−1∑
i=0

δi+1 ≤
L

2k
‖x0 − x?‖22.

Convergence of Nesterov’s method
We will follow a similar argument to analyze Nesterov’s method. We
will again take αk = 1/L, but we will see that the analysis suggests
a natural choice for βk. With this choice of αk, the main iteration
from (4) is

xk+1 = xk + pk −
1

L
∇f (xk + pk).

It will be convenient to define

gk = − 1

L
∇f (xk + pk),

so that the main iteration becomes simply xk+1 = xk + pk + gk.
With this notation, by setting x = xk + pk in (9) we obtain the
bound

f (xk+1) ≤ f (y)− L〈xk − pk − y, gk〉 −
L

2
‖gk‖22. (10)
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If we set y = x? in (10) and again let δk denote f (xk) − f (x?) we
obtain

δk+1 ≤
L

2

(
2〈x? − xk − pk, gk〉 − ‖gk‖22

)
. (11)

In our analysis of gradient descent, we then tried to rearrange an
analogous bound to obtain a telescopic sum, but that doesn’t quite
work here. Instead we will need to combine (11) with another bound.
Noting that δk − δk+1 = f (xk) − f (xk+1), we observe that setting
y = xk in (10) yields

δk − δk+1 ≥
L

2

(
2〈pk, gk〉 + ‖gk‖22

)
. (12)

We now consider the inequality formed by adding together (11) and
1 − λk times (12) (where λk is something we will choose later, but
satisfies λk ≥ 1, so that this multiplication switches the direction of
the inequality). The left-hand side of the sum will be

δk+1 + (1− λk)(δk − δk+1) = λkδk+1 − (λk − 1)δk.

The right-hand side of the sum will be

L

2

(
2〈x? − xk − pk + (1− λk)pk, gk〉 − ‖gk‖22 + (1− λk)‖gk‖22

)
=
L

2

(
2〈x? − xk − λkpk, gk〉 − λk‖gk‖22

)
=

L

2λk

(
2〈x? − xk − λkpk, λkgk〉 − ‖λkgk‖22

)
=

L

2λk

(
‖x? − xk − λkpk‖22 − ‖x? − xk − λkpk − λkgk‖22

)
,

where the last equality follows from the easily verified fact that
2〈a, b〉 − ‖b‖22 = ‖a‖22 − ‖a − b‖22. If we make the substitution
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uk = xk + λkpk, then combining these yields the inequality

λ2
kδk+1 − (λ2

k − λk)δk ≤
L

2

(
‖x? − uk‖22 − ‖x? − uk − λkgk‖22

)
.

(13)

We will now show that if we choose λk and βk appropriately, (13) will
yield a telescopic sum on both sides. This will occur on right-hand
side of (13) if

uk + λkgk = uk+1.

Noting that pk+1 = βk+1(xk+1 − xk) = βk+1(pk + gk), we can write

uk+1 = xk+1 + λk+1pk+1

= xk + pk + gk + λk+1βk+1(pk + gk)

= xk + (1 + λk+1βk+1)(pk + gk).

Thus, to make uk+1 equal to uk+λkgk = xk+λk(pk+gk) we simply
need to have

λk = 1 + λk+1βk+1 ⇒ βk+1 =
λk − 1

λk+1

. (14)

For βk satisfying (14), if we sum (13) from i = 0 to k − 1 we thus
have

k−1∑
i=0

λ2
iδi+1 − (λ2

i − λi)δi ≤
L

2

(
‖x? − u0‖22 − ‖x? − uk‖22

)
≤ L

2
‖x? − u0‖22

=
L

2
‖x? − x0‖22. (15)
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Next, one possible approach is to choose the λk so as to obtain a
telescopic sum on the left-hand side of the inequality as well. This is
the approach you will see most often in analyzing the convergence of
Nesterov’s method, but it is a little involved and leads to a recursive
formula for λk (and hence βk) instead of a simple closed form expres-
sion. Instead we will choose a simpler λk that yields essentially the
same bound.

Specifically, suppose that we set λk = (k + 2)/2. First, note that
from (14) this yields

βk+1 =
k+2
2
− 1

k+1
2

=
k

k + 3
,

which coincides with the rule for setting βk given in (5). Next, note
that we can write

k−1∑
i=0

λ2
iδi+1−(λ2

i−λi)δi = (λ0−λ2
0)δ0+λ2

k−1δk+
k−1∑
i=1

(λ2
i−1−λ2

i +λi)δi.

Plugging in λi = (i + 2)/2 yields

k−1∑
i=0

λ2
iδi+1 − (λ2

i − λi)δi =

(
k + 1

2

)2

δk +
1

4

k−1∑
i=0

δi

≥
(
k + 1

2

)2

δk,

where the inequality follows since δi = f (xi)−f (x?) ≥ 0. Combining
this lower bound with (15) yields(

k + 1

2

)2

δk ≤
L

2
‖x? − x0‖22
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or equivalently

f (xk)− f (x?) ≤ 2L

(k + 1)2
‖x? − x0‖22,

which is exactly the O(1/k2) convergence rate we wanted.
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Technical Details: Analysis of the heavy ball
method

We will analyze the heavy ball method for the special case of a
quadratic function:

minimize
x∈RN

f (x) =
1

2
xTQx + bTx

We will assume that the eigenvalues of Q are in [µ, L], and so f (x)
is both L-smooth and µ-strongly convex.

Gradient descent revisited

We will warm up for our analysis on the heavy ball method by quickly
revisiting standard gradient descent. In the quadratic case, there is
an easy argument that

‖xk+1 − x?‖2 ≤
L− µ
L + µ

‖xk − x?‖2

=
κ− 1

κ + 1
‖xk − x?‖2,

where κ = L/µ is the condition number of Q.

Since xk+1 = xk − αk∇f (xk) and ∇f (x?) = 0, we have

‖xk+1 − x?‖2 = ‖xk − αk∇f (xk)− x?‖2
= ‖xk − x? − αk (∇f (xk)−∇f (x?))‖2
= ‖(I− αkQ)(xk − x?)‖2
≤ ‖I− αkQ‖ · ‖xk − x?‖2
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Since we have a bound on the eigenvalues of Q, we know that the
maximum eigenvalue of the symmetric matrix I − αkQ is no more
than

‖I− αkQ‖ ≤ max (|1− αkµ|, |1− αkL|) .
If we take αk = 2/(L + µ), we obtain

‖I− αkQ‖ ≤
L− µ
L + µ

=
κ− 1

κ + 1
,

and so

‖xk+1 − x?‖2 ≤
(
κ− 1

κ + 1

)
‖xk − x?‖2,

and by induction on k

‖xk − x?‖2 ≤
(
κ− 1

κ + 1

)k
‖x0 − x?‖2.

Heavy ball

For the heavy ball method, we have a similar analysis3 that ends in
a better result. Recall the heavy ball iteration

xk+1 = xk + βk(xk − xk−1)− αk∇f (xk),

We will derive a bound on how quickly ‖xk+1 − x?‖2 + ‖xk − x?‖22
goes to zero for fixed values of αk = α, βk = β which we will choose

3These notes are derived from [Wri18].
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later. Rewriting the iteration above, we have[
xk+1 − x?

xk − x?

]
︸ ︷︷ ︸

zk+1

=

[
xk + β(xk − xk−1)− x?

xk − x?

]
− α

[
∇f (xk)−∇f (x?)

0

]

=

[
xk + β(xk − xk−1)− x?

xk − x?

]
− α

[
Q (xk − x?)

0

]
=

[
(1 + β)I− αQ −βI

I 0

]
︸ ︷︷ ︸

T

[
xk − x?

xk−1 − x?

]
︸ ︷︷ ︸

zk

,

We have zk = T kz0, and so

‖zk‖2 ≤ ‖T k‖ · ‖z0‖2,

so we want to bound the spectral norm (largest singular value) of
T k
k.

We are now analyzing the rate of convergence (to zero) of a linear
dynamical system. We know that the eigenvalues of T k are the
eigenvalues of T raised to the kth power. The only complicating
factor is that T is not symmetric, and so the eigenvalues and singular
values are not the same thing. We reconcile this using the spectral
radius

ρ(T ) = maximum magnitude of eigenvalues of T .

Two key results from linear algebra and dynamical systems are that
ρ(T ) ≤ ‖T ‖ and

ρ(T ) = lim
k→∞
‖T k‖1/k.

That is, for any given δ > 0, there exists an n such that

‖T k‖1/k ≤ ρ(T ) + δ,
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for all k ≥ n. Thus if we define the constant

C = max
0≤k≤n

‖T k‖
(ρ(T ) + δ)k

,

we will have
‖T k‖ ≤ C (ρ(T ) + δ)

k
. (16)

We are left with the task of bounding ρ(T ) < 1 and choosing an
appropriate δ. (Note that if T were symmetric, we would simply
have ρ(T ) = ‖T ‖ and ‖T k‖ = ‖T ‖k = ρ(T )k.)

We can get a start on this by taking an eigenvalue decomposition of
the symmetric positive definite matrix Q = V ΛV T. Since V V T =
I, we can write[

(1 + β)I− αQ −βI
I 0

]
=

[
V 0
0 V

] [
(1 + β)I− αΛ −βI

I 0

] [
V T 0

0 V T

]
.

Since

[
V 0
0 V

]
is orthonormal, its application on the right of a matrix

and its transpose (inverse) on the left does not change the eigenvalues,
and so we can study the spectral radius of

T ′ =

[
(1 + β)I− αΛ −βI

I 0

]
.

Notice that this a 2N×2N matrix divided into 4 blocks, each of which
is an N × N diagonal matrix. As such, there is also a permutation
matrix P that we can apply on both the rows and columns to make
this a block diagonal matrix (with 2× 2 blocks along the diagonal):

PT ′P T =

T ′1 . . .
T ′N

 , T ′n =

[
1 + β − αλn −β

1 0

]
.
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Since again the application of a matrix and its inverse on either side
does not change the eigenvalues, we can compute the spectral radius
of the matrix on the right. Since it is block diagonal, we know the
spectral radius is the maximum of the individual spectral radii of the
blocks. That is, we now have

ρ(T ) = max
1≤n≤N

ρ(T ′n).

Since it is a 2 × 2 matrix, we can compute the eigenvalues of T ′n
exactly. We know that γ is an eigenvalue of T ′n if det(T ′n− γI) = 0,
i.e. if

γ2 − (1 + β − αλn)γ + β = 0,

which means the eigenvalues are

(γ1, γ2) =
1

2

(
1 + β − αλn ±

√
(1 + β − αλn)2 − 4β

)
.

If we choose β so that the eigenvalues are complex,

4β > (1 + β − αλn)2 (17)

then we have

(γ1, γ2) =
1

2

(
1 + β − αλn ± j

√
4β − (1 + β − αλn)2

)
,

and |γ1| = |γ2| = β, and hence ρ(T ′n) = β. Using that fact that
µ ≤ λn ≤ L, we can ensure (17) holds when

β = min(|1−√αµ|2, |1−
√
αL|2).

We can now choose α so that these two terms are equal,

α =
4

(
√
L +
√
µ)2

⇒ 1−√αµ = −(1−
√
αL) =

√
L−√µ√
L +
√
µ
,
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and so

β =

(√
L−√µ√
L +
√
µ

)2

=

(
1− 2√

κ + 1

)2

.

Taking δ = 1/(
√
κ + 1) in (16) above and using β2 ≤ β, we have

‖zk‖2 ≤ C

(
1− 1√

κ + 1

)k
‖z0‖2.

This means we are guaranteed that ‖zk‖2 ≤ ε when

k ≥
(√
κ + 1

)
log(Cε0/ε), ε0 = ‖z0‖2,

&
√
κ log(ε0/ε).
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Newton’s Method

Newton’s method is a classical technique for finding the root of a
general differentiable function f (x) : R → R. That is, we want to
find an x ∈ R such that

f (x) = 0.

As you probably learned in high school, one technique for doing this
is to start at some guess x0, and then follow the iteration

xk+1 = xk −
f (xk)

f ′(xk)
.

This update results from taking a simple linear approximation at
each step:

xk+1

f (xk) f ′(xk)

f (x)

x
xk

Of course, there can be many roots, and which one we converge to
will depend on what we choose for x0. It is also very much possible
that the iterations do not converge for certain (or even almost all)
initial values x0.
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However there is a classical convergence theory that says that once
we are close enough to a particular root x0, we will have

|x0 − xk+1|︸ ︷︷ ︸
εk+1

≤ C · (x0 − xk)2︸ ︷︷ ︸
ε2k

,

where the constant C depends on the ratio between the first and
second derivatives in the interval1 around the root x0:

C = sup
x∈I

|f ′′(x)|
2|f ′(x)|.

The take-away here is that close to the solution, Newton’s methods
exhibits quadratic convergence: the error at the next iteration is
proportional to the square of the error at the last iteration. Since we
are concerned with εk small, εk � 1, this means that under the right
conditions, the error goes down in dramatic fashion from iteration to
iteration.

Notice that applying the technique requires that f is differentiable,
but the convergence guarantee depends on f be twice (continuously)
differentiable.

When f (x) is convex, twice differentiable, and has a minimizer, we
can find a minimizer by applying Newton’s method to the derivative.
We start at some initial guess x0, and then take

xk+1 = xk −
f ′(xk)

f ′′(xk)
. (1)

1There are various technical conditions that f must obey on I for this
result to hold, including the second derivative being continuous and the
first derivative not being equal to zero. Also, the condition “close enough”
is characterized by looking at ratios of derivatives at the root and on I.
The Wikipedia article on this is not bad: https://en.wikipedia.org/
wiki/Newton’s_method.
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Again, if f is three-times continuously differentiable, we converge to
the global minimizer quadratically with a constant that depends on

C = sup
x∈I

1

2

|f ′′′(x)|
|f ′′(x)| ,

for an appropriate interval I around the solution. Again, apply-
ing the method relies on us being able to compute first and second
derivatives of f , and the analysis relies on f being three-times differ-
entiable.

We can interpret the iteration (1) above in the following way:

1. At xk, approximate f (x) using the Taylor expansion

f (x) ≈ f (xk) + f ′(xk)(x− xk) +
1

2
f ′′(xk)(x− xk)2.

2. Find the exact minimizer of this quadratic approximation. Tak-
ing the derivative of the expansion above and setting it equal
to zero yields the following optimality condition for x̂ to be a
minimizer:

f ′′(xk) · (x̂− xk) = −f ′(xk).
This is just a re-arrangement of the iteration (1).

3. Take xk+1 = x̂.

This last interpretation extends naturally to the case where f (x) is a
function of many variables, f : RN → R. We know that if f is convex
and twice differentiable, we have a minimizer x? when ∇f (x?) = 0.
Newton’s method to find such a minimizer proceeds as above. We
start with an initial guess x0, and use the following iteration:
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1. Take a Taylor approximation around f (xk):

f (x) ≈ f (xk) + 〈x− xk, g〉 +
1

2
(x− xk)

TH(x− xk)

where

g = ∇f (xk) = N × 1 gradient vector at xk

H = ∇2f (xk) = N ×N Hessian matrix at xk.

2. Find the exact minimizer x̂ to this approximation. This gives
us the problem

minimize
x∈RN

gT(x− xk) +
1

2
(x− xk)

TH(x− xk).

Since H ∈ SN+ (since we are assuming f is convex), we know
that the conditions for x̂ being a minimizer2 are

H(x− xk) = −g.
If H is invertible (i.e., H ∈ SN++), then we have a unique
minimizer and

x̂ = xk −H−1g.

3. Take xk+1 = x̂.

This procedure is often referred to as a pure Newton step, as it does
not involve the selection of a step size. In practice, however, it is
often beneficial to choose the step direction as

dk = − (∇2f (xk)
)−1∇f (xk),

and then choose a step size αk using a backtracking line search, and
then take

xk+1 = xk + αkdk

as before.
2Take the gradient of this new expression and set it equal to 0.
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Convergence of Newton’s Method

Suppose that f (x) is strongly convex,

µI � ∇2f (x) � LI, ∀x ∈ RN ,

and that its Hessian is Lipschitz,

‖∇2f (x)−∇2f (y)‖ ≤ Q‖x− y‖2.
(The norm on the left-hand side above is the standard operator
norm.) We will show that the Newton algorithm coupled with an
exact line search3 provides a solution with precision ε:

f (xk)− p? ≤ ε,

provided that the number of iterations satisfies

k ≥ C1 (f (x0)− p?) + log2 log2(ε0/ε),

where we can take the constants above to be C1 = 2L2Q2/µ5 and
ε0 = 2µ3/Q2. Qualitatively, this says that Newton’s method takes a
constant number of iterations to converge to any reasonable precision
— we can bound log2 log2(ε0/ε) ≤ 6 (say) for ridiculously small values
of ε.

To establish this result, we break the analysis into two stages. In
the first, the damped Newton stage, we are far from the solution (as
measured by ‖∇f (xk)‖2), but we make constant progress towards
the answer. Specifically, we will show that in this stage,

f (xk)− f (xk+1) ≥ 1/C1.

3These results are easily extended to backtracking line searches; we are just
using an exact line search to make the exposition easier. See [BV04, Sec.
9.5.3] for the analysis with backtracking.
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This implies that when we are far from the solution, we reduce the
gap f (xk)− p? by at least 1/C1 at each iteration. It should be clear,
then, that the number of damped Newton steps is no greater than
C1 (f (x0)− p?).

We will then show that when ‖∇f (xk)‖2 is small enough, the gap
closes dramatically at every iteration. We call this the quadratic
convergence stage, as we will be able to show that once the algorithm
enters this stage at iteration `, for all k > `,

‖∇f (xk)‖2 ≤ C2 · 2−2
k−`

,

where C2 = Q/(2µ2) is another constant.

Damped phase

We are in this stage when

‖∇f (xk)‖2 ≥ µ2/Q.

We take xk+1 = xk + αexactdk, where

dk = −∇2f (xk)
−1∇f (xk),

and αexact is the result of an exact line search4:

αexact = arg min
0≤α≤1

f (xk + αdk).

We define the current Newton decrement as

λk =
√
∇f (xk)T(∇2f (xk))−1∇f (xk),

4For convenience, we are not letting α be larger than 1, just as in a back-
tracking method.
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and note that λ2
k = −∇f (xk)

Tdk. Moreover, strong convexity im-
plies that the eigenvalues of (∇2f (xk))

−1 are at least 1/L and at
most 1/µ, yielding the bounds

‖dk‖22 ≤
1

µ
λ2
k and

1

L
‖∇f (xk)‖22 ≤ λ2

k,

which we will use below. From the L-smoothness of the gradient of
f , we know that for any t we have

f (xk + tdk) ≤ f (xk) + 〈tdk,∇f (xk〉 +
L

2
‖tdk‖22

= f (xk)− tλ2
k +

Lt2

2
‖dk‖22

≤ f (xk)− tλ2
k +

Lt2

2µ
λ2
k.

Plugging in t = µ/L above yields

f (xk + αexactdk)− f (xk) ≤ f

(
xk +

µ

L
dk

)
− f (xk)

≤ − µ

2L
λ2
k

≤ − µ

2L2
‖∇f (xk)‖22

≤ − µ5

2Q2L2
.
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Quadratic convergence

When
‖∇f (xk)‖2 < µ2/Q,

we start to settle things very quickly. We will assume that in this
stage, we choose the step size to be αk = 1. In fact, you can show
that under very mild assumptions on the backtracking parameter
(c < 1/3, to be specific), backtracking will indeed not backtrack at
all and return αk = 1 (see [BV04, p. 490]).

We start by pointing out that by construction,

∇2f (xk)dk = −∇f (xk),

and so by the fundamental theorem of calculus,

∇f (xk+1) = ∇f (xk + dk)−∇f (xk)−∇2f (xk)dk

=

∫ 1

0

∇2f (xk + tdk)dkdt−∇2f (xk)dk

=

∫ 1

0

[∇2f (xk + tdk)−∇2f (xk)
]
dk dt.

Thus, we obtain

‖∇f (xk+1)‖2 ≤
∫ 1

0

‖∇2f (xk + tdk)−∇2f (xk)‖ · ‖dk‖2 dt

≤
∫ 1

0

tQ‖dk‖22 dt

=
Q

2
‖[∇2f (xk)]

−1∇f (xk)‖22

≤ Q

2µ2
‖∇f (xk)‖22,

56
Georgia Tech ECE 6270 Notes by M. Davenport and J. Romberg. Last updated 12:34, September 28, 2021



where the second inequality follows from the Lipschitz assumption
on the Hessian and the last inequality follows from the fact that the
maximum eigenvalue of (∇2f (xk))

−2 is less than 1/µ2. Thus we have

Q

2µ2
‖∇f (xk+1)‖2 ≤

(
Q

2µ2
‖∇f (xk)‖2

)2

≤
(

1

2

)2

,

where the last inequality follows since ‖∇f (xk)‖2 ≤ µ2/Q. That
is, at every iteration, we are squaring the error (which is less than
1/2). If we entered this stage at iteration `, this means

Q

2µ2
‖∇f (xk)‖2 ≤

(
Q

2µ2
‖∇f (x(`))‖2

)2k−`

≤
(

1

2

)2k−`

.

Then using the strong convexity of f ,

f (xk)− p? ≤
1

2µ
‖∇f (xk)‖22 ≤

2µ3

Q2

(
1

2

)2k−`+1

.

The right hand side above is less than ε when

k − ` + 1 ≥ log2 log2(ε0/ε), ε0 = 2m3/L2,

so we spend no more than log2 log2(ε0/ε) iterations in this phase.

Note that

ε = 10−20ε0 ⇒ log2 log2(ε0/ε) = 6.0539.
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Convergence criteria: the Newton decrement

We know that at the minimia of a smooth convex functional we will
have ∇f (x) = 0. So a natural test for convergence is to measure
how far away ∇f (x) is from 0; that is, we say we are converged
when the norm of ∇f (x) is below some threshold (call it ε):

stop when ‖∇f (xk)‖ ≤ ε.

Which norm should we use?

The natural instinct here is to go with the standard Euclidean (`2)
norm, stopping when

‖∇f (xk)‖2 ≤ ε,

and in fact, this quantity played a key role in our analysis above.
But there is something that is unsatisfying about using the Euclidean
norm, and this problem also extends to the way we approached the
analysis in the previous section. An interesting feature of Newton’s
method is that it is affine invariant; if we simply change the co-
ordinates, the iterates change accordingly. For example, let T be
a N × N invertible matrix, and set f̃ (x) = f (Tx). Suppose we
run Newton’s method to try to find a minima of f starting at x0

and computing iterates x1,x2, . . .. Then we run Newton’s method
on f̃ starting at T −1x0 and compute iterates x̃1, x̃2, . . .. This sec-
ond set of iterates will follow the same progression as the first under
transformation by T :

x̃k = T −1xk, k = 1, 2, . . .

The problem, then, with the the Euclidean norm of the gradient is
that it is not affinely invariant:

‖∇f̃ (x)‖2 6= ‖∇f (Tx)‖2 for general T .
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(Apply the chain rule.)

A criteria that is affinely invariant is the Newton decrement:

λ(x) =
√
gTH−1g, g = ∇f (x), H = ∇2f (x).

(Again, you can work this out with a little effort by applying the
chain rule.) These are various ways you can interpret this: one is as
size of the gradient in the norm induced by H−1:

λ(x) = ‖∇f (x)‖H−1.

Of course, the norm itself depends on the point x. You can also
think of it as the directional derivative in the direction we are taking
a Newton step; if d = −(∇2f (x))−1∇f (x), then

〈d,∇f (x)〉 = −λ(x)2.

At any rate, the convergence criteria for Newton’s method is usually
whether λ(xk) is below some threshold.
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Self-concordant functions

There is an alternative analysis of Newton’s method that is more
satisfying in that it gives an affinely invariant bound, and it does
not depend on the constants µ, L,Q that are usually unknown. The
analysis holds for functions that are self-concordant, a term that we
define below.

Definition. We say that a convex function of one variable f : R→
R is self-concordant if

|f ′′′(x)| ≤ 2f ′′(x)3/2, for all x ∈ dom f.

We say that a convex function of multiple variables f : RN → R is
self-concordant if

g(t) = f (x + tv) is self-concordant for all x ∈ dom f, v ∈ RN .

We should note that the constant 2 that appears in front of the f ′′(x)
above is somewhat arbitrary — if there is any uniform bound on the
ratio of |f ′′′(x)| to f ′′(x)3/2, then f can be made self-concordant
simply by re-scaling.

We mention a few important examples (see [BV04, Chapter 9.6] for
many more).

• Since the third derivative of all linear and quadratic functionals
is zero, they are self-concordant.

• f (x) = − log(x) is self-concordant

• f (X) = − log detX for X ∈ SN++ is self-concordant

• Self-concordance is preserved under composition with an affine
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transformation, so for example

f (x) = −
M∑
m=1

log(bm−aT
mx) on {x : aT

m ≤ bm, m = 1, . . . ,M}

is self-concordant. Functions of the above form will play a ma-
jor role when we talk about log-barrier methods for contrained
optimization.

Using a line of argumentation not too different than in the classical
analysis in the last section, we have the following result for the con-
vergence of Newton’s method (again, see [BV04, Chapter 9] for the
details):

If f (x) : RN → R is self-concordant, then Newton iterations starting
from x0 coupled with standard backtracking line search will have

f (xk)− p? ≤ ε

when
k ≥ Cε0 + log2 log2(1/ε), ε0 = f (x0)− p?.

The constant C above depends only on the backtracking parameters.

You may more fully appreciate this result when we talk about log
barrier techniques a little later.

References

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cam-
bridge University Press, 2004.
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Nonsmooth optimization

Most of the theory and algorithms that we have explored for convex
optimization have assumed that the functions involved are differen-
tiable – that is, smooth.

This is not always the case in interesting applications. In fact,
nonsmooth functions can arise quite naturally in applications. We
already have looked at optimization programs involving the hinge
loss max(aTx + b, 0), the `1 norm, the `∞ norm, and the nuclear
norm — none of these is differentiable. As another example, sup-
pose f1, . . . , fQ are all perfectly smooth convex functions. Then the
pointwise maximum

f (x) = max
1≤q≤Q

fq(x)

is in general not smooth.

f1(t) = (t + 1)2, f2(t) = (t− 1)2 f3(t) = max (f1(t), f2(t))

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

9

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

9

t→ t→

Fortunately, the theory for nonsmooth optimization is not too dif-
ferent than for smooth optimization. We really just need one new
concept: that of a subgradient.

62
Georgia Tech ECE 6270 Notes by M. Davenport and J. Romberg. Last updated 11:57, October 4, 2021



Subgradients

If you look back through the notes so far, you will see that the vast
majority of the time we use the gradient of a convex function, it is
in the context of the inequality

f (y) ≥ f (x) + 〈y − x,∇f (x)〉, for all x,y ∈ dom f.

y
y = x

f(y)

g(y) = f(x) + rf(x)T(y � x)

This is a very special property of convex functions, and it led to all
kinds of beautiful results.

When a convex f is not differentiable at a point x, we can more or
less reproduce the entire theory using subgradients. A subgradient
of f at x is a vector g such that

f (y) ≥ f (x) + 〈y − x, g〉, for all y ∈ dom f.

Unlike gradients for smooth functions, there can be more than one
subgradient of a nonsmooth function at a point. We call the collection
of subgradients the subdifferential at x:

∂f (x) = {g : f (y) ≥ f (x) + 〈y − x, g〉, for all y ∈ dom f}.
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Example:

f (x) = |x|, ∂f (x) =


−1, x < 0

[−1, 1], x = 0

1, x > 0.
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black: f (x) = |x|
blue: f (0)+g(x−0) for a few g ∈ ∂f (0)

x→

Facts for subdifferentials of convex functions:

1. If f is convex and differentiable at x, then the subdifferential
contains exactly one vector: the gradient,

∂f (x) = {∇f (x)}.

2. If f is convex on dom f , then the subdifferential is non-empty
and bounded at all x in the interior of dom f .

For non-convex f , these two points do not hold in general. The
gradient at a point is not necessarily a subgradient:
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and there can also be points where neither the gradient nor subgra-
dient exist, e.g. f (x) = −

√
|x| for x ∈ R
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Example: The `1 norm

Consider the function
f (x) = ‖x‖1.

The `1 norm is not differentiable at any x that has at least one coordi-
nate equal to zero. We will see that optimization problems involving
the `1 norm very often have solutions that are sparse, meaning that
they have many zeros. This is a big problem – the nonsmoothness is
kicking in at exactly the points we are interested in.

What does the subdifferential ∂‖x‖1 look like in such a case? To
see, recall that by definition, if a vector u ∈ ∂‖x‖1, at the point x,
then we must have

‖y‖1 ≥ ‖x‖1 + 〈y − x,u〉 (1)

for all y ∈ RN . To understand what this means in terms of x, it
is useful to introduce the notation Γ(x) to denote the set of indexes
where x is non-zero:

Γ(x) = {n : xn 6= 0}.

Using this, we can re-write the right-hand side of (1) as

‖x‖1 + 〈y − x,u〉 =
N∑
n=1

|xn| +
N∑
n=1

un(yn − xn)

=
∑
n∈Γ

|xn| − unxn +
N∑
n=1

unyn.

Note that if

un = sign(xn) =

{
1 if xn ≥ 0,

−1 if xn < 0,
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then unxn = |xn|. Thus, if un = sign(xn) for all n ∈ Γ, we have∑
n∈Γ

|xn| − unxn =
∑
n∈Γ

|xn| − |xn| = 0.

Thus, if we set un = sign(xn) for all n ∈ Γ, then (1) reduces to

‖y‖1 ≥ 〈y,u〉.

As long as |un| ≤ 1 for all n, then this will hold. Hence, if a vector
u satisfies

un = sign(xn) if n ∈ Γ,

|un| ≤ 1 if n /∈ Γ,

then u ∈ ∂‖x‖1. It is not hard to show that for any u that violates
these conditions, we can construct a y such that (1) is violated, and
thus this is a complete description of all vectors in u ∈ ∂‖x‖1.
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Example: The `2 norm

While the function xTx = ‖x‖2
2 is the prototypical differentiable

(∇f (x) = x), smooth, and strongly convex function (∇2f (x) = I),
the function f (x) = ‖x‖2 is not as nice; it is not strongly convex,
and it is not differentiable at x = 0 (to appreciate this latter point,
consider that a 1D slice of the function s(t) = ‖tv‖2 = |t|‖v‖2 looks
like the absolute value function as function of t).

For x 6= 0, an easy calculation1 shows that

∇‖x‖2 =
x

‖x‖2

.

At x = 0, we know that u ∈ ∂‖x‖2 if

‖y‖2 ≥ ‖0‖2 + 〈y − 0,u〉 = 〈y,u〉 for all y ∈ RN . (2)

We can find u that meet these conditions using the Cauchy-Schwarz
inequality. Note that

〈y,u〉 ≤ ‖y‖2‖u‖2,

so (2) will hold when ‖u‖2 ≤ 1. On the other hand, if ‖u‖2 > 1,
then for y = u, we have

〈y,u〉 = ‖y‖2
2 > ‖y‖2,

and (2) does not hold. Therefore

∂‖x‖2 =

{
{u : ‖u‖2 ≤ 1}, x = 0
x
‖x‖2 , x 6= 0.

1Use the fact that d
dx

√
x2 + a = x/

√
x2 + a.
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General norms at x = 0

Norms in general are not differentiable at x = 0, again because they
look like an absolute value function along a line: s(t) = ‖tv‖ =
|t| · ‖v‖ for any valid norm ‖ · ‖. We can generalize the result for the
`2 norm at x = 0 using the concept of a dual norm.

The dual norm ‖ · ‖∗ of a norm ‖ · ‖ is

‖y‖∗ = max
‖x‖≤1

〈x,y〉.

Since sublevel sets of norms in RN are compact, we know that this
maximum is achieved, and it is an easy exercise to show that ‖ · ‖∗
is a valid norm. You can also verify the following easy facts at home

• the dual of ‖ · ‖2 is again ‖ · ‖2

• the dual of ‖ · ‖1 is ‖ · ‖∞
• the dual of ‖ · ‖∞ is ‖ · ‖1

It is also a fact (for norms on RN) that the dual of ‖ · ‖∗ is the
original norm ‖ · ‖, i.e. ‖x‖∗∗ = ‖x‖. We also have the generalized
Cauchy-Schwarz inequality

|〈x,y〉| ≤ ‖x‖ · ‖y‖∗.

We can use these facts with an argument similar to the `2 case above
to compute the subdifferential of any norm at 0 as

∂‖0‖ = {u : ‖u‖∗ ≤ 1}.
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Properties of subdifferentials

Here are some properties of the subdifferential that we will state
without proof (but are easy to prove). Below, we assume that all
functions are well-defined on all of RN .

Summation: If f (x) = f1(x) + f2(x), then

∂f (x) = ∂f1(x) + ∂f2(x).

That is, the set of all subgradients (at x) of f is the set of vectors
that can be written as a sum of a vector from ∂f1(x) plus a vector
from ∂f2(x).

Chain rule for affine transformations: If h(x) = f (Ax+b),
then

∂h(x) = AT∂f (Ax + b).

That is, we compute the subgradients of f at the point Ax+b, then
map them through AT.

Max of functions: If f (x) = max{f1(x), . . . , fM(x)}, then

∂f (x) = conv

 ⋃
m∈Γ(x)

∂fi(x)

 ,
where Γ(x) = {m : fm(x) = f (x)}, and conv takes the convex
hull:

conv(X ) =

{
P∑
p=1

λpxp, xp ∈ X , λp ≥ 0,
P∑

p=1

λp = 1, ∀P
}
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Exercise: Compute ∂f (x) for f (x) = ‖y −Ax‖1.

Answer: Set Γ(x) = {m : aT
mx = ym}, where aT

m is the mth row of A. Then ∂f(x) is the set of vectors that can be written
as

u =
∑

m 6∈Γ(x)

sgn(aT
mx− ym)am +

∑
m∈Γ(x)

βmam

for any βm with |βm| ≤ 1.
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Exercise: Compute ∂f (x) for f (x) = max(x, 0).

Answer:

∂f(x) =


0, x < 0,

[0, 1], x = 0,

1, x > 0.

Exercise: Compute ∂f (x) for f (x) = max((x + 1)2, (x− 1)2).

Answer:

∂f(x) =


2(x− 1) x < 0,

[−2, 2], x = 0,

2(x+ 1), x > 0.
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Exercise: Compute ∂f (x) for f (x) = ‖x‖∞.
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Optimality conditions for unconstrained optimization

With the right definition in place, it is very easy to re-derive the cen-
tral mathematical results in this course for general2 convex functions.

Let f (x) be a general convex function. Then x? is a solution to
the unconstrained problem

minimize
x∈RN

f (x)

if and only if
0 ∈ ∂f (x?).

The proof of this statement is so easy you could do it in your sleep.
Suppose 0 ∈ ∂f (x?). Then

f (y) ≥ f (x?) + 〈y − x?,0〉
= f (x?)

for all y ∈ dom f . Thus x? is optimal. Likewise, if f (y) ≥ f (x?)
for all y ∈ dom f , then of course it must also be true that f (y) ≥
f (x?) + 〈y − x,0〉 for all y, and so 0 ∈ ∂f (x?).

Example: The LASSO

Consider the `1 regularized least-squares problem

minimize
x∈RN

1

2
‖y −Ax‖2

2 + τ‖x‖1.

2Meaning not necessarily differentiable.
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We can quickly translate the general result 0 ∈ ∂f (x?) into a useful
set of optimality conditions. We need to compute the subdifferential
of f (x) = 1

2
‖y −Ax‖2

2 + τ‖x‖1. The first term is smooth, so the
subdifferential just contains the gradient:

∂f (x) = AT(Ax− y) + τ∂‖x‖1.

As shown above ∂‖x‖1 is the set of all vectors u such that

un = sign(xn) if xn 6= 0,

|un| ≤ 1 if xn = 0.

Thus the optimality condition

0 ∈ AT(Ax? − y) + τ∂‖x?‖1,

means that x? is optimal if and only if

aT
n (y −Ax?) = τ signx?

n if x?
n 6= 0,

|aT
n (y −Ax?)| ≤ τ if x?

n = 0.

where here an is the nth column of A.

Note that this doesn’t quite give us a closed form expression for x?

(except when A is an orthonormal matrix), but it is useful both algo-
rithmically (for checking if a candidate x is a solution) and theoreti-
cally (for understanding and analyzing the properties of the solution
to this optimization problem.)
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The subgradient method

The subgradient method is the non-smooth version of gradient de-
scent. The basic algorithm is straightforward, consisting of the iter-
ation

xk+1 = xk − αkdk, (3)

where dk is any subgradient at xk, i.e., dk ∈ ∂f (xk). Of course, there
could be many choices for dk at every step, and the progress you make
at that iteration could very dramatically with this choice. Making
this determination, though, is often very difficult, and whether or
not it can even be done it very problem dependent. Thus the ana-
lytical results for the subgradient method just assume we have any
subgradient at a particular step.

With the right choice of step sizes {αk}, some simple analysis (which
we will get to in a minute) shows that the subgradient method con-
verges. The convergence rate, though, is very slow. This is also
evidenced in most practical applications of this method: it can take
many iterations on even a medium-sized problem to arrive at a solu-
tion that is even close to optimal.

Here is what we know about this algorithm for solving the general
unconstrained program

minimize
x∈RN

f (x). (4)

We will look at one particular case here; for more detailed results
see [Nes04, Chapter 3]. Along with f being convex, we will assume
that it has at least one minimizer. The results also assume that f is
Lipschitz:

|f (x)− f (y)| ≤ L‖x− y‖2.
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Note that here we are assuming that f is Lipschitz, not that f has
Lipschitz gradients (since the gradient does not even necessarily ex-
ist). A direct consequence of f being Lipschitz is that the norms of
the subgradients are bounded:

‖d‖2 ≤ L, for all d ∈ ∂f (x), for all x ∈ RN . (5)

The results below used pre-determined step sizes. Thus the itera-
tion (3) does not necessarily decrease the functional f (x) at every
step. We will keep track of the best value we have up to the current
iteration with

f best
k = min {f (xi), 0 ≤ i < k} .

We will let x? be any solution to (4) and set f ? = f (x?).

Our analytical results stem from a careful look at what happens
during a single iteration. Note that

‖xi+1 − x?‖2
2 = ‖xi − αidi − x?‖2

2

= ‖xi − x?‖2
2 − 2αi〈xi − x?,di〉 + α2

i‖di‖2
2

≤ ‖xi − x?‖2
2 − 2αi(f (xi)− f ?) + α2

i‖di‖2
2,

where the inequality follows from the definition of a subgradient:

f ? ≥ f (xi) + 〈x? − xi,di〉.
Rearranging the bound above we have

2αi (f (xi)− f ?) ≤ ‖xi − x?‖2
2 − ‖xi+1 − x?‖2

2 + α2
i‖di‖2

2,

and so of course

2αi

(
f best
i − f ?

) ≤ ‖xi − x?‖2
2 − ‖xi − x?‖2

2 + α2
i‖di‖2

2.

77
Georgia Tech ECE 6270 Notes by M. Davenport and J. Romberg. Last updated 11:57, October 4, 2021



Since f best
i is monotonically decreasing, at iteration k we have

2αi

(
f best
k − f ?

) ≤ ‖xi − x?‖2
2 − ‖xi+1 − x?‖2

2 + α2
i‖di‖2

2,

for all i ≤ k. To understand what has happened after k iterations,
we sum both sides of the expression above from i = 0 to i = k − 1.
Notice that the two error terms on the right hand side give us the
telescoping sum:

k−1∑
i=0

(‖xi − x?‖2
2 − ‖xi+1 − x?‖2

2

)
= ‖x0 − x?‖2

2 − ‖xk − x?‖2
2

≤ ‖x0 − x?‖2
2

and so

f best
k − f ? ≤ ‖x0 − x?‖2

2 +
∑k−1

i=0 α
2
i‖di‖2

2

2
∑k−1

i=0 αi

(6)

We can now specialize this result to general step-size strategies.

Fixed step size. Suppose that αk = α > 0 for all k. Then (6)
becomes

f best
k − f ? ≤ ‖x0 − x?‖2

2

2kα
+
L2α

2
,

where we have also used the Lipschitz property (5). Note that in
this case, no matter how small we choose α, the subgradient
algorithm is not guaranteed to converge. This is, in fact,
standard in practice as well. The problem is that, unlike gradients for
smooth functions, the subgradients do not have to vanish as we ap-
proach the solution. Even at the solution, there can be subgradients
that are large.
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Fixed step length. A similar result holds if we always move the
same amount, taking

αk = s/‖dk‖2.

This means that
‖xk+1 − xk‖2 = s.

Of course, with this strategy it is self-evident that it will never con-
verge, since we move some fixed amount at every step. We can bound
the suboptimality at step k as

f best
k − f ? ≤ L‖x0 − x?‖2

2

2ks
+
Ls

2
,

which is not necessarily worse than the fixed step size result. In fact,
notice that even though you are moving some fixed amount, you will
never move too far from an optimal point.

Decreasing step size. The results above suggest that we might
want to decrease the step size as k increases, so we can get rid of
this constant offset term. To make the terms in (6) work out, we let
αk → 0, but not too fast. Specifically, we choose a sequence {αk}
such that ∞∑

k=1

αk =∞, and

∑k−1
i=0 α

2
i∑k−1

i=0 αi

→ 0.

Looking at (6) above, we can see that under these conditions f best
k →

f ?. It is an exercise (but a nontrivial one) to show that it is enough
to choose {αk} such that

αk → 0 as k →∞, and
∞∑
k=1

αk =∞. (7)

79
Georgia Tech ECE 6270 Notes by M. Davenport and J. Romberg. Last updated 11:57, October 4, 2021



To get an idea of the tradeoffs involved here, suppose that αk =
α/(k + 1). Then for large k, we have the approximations

k−1∑
i=0

αi ∼ α log k, and
k−1∑
i=0

α2
i ∼ Const = α2π2/6

that are good as upper and lower bounds to within constants. In this
case, the convergence result (6) becomes

f best
k − f ? .

‖x0 − x?‖2
2

α log k
+ Const · αL

2

log k
.

So the convergence is extraordinarily slow – logarithmic in k.

You can get much better rates than this (but still not great) by
decreasing the stepsize more slowly. Consider now αk = α/

√
k + 1.

Then for large k

k−1∑
i=0

αi ∼ (α + 1)
√
k, and

k−1∑
i=0

α2
i ∼ α2 log k,

and so

f best
k − f ? .

‖x0 − x?‖2
2

(α + 1)
√
k

+ Const · αL
2 log k√
k

.

This is something like O(1/
√
k) convergence. This means that if we

want to guarantee f best
k − f ? ≤ ε, we need k = O(1/ε2) iterations.

In [Nes04, Chapter 3], it is shown that there is no better rate of
convergence than O(1/

√
k) that holds uniformly across all problems.

Example. Consider the “`1 approximation problem”

minimize
x∈RN

‖Ax− b‖1.
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We have already looked at the subdifferential of ‖x‖1. Specifically,
we showed that u is a subgradient of ‖x‖1 at x if it satisfies

un = sign(xn) if xn 6= 0,

|un| ≤ 1 if xn = 0.

In the exercise above, we also derived the subdifferential for ‖Ax− b‖1.
We quickly re-derive it here using “guess and check”. First consider
a vector z that satisfies

zm = sign(aT
mx− bm) if aT

mx− bm 6= 0,

|zm| ≤ 1 if aT
mx− bm = 0.

Now consider the vector u = ATz. Note that

uT(y − x) = zTA(y − x)

= zT(Ay − b + b−Ax)

= zT(Ay − b)− zT(Ax− b)

= zT(Ay − b)− ‖Ax− b‖1

≤ ‖Ay − b‖1 − ‖Ax− b‖1.

Rearranging this shows that u is a subgradient of ‖Ax−b‖1. Using
this we can construct a subgradient at each step xk.

Below we illustrate the performance of this approach for a randomly
generated example with A ∈ R500×100 and b ∈ R1000. For three
different sizes of fixed step length, s = 0.1, 0.01, 0.001, we make
quick progress at the beginning, but then saturate, just as the theory
predicts:
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(f(xk)− f ?)/f ? (fbest
k − f ?)/f ?

Example: 1-norm minimization

minimize kAx � bk1

• subgradient is given by AT sign(Ax � b)

• example with A 2 R500⇥100, b 2 R500

Fixed steplength tk = s/kg(k�1)k2 for s = 0.1, 0.01, 0.001

0 20 40 60 80 100
10�3

10�2

10�1

100

k

(f(x(k)) � f?)/f?

0.1
0.01
0.001

0 1000 2000 3000
10�4

10�3

10�2

10�1

100

k

(fbest(x
(k)) � f?)/f?

0.1
0.01
0.001

Subgradient method 5-8
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Here is a run using two different decreasing step size strategies: αk =
.01/
√
k and αk = .01/k.

(fbest
k − f ?)/f ?

Diminishing step size: tk = 0.01/
p

k and tk = 0.01/k
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(fbest(x
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p
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0.01/k

Subgradient method 5-9

As you can see, even though the theoretical worst case bound makes
a stepsize of ∼ 1/

√
k look better, in this particular case, a stepsize

∼ 1/k actually performs better.
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Qualitatively, the takeaways for the subgradient method are:

1. It is a natural extension of the gradient descent formulation

2. In general, it does not converge for fixed stepsizes.

3. If the stepsizes decrease, you can guarantee convergence.

4. Theoretical convergence rates are slow.

5. Convergence rates in practice are also very slow, but depend a
lot on the particular example.

References

[Nes04] Y. Nesterov. Introductory Lectures on Convex Optimiza-
tion. Springer Science+Business Media, 2004.
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Proximal algorithms

The subgradient algorithm is one generalization of gradient descent.
It is simple, but the convergence is typically very slow (and it does
not even converge in general for a fixed step size).

One way to deal with this is to add a smooth regularization term.
Specifically, it is easy to show that if x? is a minimizer of f (x), then
it is also the minimizer of

minimize
x∈RN

f (x) + δ‖x− x?‖22,

where δ > 0. While the resulting optimization problem is still nons-
mooth, it is now strongly convex, and we know that strongly convex
functions are generally much easier to minimize. The “only” chal-
lenge is that it requires us to already know the solution x?, which
would seem to limit the practical applicability of this idea.

We can turn this into an actual algorithm by adopting an iterative ap-
proach. The proximal algorithm or proximal point method
uses the following iteration:

xk+1 = arg min
x∈RN

(
f (x) +

1

2αk
‖x− xk‖22

)
. (1)

As noted above, when f is convex, f (x) + δ‖x − z‖22 is strictly
convex for all δ > 0 and z ∈ RN , so the mapping from xk to xk+1 is
well-defined. We will sometimes use the “prox operator” to denote
this mapping:

proxαkf
(z) = arg min

x∈RN

(
f (x) +

1

2αk
‖x− z‖22

)
.
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It can be shown (and in fact we give a proof later in these notes)
that the iterations above do find a minimizer of convex f for an
appropriate choice of “step sizes” αk.

At this point, you would be forgiven for having doubts about what
we are really doing here. We have taken an optimization problem and
turned it into... a sequence of many optimization problems. How-
ever, these problems can sometimes be far easier to solve that the
original problem. One way to think about the additional 1

2αk
‖x−xk‖

term is as a regularizer that makes each subproblem computation-
ally easier to solve, and whose influence naturally disappears as we
approach the solution, even for a fixed “step size” αk = α.

A very nice a detailed review of proximal algorithms can be found in
[PB14].

Implicit gradient descent (“backward Euler”)

The proximal point method can also be interpreted as a variation
on gradient descent. To see this, let us return for a moment to the
differential equations for the “gradient flow” of f :

x′(t) = −∇f (x(t)), x(0) = x0. (2)

The equilibrium points for this system are the x such that ∇f (x) =
0, which are precisely the minimizers for f (x).

As we first discussed in the context of momentum-based methods,
we can interpret gradient descent as a first-order numerical method
for tracing the path from x0 to a solution x?. This comes from dis-
cretizing the derivative on the right using a forward finite difference:

x(t + h)− x(t)

h
≈ −∇f (x(t)) for small h.
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Thus the gradient descent iterations

xk+1 = xk − h∇f (xk)

approximate the solution at equispaced times spaced h seconds apart
— the step size in gradient descent can be interpreted as the time
scale to which we are approximating the derivative. This is known
as the forward Euler method for discretizing (2).

But now suppose we used a backward difference to approximate the
derivative:

x(t)− x(t− h)

h
≈ −∇f (x(t)) for small h.

Now the iterates must obey

xk+1 = xk − h∇f (xk+1).

This is an equally valid technique for discretizing (2) known as the
backward Euler method. However, computing the iterates is not as
straightforward – we can’t just compute the gradient at the current
point, we have to find the next point by finding an xk+1 that obeys
the equation above.

This is exactly what the proximal operator does. If f is differentiable,
then

xk+1 = arg min
x∈RN

(
f (x) +

1

2αk
‖x− xk‖22

)
m

0 = ∇f (xk+1) +
1

αk
(xk+1 − xk). (3)
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So the proximal point method can be interpreted as a backward Euler
discretization for gradient flow.

Note that we assumed the differentiability of f above purely for il-
lustration; we can compute the prox operator whether or not f has
a gradient.

Example: Least squares

Suppose we want to solve the standard least-squares problem

minimize
x∈RN

‖y −Ax‖22.

When A has full column rank, we know that the solution is given
by x̂ls = (ATA)−1ATy. However, we also know that when ATA is
not well-conditioned, this inverse can be unstable to compute, and
iterative descent methods (gradient descent and conjugate gradients)
can take many iterations to converge.

Consider the proximal point iteration (with fixed αk = α) for solving
this problem:

xk+1 = arg min
x∈RN

(
1

2
‖y −Ax‖22 +

1

2α
‖x− xk‖22

)
.

Here we have the closed form solution

xk+1 = (ATA + δI)−1(ATy + δxk), δ =
1

α
= xk + (ATA + δI)−1AT(y −Axk).

Now each step is equivalent to solving a least-squares problem, but
this problem can be made well-conditioned by choosing δ (i.e., α)
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appropriately. The iterations above will converge to x̂ls for any value
of α; as we decrease α (increase δ), the number of iterations to
get within a certain accuracy of x̂ls increases, but the least-squares
problems involved are all very well conditioned. For α very small,
we are back at gradient descent (with step size α).

This is actually a well-known technique in numerical linear algebra
called iterative refinement.

Proximal gradient algorithms

Recall the core update equation for the proximal point method:

xk+1 = proxαkf
(xk) = arg min

x∈RN

(
f (x) +

1

2α
‖x− xk‖22

)
.

Suppose that we did not wish to fully solve this problem at each iter-
ation. If f is differentiable, we could approximate this update by re-
placing f (x) with its linear approximation f (xk)+〈x−xk,∇f (xk)〉.
This would yield the update

xk+1 = arg min
x∈RN

(
f (xk) + 〈x− xk,∇f (xk)〉 +

1

2αk
‖x− xk‖22

)
= arg min

x∈RN

(
αk
2
‖∇f (xk)‖22 + 〈x− xk,∇f (xk)〉 +

1

2αk
‖x− xk‖22

)
= arg min

x∈RN

(
1

2αk
‖x− xk + αk∇f (xk)‖22

)
= xk − αk∇f (xk).

Thus, taking a linear approximation of f , the proximal method sim-
ply reduces to standard gradient descent. (Note that the first equality
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above comes from the fact that the presence/absence of f (xk) and
‖∇f (xk)‖22 does not affect what the minimizer is, as xk is fixed.)

Where this starts getting interesting is when we encounter optimiza-
tion problems where the objective function can be broken into the
sum two parts, i.e.,

f (x) = g(x) + h(x),

where both g and h are convex, but g is smooth (differentiable) and h
is a non-smooth function for which there is a fast proximal operator.
Such optimization problems quite a bit more often than you might
expect.

The proximal gradient algorithm is the result of applying the
proximal point method to minimize the approximation of f where
we take a linear approximation to the smooth component g. Using
the same argument as above, this results in the update rule1

xk+1 = arg min
x∈RN

(
g(xk) + 〈x− xk,∇g(xk)〉 + h(x) +

1

2αk
‖x− xk‖22

)
= arg min

x∈RN

(
h(x) +

1

2αk
‖x− xk + αk∇g(xk)‖22

)
= proxαkh

(xk − αk∇g(xk)) .

This is also called forward-backward splitting, with the “forward”
referring to the gradient step, and the “backward” to the proximal
step. (The prox step is still making progress, just like the gradient
step; the forward and backward refer to the interpretations of gra-
dient descent and the proximal algorithm as forward and backward
Euler discretizations, respectively.)

1Again, the second line comes from removing g(xk) and adding a multiple
of ‖∇g(xk)‖22 and then completing the square.
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Example: The LASSO

Recall our friend the LASSO:

minimize
x∈RN

1

2
‖y −Ax‖22 + τ‖x‖1.

We take

g(x) =
1

2
‖y −Ax‖22, so ∇g(x) = AT(Ax− y),

and
h(x) = τ‖x‖1.

The prox operator for the `1 norm is:

proxαh(z) = arg min
x∈RN

(
τ‖x‖1 +

1

2α
‖x− z‖22

)
= Tτα(z),

where Tτα is the soft-thresholding operator

(Tτα(z))i =


zi − τα, zi ≥ τα,

0, |zi| ≤ τα,

zi + τα, zi ≤ −τα.

Hence, the gradient step requires an application of A and AT, and
the proximal step simply requires a soft-thresholding operation. The
iteration looks like

xk+1 = Tταk

(
xk + αkA

T(y −Axk)
)
.

This is also called the iterative soft thresholding algorithm, or ISTA.
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Here is a comparison2 of a typical run for ISTA versus the subgradient
method. ISTA absolutely crushes the subgradient method.

f (xk)− f ?

Recall rg(x) = �AT (y � Ax). Hence generalized gradient update
step is:

x+ = S�t(x + tAT (y � Ax))

Resulting algorithm called ISTA (Iterative Soft-Thresholding
Algorithm). Very simple algorithm to compute a lasso solution

Generalized gradient
(ISTA) vs subgradient

descent:
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2This is taken from the lecture notes of Geoff Gordon and Ryan Tibshirani;
“generalized gradient” in the legend means ISTA.
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Convergence of the proximal gradient method

The convergence analysis of the proximal gradient method is ex-
tremely similar to what we did for gradient descent. In fact, gradi-
ent descent is a special case of the proximal gradient method (when
h(x) = 0), and our analysis will recover the same result. We will
assume that g is L-smooth, but we will make no assumptions on
h aside from convexity. As before, we will use a fixed “step size”,
αk = 1/L for all k. We will x? denote any minimizer of f .

The general structure of the argument is as follows:

1. Using the L-smoothness of g as well as the first-order charac-
terization of convexity, we can establish that

f (xk+1) ≤ f (z) + 〈xk − z,dk〉 −
1

2L
‖dk‖22 (4)

for all z ∈ RN where dk := L(xk − xk+1).

2. From (4) we can conclude, by setting z = xk, that

f (xk+1) ≤ f (xk)−
1

2L
‖dk‖22 ≤ f (xk),

and thus f (xk) is non-increasing at every step.

3. From (4) we can also conclude, by setting z = x?, that

f (xk+1) ≤ f (x?) + 〈xk − x?,dk〉 −
1

2L
‖dk‖22.

By exactly the same argument as we have seen in the analysis
of both gradient descent and Nesterov’s method, we can show
that this bound is equivalent to

f (xk+1)− f (x?) ≤ L

2

(‖xk − x?‖22 − ‖xk+1 − x?‖22
)
.
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4. This yields a telescopic sum, and hence by an identical argu-
ment to that used in analyzing gradient descent, we arrive at
the bound

f (xk)− f (x?) ≤ L

2k
‖x0 − x?‖22.

Thus, the proximal gradient algorithm exhibits the same convergence
rate as gradient descent: O(1/k). This is remarkable when consid-
ering that it holds for any h. This result is in fact a kind of “master
result” for the convergence rate of many different algorithms:

• gradient descent (take h(x) = 0),

• the proximal point method (take g(x) = 0),

• the proximal gradient method.

The work above gives a unified analysis for all three of these, showing
that they all exhibit O(1/k) convergence.

Note that the only novelty in the analysis above compared to that of
gradient descent is the derivation of (4). To establish this inequality,
we first note that

f (xk+1) = g(xk+1) + h(xk+1)

≤ g(xk)−
1

L
〈dk,∇g(xk)〉 +

1

2L
‖dk‖22 + h(xk+1), (5)

where the inequality follows directly from the definition ofL-smoothness.
We now use two facts to get an upper bound on this expression. First,
note that from the first-order characterization of convexity,

g(z) ≥ g(xk) + 〈z − xk,∇g(xk)〉. (6)
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Second, since

xk+1 = proxh/M

(
xk −

1

L
∇g(xk)

)
= arg min

x

(
h(x) +

L

2

∥∥∥∥x− xk +
1

L
∇g(xk)

∥∥∥∥2
2

)
,

we know

0 ∈ ∂h(xk+1)− dk +∇g(xk) ⇒ dk −∇g(xk) ∈ ∂h(xk+1).

Thus
h(z) ≥ h(xk+1) + 〈z − xk+1,dk −∇g(xk)〉. (7)

We combine (6) and (7) back into (5) to obtain

f (xk+1) ≤ g(z) + 〈xk − z,∇g(xk)〉 −
1

L
〈dk,∇g(xk)〉 +

1

2L
‖dk‖22

+ h(z)−
〈
z − xk +

1

L
dk,dk −∇g(xk)

〉
= f (z) + 〈xk − z,dk〉 +

1

L

(
L

2L
− 1

)
‖dk‖22

≤ f (z) + 〈xk − z,dk〉 −
1

2L
‖dk‖22,

which establishes (4).
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Accelerated proximal gradient

We can accelerate the proximal gradient method in exactly the same
way we accelerated gradient descent – in fact, the Nesterov’s method
for gradient descent is simply a special case as that for the proximal
gradient algorithm. The accelerated iteration is

pk =
k − 1

k + 2
(xk − xk−1)

xk+1 = proxαkh
(xk + pk − αk∇g(xk + pk)) .

Again, the computations here are in general no more involved than
for the non-accelerated version, but the number of iterations can
be significantly lower. We will not prove it here (see [BT09] for an
analysis), but adding in the momentum term results in convergence
rate of O(1/k2) using a similar argument as before.

The numerical performance can also be dramatically better. Here are
typical runs3 for the LASSO, which compares the standard proximal
gradient method (ISTA) to its accelerated version (FISTA):

f (xk)− f ?
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Subgradient method
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25# iterations

3Again, this example comes from Gordon and Tibshirani; as before “gener-
alized gradient” means ISTA, and “Nesterov acceleration” means FISTA.
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∇f is Lipschitz with constant L if and only if

f(y) ≤ f(x) +∇f(x)T (y − x) + L

2
‖y − x‖22, for all x, y.

Proof. Suppose ∇f is Lipschitz with constant L. Consider g(t) = f(x+ t(y − x)).
Then g′(t) = ∇f(x+ t(y − x))T (y − x).
Then

f(y)− f(x)−∇f(x)T (y − x)
= g(1)− g(0)−∇f(x)T (y − x)

=

∫ 1

0

∇f(x+ t(y − x))T (y − x)−∇f(x)T (y − x)dt

=

∫ 1

0

(∇f(x+ t(y − x))−∇f(x))T (y − x)dt

≤
∫ 1

0

‖∇f(x+ t(y − x))−∇f(x)‖2‖y − x‖2dt

≤
∫ 1

0

Lt||y − x||22dt

=
L

2
||y − x||22.

Conversely, suppose f(y) ≤ f(x)+∇f(x)T (y−x)+ L
2 ‖y−x‖

2
2, for all x, y. Consider

the function φx(z) := f(z)−∇f(x)T z.
φx is convex and ∇φx(z) = ∇f(z)−∇f(x).
Since, f(z) ≤ f(y) +∇f(y)T (z − y) + L

2 ||z − y||
2, we have

f(z)−∇f(x)T z ≤ f(y)−∇f(x)T y + (∇f(y)−∇f(x))T (z − y) + L

2
||z − y||2

That is

φx(z) ≤ φx(y) +∇φx(y)T (z − y) +
L

2
||z − y||2

We minimized both sides over z. The left hand side is minimized at z = x.
The right hand side is minimized at z = − 1

L∇φx(y) + y. Hence,

f(x)−∇f(x)Tx = φx(x) ≤ φx(y) +∇φx(y)T (−
1

L
∇φx(y)) +

L

2
‖ 1
L
∇φx(y)‖2

= f(y)−∇f(x)T y − 1

2L
‖∇f(y)−∇f(x)‖2

So

f(y)− f(x)−∇f(x)T (y − x) ≥ 1

2L
‖∇f(y)−∇f(x)‖2

Interchange the role of x, y, we get

f(x)− f(y)−∇f(y)T (x− y) ≥ 1

2L
‖∇f(y)−∇f(x)‖2

Adding the two inequalities, we get

(∇f(x)−∇f(y))T (x− y) ≥ 1

L
‖∇f(x)−∇f(y)‖2

Hence, we have

‖∇f(y)−∇f(x)‖2 ≤ L(∇f(y)−∇f(x))T (y − x)
≤ L‖∇f(y)−∇f(x)‖‖y − x‖

�

1
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Lemma



Suppose f is µ-strongly convex. Then

2µ(f(x)− f∗) ≤ ‖∇f(x)‖22.

Proof. Since f is µ-strongly convex,

f(y) ≥ f(x) +∇f(x)T (y − x) + µ

2
‖y − x‖22.

We minimize both sides with respect to y. Taking gradient on the right hand side,
we note that the minimizer is x− 1

µ∇f(x).
Therefore,

f∗ = inf
y
f(y) ≥ inf

y

{
f(x) +∇f(x)T (y − x) + µ

2
‖y − x‖22

}
= f(x)− 1

2µ
‖∇f(x)‖22.

Hence,

f∗ ≥ f(x)− 1

2µ
‖∇f(x)‖22

�

1
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∇f is Lipschitz with constant L if and only if


f(y) ≤ f(x) +∇f(x)T (y − x) + L


2
‖y − x‖22, for all x, y.


Proof. Suppose ∇f is Lipschitz with constant L. Consider g(t) = f(x+ t(y − x)).
Then g′(t) = ∇f(x+ t(y − x))T (y − x).
Then


f(y)− f(x)−∇f(x)T (y − x)
= g(1)− g(0)−∇f(x)T (y − x)


=


∫ 1


0


∇f(x+ t(y − x))T (y − x)−∇f(x)T (y − x)dt


=


∫ 1


0


(∇f(x+ t(y − x))−∇f(x))T (y − x)dt


≤
∫ 1


0


‖∇f(x+ t(y − x))−∇f(x)‖2‖y − x‖2dt


≤
∫ 1


0


Lt||y − x||22dt


=
L


2
||y − x||22.


Conversely, suppose f(y) ≤ f(x)+∇f(x)T (y−x)+ L
2 ‖y−x‖


2
2, for all x, y. Consider


the function φx(z) := f(z)−∇f(x)T z.
φx is convex and ∇φx(z) = ∇f(z)−∇f(x).
Since, f(z) ≤ f(y) +∇f(y)T (z − y) + L


2 ||z − y||
2, we have


f(z)−∇f(x)T z ≤ f(y)−∇f(x)T y + (∇f(y)−∇f(x))T (z − y) + L


2
||z − y||2


That is


φx(z) ≤ φx(y) +∇φx(y)T (z − y) +
L


2
||z − y||2


We minimized both sides over z. The left hand side is minimized at z = x.
The right hand side is minimized at z = − 1


L∇φx(y) + y. Hence,


f(x)−∇f(x)Tx = φx(x) ≤ φx(y) +∇φx(y)T (−
1


L
∇φx(y)) +


L


2
‖ 1
L
∇φx(y)‖2


= f(y)−∇f(x)T y − 1


2L
‖∇f(y)−∇f(x)‖2


So


f(y)− f(x)−∇f(x)T (y − x) ≥ 1


2L
‖∇f(y)−∇f(x)‖2


Interchange the role of x, y, we get


f(x)− f(y)−∇f(y)T (x− y) ≥ 1


2L
‖∇f(y)−∇f(x)‖2


Adding the two inequalities, we get


(∇f(x)−∇f(y))T (x− y) ≥ 1


L
‖∇f(x)−∇f(y)‖2


Hence, we have


‖∇f(y)−∇f(x)‖2 ≤ L(∇f(y)−∇f(x))T (y − x)
≤ L‖∇f(y)−∇f(x)‖‖y − x‖
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Suppose f is µ-strongly convex. Then


2µ(f(x)− f∗) ≤ ‖∇f(x)‖22.


Proof. Since f is µ-strongly convex,


f(y) ≥ f(x) +∇f(x)T (y − x) + µ


2
‖y − x‖22.


We minimize both sides with respect to y. Taking gradient on the right hand side,
we note that the minimizer is x− 1


µ∇f(x).
Therefore,


f∗ = inf
y
f(y) ≥ inf


y


{
f(x) +∇f(x)T (y − x) + µ


2
‖y − x‖22


}
= f(x)− 1


2µ
‖∇f(x)‖22.


Hence,


f∗ ≥ f(x)− 1


2µ
‖∇f(x)‖22
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